mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 08:11:38 +07:00
f03c65993b
Instead of splitting refcount between (per-cpu) mnt_count and (SMP-only) mnt_longrefs, make all references contribute to mnt_count again and keep track of how many are longterm ones. Accounting rules for longterm count: * 1 for each fs_struct.root.mnt * 1 for each fs_struct.pwd.mnt * 1 for having non-NULL ->mnt_ns * decrement to 0 happens only under vfsmount lock exclusive That allows nice common case for mntput() - since we can't drop the final reference until after mnt_longterm has reached 0 due to the rules above, mntput() can grab vfsmount lock shared and check mnt_longterm. If it turns out to be non-zero (which is the common case), we know that this is not the final mntput() and can just blindly decrement percpu mnt_count. Otherwise we grab vfsmount lock exclusive and do usual decrement-and-check of percpu mnt_count. For fs_struct.c we have mnt_make_longterm() and mnt_make_shortterm(); namespace.c uses the latter in places where we don't already hold vfsmount lock exclusive and opencodes a few remaining spots where we need to manipulate mnt_longterm. Note that we mostly revert the code outside of fs/namespace.c back to what we used to have; in particular, normal code doesn't need to care about two kinds of references, etc. And we get to keep the optimization Nick's variant had bought us... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
202 lines
3.9 KiB
C
202 lines
3.9 KiB
C
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/path.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs_struct.h>
|
|
#include "internal.h"
|
|
|
|
static inline void path_get_longterm(struct path *path)
|
|
{
|
|
path_get(path);
|
|
mnt_make_longterm(path->mnt);
|
|
}
|
|
|
|
static inline void path_put_longterm(struct path *path)
|
|
{
|
|
mnt_make_shortterm(path->mnt);
|
|
path_put(path);
|
|
}
|
|
|
|
/*
|
|
* Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
|
|
* It can block.
|
|
*/
|
|
void set_fs_root(struct fs_struct *fs, struct path *path)
|
|
{
|
|
struct path old_root;
|
|
|
|
spin_lock(&fs->lock);
|
|
write_seqcount_begin(&fs->seq);
|
|
old_root = fs->root;
|
|
fs->root = *path;
|
|
path_get_longterm(path);
|
|
write_seqcount_end(&fs->seq);
|
|
spin_unlock(&fs->lock);
|
|
if (old_root.dentry)
|
|
path_put_longterm(&old_root);
|
|
}
|
|
|
|
/*
|
|
* Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
|
|
* It can block.
|
|
*/
|
|
void set_fs_pwd(struct fs_struct *fs, struct path *path)
|
|
{
|
|
struct path old_pwd;
|
|
|
|
spin_lock(&fs->lock);
|
|
write_seqcount_begin(&fs->seq);
|
|
old_pwd = fs->pwd;
|
|
fs->pwd = *path;
|
|
path_get_longterm(path);
|
|
write_seqcount_end(&fs->seq);
|
|
spin_unlock(&fs->lock);
|
|
|
|
if (old_pwd.dentry)
|
|
path_put_longterm(&old_pwd);
|
|
}
|
|
|
|
void chroot_fs_refs(struct path *old_root, struct path *new_root)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct fs_struct *fs;
|
|
int count = 0;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_each_thread(g, p) {
|
|
task_lock(p);
|
|
fs = p->fs;
|
|
if (fs) {
|
|
spin_lock(&fs->lock);
|
|
write_seqcount_begin(&fs->seq);
|
|
if (fs->root.dentry == old_root->dentry
|
|
&& fs->root.mnt == old_root->mnt) {
|
|
path_get_longterm(new_root);
|
|
fs->root = *new_root;
|
|
count++;
|
|
}
|
|
if (fs->pwd.dentry == old_root->dentry
|
|
&& fs->pwd.mnt == old_root->mnt) {
|
|
path_get_longterm(new_root);
|
|
fs->pwd = *new_root;
|
|
count++;
|
|
}
|
|
write_seqcount_end(&fs->seq);
|
|
spin_unlock(&fs->lock);
|
|
}
|
|
task_unlock(p);
|
|
} while_each_thread(g, p);
|
|
read_unlock(&tasklist_lock);
|
|
while (count--)
|
|
path_put_longterm(old_root);
|
|
}
|
|
|
|
void free_fs_struct(struct fs_struct *fs)
|
|
{
|
|
path_put_longterm(&fs->root);
|
|
path_put_longterm(&fs->pwd);
|
|
kmem_cache_free(fs_cachep, fs);
|
|
}
|
|
|
|
void exit_fs(struct task_struct *tsk)
|
|
{
|
|
struct fs_struct *fs = tsk->fs;
|
|
|
|
if (fs) {
|
|
int kill;
|
|
task_lock(tsk);
|
|
spin_lock(&fs->lock);
|
|
write_seqcount_begin(&fs->seq);
|
|
tsk->fs = NULL;
|
|
kill = !--fs->users;
|
|
write_seqcount_end(&fs->seq);
|
|
spin_unlock(&fs->lock);
|
|
task_unlock(tsk);
|
|
if (kill)
|
|
free_fs_struct(fs);
|
|
}
|
|
}
|
|
|
|
struct fs_struct *copy_fs_struct(struct fs_struct *old)
|
|
{
|
|
struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
|
|
/* We don't need to lock fs - think why ;-) */
|
|
if (fs) {
|
|
fs->users = 1;
|
|
fs->in_exec = 0;
|
|
spin_lock_init(&fs->lock);
|
|
seqcount_init(&fs->seq);
|
|
fs->umask = old->umask;
|
|
|
|
spin_lock(&old->lock);
|
|
fs->root = old->root;
|
|
path_get_longterm(&fs->root);
|
|
fs->pwd = old->pwd;
|
|
path_get_longterm(&fs->pwd);
|
|
spin_unlock(&old->lock);
|
|
}
|
|
return fs;
|
|
}
|
|
|
|
int unshare_fs_struct(void)
|
|
{
|
|
struct fs_struct *fs = current->fs;
|
|
struct fs_struct *new_fs = copy_fs_struct(fs);
|
|
int kill;
|
|
|
|
if (!new_fs)
|
|
return -ENOMEM;
|
|
|
|
task_lock(current);
|
|
spin_lock(&fs->lock);
|
|
kill = !--fs->users;
|
|
current->fs = new_fs;
|
|
spin_unlock(&fs->lock);
|
|
task_unlock(current);
|
|
|
|
if (kill)
|
|
free_fs_struct(fs);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(unshare_fs_struct);
|
|
|
|
int current_umask(void)
|
|
{
|
|
return current->fs->umask;
|
|
}
|
|
EXPORT_SYMBOL(current_umask);
|
|
|
|
/* to be mentioned only in INIT_TASK */
|
|
struct fs_struct init_fs = {
|
|
.users = 1,
|
|
.lock = __SPIN_LOCK_UNLOCKED(init_fs.lock),
|
|
.seq = SEQCNT_ZERO,
|
|
.umask = 0022,
|
|
};
|
|
|
|
void daemonize_fs_struct(void)
|
|
{
|
|
struct fs_struct *fs = current->fs;
|
|
|
|
if (fs) {
|
|
int kill;
|
|
|
|
task_lock(current);
|
|
|
|
spin_lock(&init_fs.lock);
|
|
init_fs.users++;
|
|
spin_unlock(&init_fs.lock);
|
|
|
|
spin_lock(&fs->lock);
|
|
current->fs = &init_fs;
|
|
kill = !--fs->users;
|
|
spin_unlock(&fs->lock);
|
|
|
|
task_unlock(current);
|
|
if (kill)
|
|
free_fs_struct(fs);
|
|
}
|
|
}
|