mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 06:15:38 +07:00
f723aa1817
During suspend we call sched_clock_poll() to update the epoch and
accumulated time and reprogram the sched_clock_timer to fire
before the next wrap-around time. Unfortunately,
sched_clock_poll() doesn't restart the timer, instead it relies
on the hrtimer layer to do that and during suspend we aren't
calling that function from the hrtimer layer. Instead, we're
reprogramming the expires time while the hrtimer is enqueued,
which can cause the hrtimer tree to be corrupted. Furthermore, we
restart the timer during suspend but we update the epoch during
resume which seems counter-intuitive.
Let's fix this by saving the accumulated state and canceling the
timer during suspend. On resume we can update the epoch and
restart the timer similar to what we would do if we were starting
the clock for the first time.
Fixes: a08ca5d108
"sched_clock: Use an hrtimer instead of timer"
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1406174630-23458-1-git-send-email-john.stultz@linaro.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
218 lines
5.1 KiB
C
218 lines
5.1 KiB
C
/*
|
|
* sched_clock.c: support for extending counters to full 64-bit ns counter
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/clocksource.h>
|
|
#include <linux/init.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/bitops.h>
|
|
|
|
struct clock_data {
|
|
ktime_t wrap_kt;
|
|
u64 epoch_ns;
|
|
u64 epoch_cyc;
|
|
seqcount_t seq;
|
|
unsigned long rate;
|
|
u32 mult;
|
|
u32 shift;
|
|
bool suspended;
|
|
};
|
|
|
|
static struct hrtimer sched_clock_timer;
|
|
static int irqtime = -1;
|
|
|
|
core_param(irqtime, irqtime, int, 0400);
|
|
|
|
static struct clock_data cd = {
|
|
.mult = NSEC_PER_SEC / HZ,
|
|
};
|
|
|
|
static u64 __read_mostly sched_clock_mask;
|
|
|
|
static u64 notrace jiffy_sched_clock_read(void)
|
|
{
|
|
/*
|
|
* We don't need to use get_jiffies_64 on 32-bit arches here
|
|
* because we register with BITS_PER_LONG
|
|
*/
|
|
return (u64)(jiffies - INITIAL_JIFFIES);
|
|
}
|
|
|
|
static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
|
|
|
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
|
{
|
|
return (cyc * mult) >> shift;
|
|
}
|
|
|
|
unsigned long long notrace sched_clock(void)
|
|
{
|
|
u64 epoch_ns;
|
|
u64 epoch_cyc;
|
|
u64 cyc;
|
|
unsigned long seq;
|
|
|
|
if (cd.suspended)
|
|
return cd.epoch_ns;
|
|
|
|
do {
|
|
seq = raw_read_seqcount_begin(&cd.seq);
|
|
epoch_cyc = cd.epoch_cyc;
|
|
epoch_ns = cd.epoch_ns;
|
|
} while (read_seqcount_retry(&cd.seq, seq));
|
|
|
|
cyc = read_sched_clock();
|
|
cyc = (cyc - epoch_cyc) & sched_clock_mask;
|
|
return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
|
|
}
|
|
|
|
/*
|
|
* Atomically update the sched_clock epoch.
|
|
*/
|
|
static void notrace update_sched_clock(void)
|
|
{
|
|
unsigned long flags;
|
|
u64 cyc;
|
|
u64 ns;
|
|
|
|
cyc = read_sched_clock();
|
|
ns = cd.epoch_ns +
|
|
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
|
cd.mult, cd.shift);
|
|
|
|
raw_local_irq_save(flags);
|
|
raw_write_seqcount_begin(&cd.seq);
|
|
cd.epoch_ns = ns;
|
|
cd.epoch_cyc = cyc;
|
|
raw_write_seqcount_end(&cd.seq);
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
|
{
|
|
update_sched_clock();
|
|
hrtimer_forward_now(hrt, cd.wrap_kt);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
void __init sched_clock_register(u64 (*read)(void), int bits,
|
|
unsigned long rate)
|
|
{
|
|
u64 res, wrap, new_mask, new_epoch, cyc, ns;
|
|
u32 new_mult, new_shift;
|
|
ktime_t new_wrap_kt;
|
|
unsigned long r;
|
|
char r_unit;
|
|
|
|
if (cd.rate > rate)
|
|
return;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/* calculate the mult/shift to convert counter ticks to ns. */
|
|
clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
|
|
|
|
new_mask = CLOCKSOURCE_MASK(bits);
|
|
|
|
/* calculate how many ns until we wrap */
|
|
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
|
|
new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
|
|
|
|
/* update epoch for new counter and update epoch_ns from old counter*/
|
|
new_epoch = read();
|
|
cyc = read_sched_clock();
|
|
ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
|
cd.mult, cd.shift);
|
|
|
|
raw_write_seqcount_begin(&cd.seq);
|
|
read_sched_clock = read;
|
|
sched_clock_mask = new_mask;
|
|
cd.rate = rate;
|
|
cd.wrap_kt = new_wrap_kt;
|
|
cd.mult = new_mult;
|
|
cd.shift = new_shift;
|
|
cd.epoch_cyc = new_epoch;
|
|
cd.epoch_ns = ns;
|
|
raw_write_seqcount_end(&cd.seq);
|
|
|
|
r = rate;
|
|
if (r >= 4000000) {
|
|
r /= 1000000;
|
|
r_unit = 'M';
|
|
} else if (r >= 1000) {
|
|
r /= 1000;
|
|
r_unit = 'k';
|
|
} else
|
|
r_unit = ' ';
|
|
|
|
/* calculate the ns resolution of this counter */
|
|
res = cyc_to_ns(1ULL, new_mult, new_shift);
|
|
|
|
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
|
|
bits, r, r_unit, res, wrap);
|
|
|
|
/* Enable IRQ time accounting if we have a fast enough sched_clock */
|
|
if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
|
|
enable_sched_clock_irqtime();
|
|
|
|
pr_debug("Registered %pF as sched_clock source\n", read);
|
|
}
|
|
|
|
void __init sched_clock_postinit(void)
|
|
{
|
|
/*
|
|
* If no sched_clock function has been provided at that point,
|
|
* make it the final one one.
|
|
*/
|
|
if (read_sched_clock == jiffy_sched_clock_read)
|
|
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
|
|
|
|
update_sched_clock();
|
|
|
|
/*
|
|
* Start the timer to keep sched_clock() properly updated and
|
|
* sets the initial epoch.
|
|
*/
|
|
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
sched_clock_timer.function = sched_clock_poll;
|
|
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
|
}
|
|
|
|
static int sched_clock_suspend(void)
|
|
{
|
|
update_sched_clock();
|
|
hrtimer_cancel(&sched_clock_timer);
|
|
cd.suspended = true;
|
|
return 0;
|
|
}
|
|
|
|
static void sched_clock_resume(void)
|
|
{
|
|
cd.epoch_cyc = read_sched_clock();
|
|
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
|
cd.suspended = false;
|
|
}
|
|
|
|
static struct syscore_ops sched_clock_ops = {
|
|
.suspend = sched_clock_suspend,
|
|
.resume = sched_clock_resume,
|
|
};
|
|
|
|
static int __init sched_clock_syscore_init(void)
|
|
{
|
|
register_syscore_ops(&sched_clock_ops);
|
|
return 0;
|
|
}
|
|
device_initcall(sched_clock_syscore_init);
|