linux_dsm_epyc7002/drivers/crypto/hisilicon/qm.c
Zhou Wang 00ae05db58 crypto: hisilicon - fix kbuild warnings
Fix to use proper type of argument for dma_addr_t and size_t.

Fixes: 263c9959c9 ("crypto: hisilicon - add queue management driver for HiSilicon QM module")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Zhou Wang <wangzhou1@hisilicon.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-08-15 21:52:12 +10:00

1913 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <asm/page.h>
#include <linux/bitmap.h>
#include <linux/debugfs.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/irqreturn.h>
#include <linux/log2.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include "qm.h"
/* eq/aeq irq enable */
#define QM_VF_AEQ_INT_SOURCE 0x0
#define QM_VF_AEQ_INT_MASK 0x4
#define QM_VF_EQ_INT_SOURCE 0x8
#define QM_VF_EQ_INT_MASK 0xc
#define QM_IRQ_NUM_V1 1
#define QM_IRQ_NUM_PF_V2 4
#define QM_IRQ_NUM_VF_V2 2
#define QM_EQ_EVENT_IRQ_VECTOR 0
#define QM_AEQ_EVENT_IRQ_VECTOR 1
#define QM_ABNORMAL_EVENT_IRQ_VECTOR 3
/* mailbox */
#define QM_MB_CMD_SQC 0x0
#define QM_MB_CMD_CQC 0x1
#define QM_MB_CMD_EQC 0x2
#define QM_MB_CMD_AEQC 0x3
#define QM_MB_CMD_SQC_BT 0x4
#define QM_MB_CMD_CQC_BT 0x5
#define QM_MB_CMD_SQC_VFT_V2 0x6
#define QM_MB_CMD_SEND_BASE 0x300
#define QM_MB_EVENT_SHIFT 8
#define QM_MB_BUSY_SHIFT 13
#define QM_MB_OP_SHIFT 14
#define QM_MB_CMD_DATA_ADDR_L 0x304
#define QM_MB_CMD_DATA_ADDR_H 0x308
/* sqc shift */
#define QM_SQ_HOP_NUM_SHIFT 0
#define QM_SQ_PAGE_SIZE_SHIFT 4
#define QM_SQ_BUF_SIZE_SHIFT 8
#define QM_SQ_SQE_SIZE_SHIFT 12
#define QM_SQ_PRIORITY_SHIFT 0
#define QM_SQ_ORDERS_SHIFT 4
#define QM_SQ_TYPE_SHIFT 8
#define QM_SQ_TYPE_MASK GENMASK(3, 0)
/* cqc shift */
#define QM_CQ_HOP_NUM_SHIFT 0
#define QM_CQ_PAGE_SIZE_SHIFT 4
#define QM_CQ_BUF_SIZE_SHIFT 8
#define QM_CQ_CQE_SIZE_SHIFT 12
#define QM_CQ_PHASE_SHIFT 0
#define QM_CQ_FLAG_SHIFT 1
#define QM_CQE_PHASE(cqe) ((cqe)->w7 & 0x1)
#define QM_QC_CQE_SIZE 4
/* eqc shift */
#define QM_EQE_AEQE_SIZE (2UL << 12)
#define QM_EQC_PHASE_SHIFT 16
#define QM_EQE_PHASE(eqe) (((eqe)->dw0 >> 16) & 0x1)
#define QM_EQE_CQN_MASK GENMASK(15, 0)
#define QM_AEQE_PHASE(aeqe) (((aeqe)->dw0 >> 16) & 0x1)
#define QM_AEQE_TYPE_SHIFT 17
#define QM_DOORBELL_CMD_SQ 0
#define QM_DOORBELL_CMD_CQ 1
#define QM_DOORBELL_CMD_EQ 2
#define QM_DOORBELL_CMD_AEQ 3
#define QM_DOORBELL_BASE_V1 0x340
#define QM_DB_CMD_SHIFT_V1 16
#define QM_DB_INDEX_SHIFT_V1 32
#define QM_DB_PRIORITY_SHIFT_V1 48
#define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000
#define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000
#define QM_DB_CMD_SHIFT_V2 12
#define QM_DB_RAND_SHIFT_V2 16
#define QM_DB_INDEX_SHIFT_V2 32
#define QM_DB_PRIORITY_SHIFT_V2 48
#define QM_MEM_START_INIT 0x100040
#define QM_MEM_INIT_DONE 0x100044
#define QM_VFT_CFG_RDY 0x10006c
#define QM_VFT_CFG_OP_WR 0x100058
#define QM_VFT_CFG_TYPE 0x10005c
#define QM_SQC_VFT 0x0
#define QM_CQC_VFT 0x1
#define QM_VFT_CFG 0x100060
#define QM_VFT_CFG_OP_ENABLE 0x100054
#define QM_VFT_CFG_DATA_L 0x100064
#define QM_VFT_CFG_DATA_H 0x100068
#define QM_SQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_SQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_SQC_VFT_START_SQN_SHIFT 28
#define QM_SQC_VFT_VALID (1ULL << 44)
#define QM_SQC_VFT_SQN_SHIFT 45
#define QM_CQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_CQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_CQC_VFT_VALID (1ULL << 28)
#define QM_SQC_VFT_BASE_SHIFT_V2 28
#define QM_SQC_VFT_BASE_MASK_V2 GENMASK(5, 0)
#define QM_SQC_VFT_NUM_SHIFT_V2 45
#define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0)
#define QM_DFX_CNT_CLR_CE 0x100118
#define QM_ABNORMAL_INT_SOURCE 0x100000
#define QM_ABNORMAL_INT_MASK 0x100004
#define QM_ABNORMAL_INT_MASK_VALUE 0x1fff
#define QM_ABNORMAL_INT_STATUS 0x100008
#define QM_ABNORMAL_INF00 0x100010
#define QM_FIFO_OVERFLOW_TYPE 0xc0
#define QM_FIFO_OVERFLOW_TYPE_SHIFT 6
#define QM_FIFO_OVERFLOW_VF 0x3f
#define QM_ABNORMAL_INF01 0x100014
#define QM_DB_TIMEOUT_TYPE 0xc0
#define QM_DB_TIMEOUT_TYPE_SHIFT 6
#define QM_DB_TIMEOUT_VF 0x3f
#define QM_RAS_CE_ENABLE 0x1000ec
#define QM_RAS_FE_ENABLE 0x1000f0
#define QM_RAS_NFE_ENABLE 0x1000f4
#define QM_RAS_CE_THRESHOLD 0x1000f8
#define QM_RAS_CE_TIMES_PER_IRQ 1
#define QM_RAS_MSI_INT_SEL 0x1040f4
#define QM_CACHE_WB_START 0x204
#define QM_CACHE_WB_DONE 0x208
#define PCI_BAR_2 2
#define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0)
#define QMC_ALIGN(sz) ALIGN(sz, 32)
#define QM_DBG_TMP_BUF_LEN 22
#define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_CQC_DW3_V2(cqe_sz) \
((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_SQC_W13(priority, orders, alg_type) \
(((priority) << QM_SQ_PRIORITY_SHIFT) | \
((orders) << QM_SQ_ORDERS_SHIFT) | \
(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
#define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
#define QM_MK_SQC_DW3_V2(sqe_sz) \
((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
#define INIT_QC_COMMON(qc, base, pasid) do { \
(qc)->head = 0; \
(qc)->tail = 0; \
(qc)->base_l = lower_32_bits(base); \
(qc)->base_h = upper_32_bits(base); \
(qc)->dw3 = 0; \
(qc)->w8 = 0; \
(qc)->rsvd0 = 0; \
(qc)->pasid = pasid; \
(qc)->w11 = 0; \
(qc)->rsvd1 = 0; \
} while (0)
enum vft_type {
SQC_VFT = 0,
CQC_VFT,
};
struct qm_cqe {
__le32 rsvd0;
__le16 cmd_id;
__le16 rsvd1;
__le16 sq_head;
__le16 sq_num;
__le16 rsvd2;
__le16 w7;
};
struct qm_eqe {
__le32 dw0;
};
struct qm_aeqe {
__le32 dw0;
};
struct qm_sqc {
__le16 head;
__le16 tail;
__le32 base_l;
__le32 base_h;
__le32 dw3;
__le16 w8;
__le16 rsvd0;
__le16 pasid;
__le16 w11;
__le16 cq_num;
__le16 w13;
__le32 rsvd1;
};
struct qm_cqc {
__le16 head;
__le16 tail;
__le32 base_l;
__le32 base_h;
__le32 dw3;
__le16 w8;
__le16 rsvd0;
__le16 pasid;
__le16 w11;
__le32 dw6;
__le32 rsvd1;
};
struct qm_eqc {
__le16 head;
__le16 tail;
__le32 base_l;
__le32 base_h;
__le32 dw3;
__le32 rsvd[2];
__le32 dw6;
};
struct qm_aeqc {
__le16 head;
__le16 tail;
__le32 base_l;
__le32 base_h;
__le32 dw3;
__le32 rsvd[2];
__le32 dw6;
};
struct qm_mailbox {
__le16 w0;
__le16 queue_num;
__le32 base_l;
__le32 base_h;
__le32 rsvd;
};
struct qm_doorbell {
__le16 queue_num;
__le16 cmd;
__le16 index;
__le16 priority;
};
struct hisi_qm_hw_ops {
int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
void (*qm_db)(struct hisi_qm *qm, u16 qn,
u8 cmd, u16 index, u8 priority);
u32 (*get_irq_num)(struct hisi_qm *qm);
int (*debug_init)(struct hisi_qm *qm);
void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe,
u32 msi);
pci_ers_result_t (*hw_error_handle)(struct hisi_qm *qm);
};
static const char * const qm_debug_file_name[] = {
[CURRENT_Q] = "current_q",
[CLEAR_ENABLE] = "clear_enable",
};
struct hisi_qm_hw_error {
u32 int_msk;
const char *msg;
};
static const struct hisi_qm_hw_error qm_hw_error[] = {
{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
{ /* sentinel */ }
};
static const char * const qm_db_timeout[] = {
"sq", "cq", "eq", "aeq",
};
static const char * const qm_fifo_overflow[] = {
"cq", "eq", "aeq",
};
/* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
static int qm_wait_mb_ready(struct hisi_qm *qm)
{
u32 val;
return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
val, !((val >> QM_MB_BUSY_SHIFT) &
0x1), 10, 1000);
}
/* 128 bit should be written to hardware at one time to trigger a mailbox */
static void qm_mb_write(struct hisi_qm *qm, const void *src)
{
void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
unsigned long tmp0 = 0, tmp1 = 0;
asm volatile("ldp %0, %1, %3\n"
"stp %0, %1, %2\n"
"dsb sy\n"
: "=&r" (tmp0),
"=&r" (tmp1),
"+Q" (*((char *)fun_base))
: "Q" (*((char *)src))
: "memory");
}
static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
bool op)
{
struct qm_mailbox mailbox;
int ret = 0;
dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%pad\n", queue,
cmd, dma_addr);
mailbox.w0 = cmd |
(op ? 0x1 << QM_MB_OP_SHIFT : 0) |
(0x1 << QM_MB_BUSY_SHIFT);
mailbox.queue_num = queue;
mailbox.base_l = lower_32_bits(dma_addr);
mailbox.base_h = upper_32_bits(dma_addr);
mailbox.rsvd = 0;
mutex_lock(&qm->mailbox_lock);
if (unlikely(qm_wait_mb_ready(qm))) {
ret = -EBUSY;
dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
goto busy_unlock;
}
qm_mb_write(qm, &mailbox);
if (unlikely(qm_wait_mb_ready(qm))) {
ret = -EBUSY;
dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
goto busy_unlock;
}
busy_unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
u64 doorbell;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
((u64)index << QM_DB_INDEX_SHIFT_V1) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
}
static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
u64 doorbell;
u64 dbase;
u16 randata = 0;
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
else
dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
((u64)randata << QM_DB_RAND_SHIFT_V2) |
((u64)index << QM_DB_INDEX_SHIFT_V2) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
writeq(doorbell, qm->io_base + dbase);
}
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
qn, cmd, index);
qm->ops->qm_db(qm, qn, cmd, index, priority);
}
static int qm_dev_mem_reset(struct hisi_qm *qm)
{
u32 val;
writel(0x1, qm->io_base + QM_MEM_START_INIT);
return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
val & BIT(0), 10, 1000);
}
static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
{
return QM_IRQ_NUM_V1;
}
static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_PF)
return QM_IRQ_NUM_PF_V2;
else
return QM_IRQ_NUM_VF_V2;
}
static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
{
u16 cqn = eqe->dw0 & QM_EQE_CQN_MASK;
return qm->qp_array[cqn];
}
static void qm_cq_head_update(struct hisi_qp *qp)
{
if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
qp->qp_status.cq_head = 0;
} else {
qp->qp_status.cq_head++;
}
}
static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
{
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
if (qp->req_cb) {
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
dma_rmb();
qp->req_cb(qp, qp->sqe + qm->sqe_size * cqe->sq_head);
qm_cq_head_update(qp);
cqe = qp->cqe + qp->qp_status.cq_head;
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
qp->qp_status.cq_head, 0);
atomic_dec(&qp->qp_status.used);
}
/* set c_flag */
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
qp->qp_status.cq_head, 1);
}
}
static void qm_qp_work_func(struct work_struct *work)
{
struct hisi_qp *qp;
qp = container_of(work, struct hisi_qp, work);
qm_poll_qp(qp, qp->qm);
}
static irqreturn_t qm_irq_handler(int irq, void *data)
{
struct hisi_qm *qm = data;
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
struct hisi_qp *qp;
int eqe_num = 0;
while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
eqe_num++;
qp = qm_to_hisi_qp(qm, eqe);
if (qp)
queue_work(qp->wq, &qp->work);
if (qm->status.eq_head == QM_Q_DEPTH - 1) {
qm->status.eqc_phase = !qm->status.eqc_phase;
eqe = qm->eqe;
qm->status.eq_head = 0;
} else {
eqe++;
qm->status.eq_head++;
}
if (eqe_num == QM_Q_DEPTH / 2 - 1) {
eqe_num = 0;
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
}
}
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
return IRQ_HANDLED;
}
static irqreturn_t qm_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
return qm_irq_handler(irq, data);
dev_err(&qm->pdev->dev, "invalid int source\n");
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
return IRQ_NONE;
}
static irqreturn_t qm_aeq_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
u32 type;
if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
return IRQ_NONE;
while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
type = aeqe->dw0 >> QM_AEQE_TYPE_SHIFT;
if (type < ARRAY_SIZE(qm_fifo_overflow))
dev_err(&qm->pdev->dev, "%s overflow\n",
qm_fifo_overflow[type]);
else
dev_err(&qm->pdev->dev, "unknown error type %d\n",
type);
if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
qm->status.aeqc_phase = !qm->status.aeqc_phase;
aeqe = qm->aeqe;
qm->status.aeq_head = 0;
} else {
aeqe++;
qm->status.aeq_head++;
}
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
}
return IRQ_HANDLED;
}
static irqreturn_t qm_abnormal_irq(int irq, void *data)
{
const struct hisi_qm_hw_error *err = qm_hw_error;
struct hisi_qm *qm = data;
struct device *dev = &qm->pdev->dev;
u32 error_status, tmp;
/* read err sts */
tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
error_status = qm->msi_mask & tmp;
while (err->msg) {
if (err->int_msk & error_status)
dev_err(dev, "%s [error status=0x%x] found\n",
err->msg, err->int_msk);
err++;
}
/* clear err sts */
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
return IRQ_HANDLED;
}
static int qm_irq_register(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
qm_irq, IRQF_SHARED, qm->dev_name, qm);
if (ret)
return ret;
if (qm->ver == QM_HW_V2) {
ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
if (ret)
goto err_aeq_irq;
if (qm->fun_type == QM_HW_PF) {
ret = request_irq(pci_irq_vector(pdev,
QM_ABNORMAL_EVENT_IRQ_VECTOR),
qm_abnormal_irq, IRQF_SHARED,
qm->dev_name, qm);
if (ret)
goto err_abonormal_irq;
}
}
return 0;
err_abonormal_irq:
free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
err_aeq_irq:
free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
return ret;
}
static void qm_irq_unregister(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
if (qm->ver == QM_HW_V2) {
free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
if (qm->fun_type == QM_HW_PF)
free_irq(pci_irq_vector(pdev,
QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
}
}
static void qm_init_qp_status(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
qp_status->sq_tail = 0;
qp_status->cq_head = 0;
qp_status->cqc_phase = 1;
qp_status->flags = 0;
}
static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
u32 number)
{
u64 tmp = 0;
if (number > 0) {
switch (type) {
case SQC_VFT:
switch (qm->ver) {
case QM_HW_V1:
tmp = QM_SQC_VFT_BUF_SIZE |
QM_SQC_VFT_SQC_SIZE |
QM_SQC_VFT_INDEX_NUMBER |
QM_SQC_VFT_VALID |
(u64)base << QM_SQC_VFT_START_SQN_SHIFT;
break;
case QM_HW_V2:
tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
QM_SQC_VFT_VALID |
(u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
break;
case QM_HW_UNKNOWN:
break;
}
break;
case CQC_VFT:
switch (qm->ver) {
case QM_HW_V1:
tmp = QM_CQC_VFT_BUF_SIZE |
QM_CQC_VFT_SQC_SIZE |
QM_CQC_VFT_INDEX_NUMBER |
QM_CQC_VFT_VALID;
break;
case QM_HW_V2:
tmp = QM_CQC_VFT_VALID;
break;
case QM_HW_UNKNOWN:
break;
}
break;
}
}
writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
}
static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
u32 fun_num, u32 base, u32 number)
{
unsigned int val;
int ret;
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), 10, 1000);
if (ret)
return ret;
writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
writel(type, qm->io_base + QM_VFT_CFG_TYPE);
writel(fun_num, qm->io_base + QM_VFT_CFG);
qm_vft_data_cfg(qm, type, base, number);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), 10, 1000);
}
/* The config should be conducted after qm_dev_mem_reset() */
static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
int ret, i;
for (i = SQC_VFT; i <= CQC_VFT; i++) {
ret = qm_set_vft_common(qm, i, fun_num, base, number);
if (ret)
return ret;
}
return 0;
}
static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
{
u64 sqc_vft;
int ret;
ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
if (ret)
return ret;
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
*number = (QM_SQC_VFT_NUM_MASK_v2 &
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
return 0;
}
static struct hisi_qm *file_to_qm(struct debugfs_file *file)
{
struct qm_debug *debug = file->debug;
return container_of(debug, struct hisi_qm, debug);
}
static u32 current_q_read(struct debugfs_file *file)
{
struct hisi_qm *qm = file_to_qm(file);
return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
}
static int current_q_write(struct debugfs_file *file, u32 val)
{
struct hisi_qm *qm = file_to_qm(file);
u32 tmp;
if (val >= qm->debug.curr_qm_qp_num)
return -EINVAL;
tmp = val << QM_DFX_QN_SHIFT |
(readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
tmp = val << QM_DFX_QN_SHIFT |
(readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
return 0;
}
static u32 clear_enable_read(struct debugfs_file *file)
{
struct hisi_qm *qm = file_to_qm(file);
return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
}
/* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
{
struct hisi_qm *qm = file_to_qm(file);
if (rd_clr_ctrl > 1)
return -EINVAL;
writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
return 0;
}
static ssize_t qm_debug_read(struct file *filp, char __user *buf,
size_t count, loff_t *pos)
{
struct debugfs_file *file = filp->private_data;
enum qm_debug_file index = file->index;
char tbuf[QM_DBG_TMP_BUF_LEN];
u32 val;
int ret;
mutex_lock(&file->lock);
switch (index) {
case CURRENT_Q:
val = current_q_read(file);
break;
case CLEAR_ENABLE:
val = clear_enable_read(file);
break;
default:
mutex_unlock(&file->lock);
return -EINVAL;
}
mutex_unlock(&file->lock);
ret = sprintf(tbuf, "%u\n", val);
return simple_read_from_buffer(buf, count, pos, tbuf, ret);
}
static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct debugfs_file *file = filp->private_data;
enum qm_debug_file index = file->index;
unsigned long val;
char tbuf[QM_DBG_TMP_BUF_LEN];
int len, ret;
if (*pos != 0)
return 0;
if (count >= QM_DBG_TMP_BUF_LEN)
return -ENOSPC;
len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
count);
if (len < 0)
return len;
tbuf[len] = '\0';
if (kstrtoul(tbuf, 0, &val))
return -EFAULT;
mutex_lock(&file->lock);
switch (index) {
case CURRENT_Q:
ret = current_q_write(file, val);
if (ret)
goto err_input;
break;
case CLEAR_ENABLE:
ret = clear_enable_write(file, val);
if (ret)
goto err_input;
break;
default:
ret = -EINVAL;
goto err_input;
}
mutex_unlock(&file->lock);
return count;
err_input:
mutex_unlock(&file->lock);
return ret;
}
static const struct file_operations qm_debug_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = qm_debug_read,
.write = qm_debug_write,
};
struct qm_dfx_registers {
char *reg_name;
u64 reg_offset;
};
#define CNT_CYC_REGS_NUM 10
static struct qm_dfx_registers qm_dfx_regs[] = {
/* XXX_CNT are reading clear register */
{"QM_ECC_1BIT_CNT ", 0x104000ull},
{"QM_ECC_MBIT_CNT ", 0x104008ull},
{"QM_DFX_MB_CNT ", 0x104018ull},
{"QM_DFX_DB_CNT ", 0x104028ull},
{"QM_DFX_SQE_CNT ", 0x104038ull},
{"QM_DFX_CQE_CNT ", 0x104048ull},
{"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull},
{"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull},
{"QM_DFX_ACC_FINISH_CNT ", 0x104060ull},
{"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull},
{"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull},
{"QM_ECC_1BIT_INF ", 0x104004ull},
{"QM_ECC_MBIT_INF ", 0x10400cull},
{"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull},
{"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull},
{"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull},
{"QM_DFX_FF_ST0 ", 0x1040c8ull},
{"QM_DFX_FF_ST1 ", 0x1040ccull},
{"QM_DFX_FF_ST2 ", 0x1040d0ull},
{"QM_DFX_FF_ST3 ", 0x1040d4ull},
{"QM_DFX_FF_ST4 ", 0x1040d8ull},
{"QM_DFX_FF_ST5 ", 0x1040dcull},
{"QM_DFX_FF_ST6 ", 0x1040e0ull},
{"QM_IN_IDLE_ST ", 0x1040e4ull},
{ NULL, 0}
};
static struct qm_dfx_registers qm_vf_dfx_regs[] = {
{"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull},
{ NULL, 0}
};
static int qm_regs_show(struct seq_file *s, void *unused)
{
struct hisi_qm *qm = s->private;
struct qm_dfx_registers *regs;
u32 val;
if (qm->fun_type == QM_HW_PF)
regs = qm_dfx_regs;
else
regs = qm_vf_dfx_regs;
while (regs->reg_name) {
val = readl(qm->io_base + regs->reg_offset);
seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
regs++;
}
return 0;
}
static int qm_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, qm_regs_show, inode->i_private);
}
static const struct file_operations qm_regs_fops = {
.owner = THIS_MODULE,
.open = qm_regs_open,
.read = seq_read,
};
static int qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
{
struct dentry *qm_d = qm->debug.qm_d, *tmp;
struct debugfs_file *file = qm->debug.files + index;
tmp = debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
&qm_debug_fops);
if (IS_ERR(tmp))
return -ENOENT;
file->index = index;
mutex_init(&file->lock);
file->debug = &qm->debug;
return 0;
}
static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe,
u32 msi)
{
dev_info(&qm->pdev->dev,
"QM v%d does not support hw error handle\n", qm->ver);
writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe,
u32 msi)
{
u32 irq_enable = ce | nfe | fe | msi;
u32 irq_unmask = ~irq_enable;
qm->error_mask = ce | nfe | fe;
qm->msi_mask = msi;
/* configure error type */
writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
/* use RAS irq default, so only set QM_RAS_MSI_INT_SEL for MSI */
writel(msi, qm->io_base + QM_RAS_MSI_INT_SEL);
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
{
const struct hisi_qm_hw_error *err = qm_hw_error;
struct device *dev = &qm->pdev->dev;
u32 reg_val, type, vf_num;
while (err->msg) {
if (err->int_msk & error_status) {
dev_err(dev, "%s [error status=0x%x] found\n",
err->msg, err->int_msk);
if (error_status & QM_DB_TIMEOUT) {
reg_val = readl(qm->io_base +
QM_ABNORMAL_INF01);
type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
QM_DB_TIMEOUT_TYPE_SHIFT;
vf_num = reg_val & QM_DB_TIMEOUT_VF;
dev_err(dev, "qm %s doorbell timeout in function %u\n",
qm_db_timeout[type], vf_num);
}
if (error_status & QM_OF_FIFO_OF) {
reg_val = readl(qm->io_base +
QM_ABNORMAL_INF00);
type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
QM_FIFO_OVERFLOW_TYPE_SHIFT;
vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
if (type < ARRAY_SIZE(qm_fifo_overflow))
dev_err(dev, "qm %s fifo overflow in function %u\n",
qm_fifo_overflow[type],
vf_num);
else
dev_err(dev, "unknown error type\n");
}
}
err++;
}
}
static pci_ers_result_t qm_hw_error_handle_v2(struct hisi_qm *qm)
{
u32 error_status, tmp;
/* read err sts */
tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
error_status = qm->error_mask & tmp;
if (error_status) {
qm_log_hw_error(qm, error_status);
/* clear err sts */
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
return PCI_ERS_RESULT_NEED_RESET;
}
return PCI_ERS_RESULT_RECOVERED;
}
static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
.qm_db = qm_db_v1,
.get_irq_num = qm_get_irq_num_v1,
.hw_error_init = qm_hw_error_init_v1,
};
static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
.get_vft = qm_get_vft_v2,
.qm_db = qm_db_v2,
.get_irq_num = qm_get_irq_num_v2,
.hw_error_init = qm_hw_error_init_v2,
.hw_error_handle = qm_hw_error_handle_v2,
};
static void *qm_get_avail_sqe(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH))
return NULL;
return qp->sqe + sq_tail * qp->qm->sqe_size;
}
/**
* hisi_qm_create_qp() - Create a queue pair from qm.
* @qm: The qm we create a qp from.
* @alg_type: Accelerator specific algorithm type in sqc.
*
* return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
* qp memory fails.
*/
struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int qp_id, ret;
qp = kzalloc(sizeof(*qp), GFP_KERNEL);
if (!qp)
return ERR_PTR(-ENOMEM);
write_lock(&qm->qps_lock);
qp_id = find_first_zero_bit(qm->qp_bitmap, qm->qp_num);
if (qp_id >= qm->qp_num) {
write_unlock(&qm->qps_lock);
dev_info(&qm->pdev->dev, "QM all queues are busy!\n");
ret = -EBUSY;
goto err_free_qp;
}
set_bit(qp_id, qm->qp_bitmap);
qm->qp_array[qp_id] = qp;
write_unlock(&qm->qps_lock);
qp->qm = qm;
if (qm->use_dma_api) {
qp->qdma.size = qm->sqe_size * QM_Q_DEPTH +
sizeof(struct qm_cqe) * QM_Q_DEPTH;
qp->qdma.va = dma_alloc_coherent(dev, qp->qdma.size,
&qp->qdma.dma, GFP_KERNEL);
if (!qp->qdma.va) {
ret = -ENOMEM;
goto err_clear_bit;
}
dev_dbg(dev, "allocate qp dma buf(va=%pK, dma=%pad, size=%zx)\n",
qp->qdma.va, &qp->qdma.dma, qp->qdma.size);
}
qp->qp_id = qp_id;
qp->alg_type = alg_type;
INIT_WORK(&qp->work, qm_qp_work_func);
qp->wq = alloc_workqueue("hisi_qm", WQ_UNBOUND | WQ_HIGHPRI |
WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 0);
if (!qp->wq) {
ret = -EFAULT;
goto err_free_qp_mem;
}
return qp;
err_free_qp_mem:
if (qm->use_dma_api)
dma_free_coherent(dev, qp->qdma.size, qp->qdma.va,
qp->qdma.dma);
err_clear_bit:
write_lock(&qm->qps_lock);
qm->qp_array[qp_id] = NULL;
clear_bit(qp_id, qm->qp_bitmap);
write_unlock(&qm->qps_lock);
err_free_qp:
kfree(qp);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
/**
* hisi_qm_release_qp() - Release a qp back to its qm.
* @qp: The qp we want to release.
*
* This function releases the resource of a qp.
*/
void hisi_qm_release_qp(struct hisi_qp *qp)
{
struct hisi_qm *qm = qp->qm;
struct qm_dma *qdma = &qp->qdma;
struct device *dev = &qm->pdev->dev;
if (qm->use_dma_api && qdma->va)
dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
write_lock(&qm->qps_lock);
qm->qp_array[qp->qp_id] = NULL;
clear_bit(qp->qp_id, qm->qp_bitmap);
write_unlock(&qm->qps_lock);
kfree(qp);
}
EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, int pasid)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
enum qm_hw_ver ver = qm->ver;
struct qm_sqc *sqc;
struct qm_cqc *cqc;
dma_addr_t sqc_dma;
dma_addr_t cqc_dma;
int ret;
qm_init_qp_status(qp);
sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
if (!sqc)
return -ENOMEM;
sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, sqc_dma)) {
kfree(sqc);
return -ENOMEM;
}
INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
if (ver == QM_HW_V1) {
sqc->dw3 = QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size);
sqc->w8 = QM_Q_DEPTH - 1;
} else if (ver == QM_HW_V2) {
sqc->dw3 = QM_MK_SQC_DW3_V2(qm->sqe_size);
sqc->w8 = 0; /* rand_qc */
}
sqc->cq_num = qp_id;
sqc->w13 = QM_MK_SQC_W13(0, 1, qp->alg_type);
ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
kfree(sqc);
if (ret)
return ret;
cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
if (!cqc)
return -ENOMEM;
cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, cqc_dma)) {
kfree(cqc);
return -ENOMEM;
}
INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
if (ver == QM_HW_V1) {
cqc->dw3 = QM_MK_CQC_DW3_V1(0, 0, 0, 4);
cqc->w8 = QM_Q_DEPTH - 1;
} else if (ver == QM_HW_V2) {
cqc->dw3 = QM_MK_CQC_DW3_V2(4);
cqc->w8 = 0;
}
cqc->dw6 = 1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT;
ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
kfree(cqc);
return ret;
}
/**
* hisi_qm_start_qp() - Start a qp into running.
* @qp: The qp we want to start to run.
* @arg: Accelerator specific argument.
*
* After this function, qp can receive request from user. Return qp_id if
* successful, Return -EBUSY if failed.
*/
int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
enum qm_hw_ver ver = qm->ver;
int qp_id = qp->qp_id;
int pasid = arg;
size_t off = 0;
int ret;
#define QP_INIT_BUF(qp, type, size) do { \
(qp)->type = ((qp)->qdma.va + (off)); \
(qp)->type##_dma = (qp)->qdma.dma + (off); \
off += (size); \
} while (0)
if (!qp->qdma.dma) {
dev_err(dev, "cannot get qm dma buffer\n");
return -EINVAL;
}
/* sq need 128 bytes alignment */
if (qp->qdma.dma & QM_SQE_DATA_ALIGN_MASK) {
dev_err(dev, "qm sq is not aligned to 128 byte\n");
return -EINVAL;
}
QP_INIT_BUF(qp, sqe, qm->sqe_size * QM_Q_DEPTH);
QP_INIT_BUF(qp, cqe, sizeof(struct qm_cqe) * QM_Q_DEPTH);
dev_dbg(dev, "init qp buffer(v%d):\n"
" sqe (%pK, %lx)\n"
" cqe (%pK, %lx)\n",
ver, qp->sqe, (unsigned long)qp->sqe_dma,
qp->cqe, (unsigned long)qp->cqe_dma);
ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
if (ret)
return ret;
dev_dbg(dev, "queue %d started\n", qp_id);
return qp_id;
}
EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
/**
* hisi_qm_stop_qp() - Stop a qp in qm.
* @qp: The qp we want to stop.
*
* This function is reverse of hisi_qm_start_qp. Return 0 if successful.
*/
int hisi_qm_stop_qp(struct hisi_qp *qp)
{
struct device *dev = &qp->qm->pdev->dev;
int i = 0;
/* it is stopped */
if (test_bit(QP_STOP, &qp->qp_status.flags))
return 0;
while (atomic_read(&qp->qp_status.used)) {
i++;
msleep(20);
if (i == 10) {
dev_err(dev, "Cannot drain out data for stopping, Force to stop!\n");
return 0;
}
}
set_bit(QP_STOP, &qp->qp_status.flags);
dev_dbg(dev, "stop queue %u!", qp->qp_id);
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
/**
* hisi_qp_send() - Queue up a task in the hardware queue.
* @qp: The qp in which to put the message.
* @msg: The message.
*
* This function will return -EBUSY if qp is currently full, and -EAGAIN
* if qp related qm is resetting.
*/
int hisi_qp_send(struct hisi_qp *qp, const void *msg)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
void *sqe = qm_get_avail_sqe(qp);
if (unlikely(test_bit(QP_STOP, &qp->qp_status.flags))) {
dev_info(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
return -EAGAIN;
}
if (!sqe)
return -EBUSY;
memcpy(sqe, msg, qp->qm->sqe_size);
qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
atomic_inc(&qp->qp_status.used);
qp_status->sq_tail = sq_tail_next;
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qp_send);
static void hisi_qm_cache_wb(struct hisi_qm *qm)
{
unsigned int val;
if (qm->ver == QM_HW_V2) {
writel(0x1, qm->io_base + QM_CACHE_WB_START);
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
val, val & BIT(0), 10, 1000))
dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
}
}
/**
* hisi_qm_init() - Initialize configures about qm.
* @qm: The qm needing init.
*
* This function init qm, then we can call hisi_qm_start to put qm into work.
*/
int hisi_qm_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
unsigned int num_vec;
int ret;
switch (qm->ver) {
case QM_HW_V1:
qm->ops = &qm_hw_ops_v1;
break;
case QM_HW_V2:
qm->ops = &qm_hw_ops_v2;
break;
default:
return -EINVAL;
}
ret = pci_enable_device_mem(pdev);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to enable device mem!\n");
return ret;
}
ret = pci_request_mem_regions(pdev, qm->dev_name);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request mem regions!\n");
goto err_disable_pcidev;
}
qm->io_base = ioremap(pci_resource_start(pdev, PCI_BAR_2),
pci_resource_len(qm->pdev, PCI_BAR_2));
if (!qm->io_base) {
ret = -EIO;
goto err_release_mem_regions;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret < 0)
goto err_iounmap;
pci_set_master(pdev);
if (!qm->ops->get_irq_num) {
ret = -EOPNOTSUPP;
goto err_iounmap;
}
num_vec = qm->ops->get_irq_num(qm);
ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
if (ret < 0) {
dev_err(dev, "Failed to enable MSI vectors!\n");
goto err_iounmap;
}
ret = qm_irq_register(qm);
if (ret)
goto err_free_irq_vectors;
mutex_init(&qm->mailbox_lock);
rwlock_init(&qm->qps_lock);
dev_dbg(dev, "init qm %s with %s\n", pdev->is_physfn ? "pf" : "vf",
qm->use_dma_api ? "dma api" : "iommu api");
return 0;
err_free_irq_vectors:
pci_free_irq_vectors(pdev);
err_iounmap:
iounmap(qm->io_base);
err_release_mem_regions:
pci_release_mem_regions(pdev);
err_disable_pcidev:
pci_disable_device(pdev);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_init);
/**
* hisi_qm_uninit() - Uninitialize qm.
* @qm: The qm needed uninit.
*
* This function uninits qm related device resources.
*/
void hisi_qm_uninit(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
if (qm->use_dma_api && qm->qdma.va) {
hisi_qm_cache_wb(qm);
dma_free_coherent(dev, qm->qdma.size,
qm->qdma.va, qm->qdma.dma);
memset(&qm->qdma, 0, sizeof(qm->qdma));
}
qm_irq_unregister(qm);
pci_free_irq_vectors(pdev);
iounmap(qm->io_base);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
EXPORT_SYMBOL_GPL(hisi_qm_uninit);
/**
* hisi_qm_get_vft() - Get vft from a qm.
* @qm: The qm we want to get its vft.
* @base: The base number of queue in vft.
* @number: The number of queues in vft.
*
* We can allocate multiple queues to a qm by configuring virtual function
* table. We get related configures by this function. Normally, we call this
* function in VF driver to get the queue information.
*
* qm hw v1 does not support this interface.
*/
int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
{
if (!base || !number)
return -EINVAL;
if (!qm->ops->get_vft) {
dev_err(&qm->pdev->dev, "Don't support vft read!\n");
return -EINVAL;
}
return qm->ops->get_vft(qm, base, number);
}
EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
/**
* hisi_qm_set_vft() - Set "virtual function table" for a qm.
* @fun_num: Number of operated function.
* @qm: The qm in which to set vft, alway in a PF.
* @base: The base number of queue in vft.
* @number: The number of queues in vft. 0 means invalid vft.
*
* This function is alway called in PF driver, it is used to assign queues
* among PF and VFs.
*
* Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
* Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
* (VF function number 0x2)
*/
int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
u32 max_q_num = qm->ctrl_qp_num;
if (base >= max_q_num || number > max_q_num ||
(base + number) > max_q_num)
return -EINVAL;
return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
}
EXPORT_SYMBOL_GPL(hisi_qm_set_vft);
static void qm_init_eq_aeq_status(struct hisi_qm *qm)
{
struct hisi_qm_status *status = &qm->status;
status->eq_head = 0;
status->aeq_head = 0;
status->eqc_phase = 1;
status->aeqc_phase = 1;
}
static int qm_eq_ctx_cfg(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct qm_eqc *eqc;
struct qm_aeqc *aeqc;
dma_addr_t eqc_dma;
dma_addr_t aeqc_dma;
int ret;
qm_init_eq_aeq_status(qm);
eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
if (!eqc)
return -ENOMEM;
eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, eqc_dma)) {
kfree(eqc);
return -ENOMEM;
}
eqc->base_l = lower_32_bits(qm->eqe_dma);
eqc->base_h = upper_32_bits(qm->eqe_dma);
if (qm->ver == QM_HW_V1)
eqc->dw3 = QM_EQE_AEQE_SIZE;
eqc->dw6 = (QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT);
ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
kfree(eqc);
if (ret)
return ret;
aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
if (!aeqc)
return -ENOMEM;
aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, aeqc_dma)) {
kfree(aeqc);
return -ENOMEM;
}
aeqc->base_l = lower_32_bits(qm->aeqe_dma);
aeqc->base_h = upper_32_bits(qm->aeqe_dma);
aeqc->dw6 = (QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT);
ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
kfree(aeqc);
return ret;
}
static int __hisi_qm_start(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
size_t off = 0;
int ret;
#define QM_INIT_BUF(qm, type, num) do { \
(qm)->type = ((qm)->qdma.va + (off)); \
(qm)->type##_dma = (qm)->qdma.dma + (off); \
off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
} while (0)
WARN_ON(!qm->qdma.dma);
if (qm->qp_num == 0)
return -EINVAL;
if (qm->fun_type == QM_HW_PF) {
ret = qm_dev_mem_reset(qm);
if (ret)
return ret;
ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
if (ret)
return ret;
}
QM_INIT_BUF(qm, eqe, QM_Q_DEPTH);
QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
QM_INIT_BUF(qm, sqc, qm->qp_num);
QM_INIT_BUF(qm, cqc, qm->qp_num);
dev_dbg(dev, "init qm buffer:\n"
" eqe (%pK, %lx)\n"
" aeqe (%pK, %lx)\n"
" sqc (%pK, %lx)\n"
" cqc (%pK, %lx)\n",
qm->eqe, (unsigned long)qm->eqe_dma,
qm->aeqe, (unsigned long)qm->aeqe_dma,
qm->sqc, (unsigned long)qm->sqc_dma,
qm->cqc, (unsigned long)qm->cqc_dma);
ret = qm_eq_ctx_cfg(qm);
if (ret)
return ret;
ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
if (ret)
return ret;
ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
if (ret)
return ret;
writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
return 0;
}
/**
* hisi_qm_start() - start qm
* @qm: The qm to be started.
*
* This function starts a qm, then we can allocate qp from this qm.
*/
int hisi_qm_start(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
if (!qm->qp_num) {
dev_err(dev, "qp_num should not be 0\n");
return -EINVAL;
}
if (!qm->qp_bitmap) {
qm->qp_bitmap = devm_kcalloc(dev, BITS_TO_LONGS(qm->qp_num),
sizeof(long), GFP_KERNEL);
qm->qp_array = devm_kcalloc(dev, qm->qp_num,
sizeof(struct hisi_qp *),
GFP_KERNEL);
if (!qm->qp_bitmap || !qm->qp_array)
return -ENOMEM;
}
if (!qm->use_dma_api) {
dev_dbg(&qm->pdev->dev, "qm delay start\n");
return 0;
} else if (!qm->qdma.va) {
qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_Q_DEPTH) +
QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size,
&qm->qdma.dma, GFP_KERNEL);
dev_dbg(dev, "allocate qm dma buf(va=%pK, dma=%pad, size=%zx)\n",
qm->qdma.va, &qm->qdma.dma, qm->qdma.size);
if (!qm->qdma.va)
return -ENOMEM;
}
return __hisi_qm_start(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_start);
/**
* hisi_qm_stop() - Stop a qm.
* @qm: The qm which will be stopped.
*
* This function stops qm and its qps, then qm can not accept request.
* Related resources are not released at this state, we can use hisi_qm_start
* to let qm start again.
*/
int hisi_qm_stop(struct hisi_qm *qm)
{
struct device *dev;
struct hisi_qp *qp;
int ret = 0, i;
if (!qm || !qm->pdev) {
WARN_ON(1);
return -EINVAL;
}
dev = &qm->pdev->dev;
/* Mask eq and aeq irq */
writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
/* Stop all qps belong to this qm */
for (i = 0; i < qm->qp_num; i++) {
qp = qm->qp_array[i];
if (qp) {
ret = hisi_qm_stop_qp(qp);
if (ret < 0) {
dev_err(dev, "Failed to stop qp%d!\n", i);
return -EBUSY;
}
}
}
if (qm->fun_type == QM_HW_PF) {
ret = hisi_qm_set_vft(qm, 0, 0, 0);
if (ret < 0)
dev_err(dev, "Failed to set vft!\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_stop);
/**
* hisi_qm_debug_init() - Initialize qm related debugfs files.
* @qm: The qm for which we want to add debugfs files.
*
* Create qm related debugfs files.
*/
int hisi_qm_debug_init(struct hisi_qm *qm)
{
struct dentry *qm_d, *qm_regs;
int i, ret;
qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
if (IS_ERR(qm_d))
return -ENOENT;
qm->debug.qm_d = qm_d;
/* only show this in PF */
if (qm->fun_type == QM_HW_PF)
for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
if (qm_create_debugfs_file(qm, i)) {
ret = -ENOENT;
goto failed_to_create;
}
qm_regs = debugfs_create_file("qm_regs", 0444, qm->debug.qm_d, qm,
&qm_regs_fops);
if (IS_ERR(qm_regs)) {
ret = -ENOENT;
goto failed_to_create;
}
return 0;
failed_to_create:
debugfs_remove_recursive(qm_d);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
/**
* hisi_qm_debug_regs_clear() - clear qm debug related registers.
* @qm: The qm for which we want to clear its debug registers.
*/
void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
{
struct qm_dfx_registers *regs;
int i;
/* clear current_q */
writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
/*
* these registers are reading and clearing, so clear them after
* reading them.
*/
writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
regs = qm_dfx_regs;
for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
readl(qm->io_base + regs->reg_offset);
regs++;
}
writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
}
EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
/**
* hisi_qm_hw_error_init() - Configure qm hardware error report method.
* @qm: The qm which we want to configure.
* @ce: Bit mask of correctable error configure.
* @nfe: Bit mask of non-fatal error configure.
* @fe: Bit mask of fatal error configure.
* @msi: Bit mask of error reported by message signal interrupt.
*
* Hardware errors of qm can be reported either by RAS interrupts which will
* be handled by UEFI and then PCIe AER or by device MSI. User can configure
* each error to use either of above two methods. For RAS interrupts, we can
* configure an error as one of correctable error, non-fatal error or
* fatal error.
*
* Bits indicating errors can be configured to ce, nfe, fe and msi to enable
* related report methods. Error report will be masked if related error bit
* does not configure.
*/
void hisi_qm_hw_error_init(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe,
u32 msi)
{
if (!qm->ops->hw_error_init) {
dev_err(&qm->pdev->dev, "QM version %d doesn't support hw error handling!\n",
qm->ver);
return;
}
qm->ops->hw_error_init(qm, ce, nfe, fe, msi);
}
EXPORT_SYMBOL_GPL(hisi_qm_hw_error_init);
/**
* hisi_qm_hw_error_handle() - Handle qm non-fatal hardware errors.
* @qm: The qm which has non-fatal hardware errors.
*
* Accelerators use this function to handle qm non-fatal hardware errors.
*/
int hisi_qm_hw_error_handle(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_handle) {
dev_err(&qm->pdev->dev, "QM version %d doesn't support hw error report!\n",
qm->ver);
return PCI_ERS_RESULT_NONE;
}
return qm->ops->hw_error_handle(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_hw_error_handle);
/**
* hisi_qm_get_hw_version() - Get hardware version of a qm.
* @pdev: The device which hardware version we want to get.
*
* This function gets the hardware version of a qm. Return QM_HW_UNKNOWN
* if the hardware version is not supported.
*/
enum qm_hw_ver hisi_qm_get_hw_version(struct pci_dev *pdev)
{
switch (pdev->revision) {
case QM_HW_V1:
case QM_HW_V2:
return pdev->revision;
default:
return QM_HW_UNKNOWN;
}
}
EXPORT_SYMBOL_GPL(hisi_qm_get_hw_version);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");