linux_dsm_epyc7002/drivers/pci/endpoint/pci-epf-core.c
Kishon Vijay Abraham I 2a9a801620 PCI: endpoint: Add support to specify alignment for buffers allocated to BARs
The address that is allocated using pci_epf_alloc_space() is
directly written to the target address of the Inbound Address
Translation unit (ie the HW component implementing inbound address
decoding) on endpoint controllers.

Designware IP [1] has a configuration parameter (CX_ATU_MIN_REGION_SIZE
[2]) which has 64KB as default value and the lower 16 bits of the Base,
Limit and Target registers of the Inbound ATU are fixed to zero. If the
programmed memory address is not aligned to 64 KB boundary this causes
memory corruption.

Modify pci_epf_alloc_space() API to take alignment size as argument in
order to allocate buffers to be mapped to BARs with an alignment that
suits the platform where they are used.

Add an 'align' parameter to epc_features which can be used by platform
drivers to specify the BAR allocation alignment requirements and use
this while invoking pci_epf_alloc_space().

[1] "I/O and MEM Match Modes" section in DesignWare Cores PCI Express
     Controller Databook version 4.90a
[2]  http://www.ti.com/lit/ug/spruid7c/spruid7c.pdf

Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2019-04-15 13:24:02 +01:00

399 lines
9.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* PCI Endpoint *Function* (EPF) library
*
* Copyright (C) 2017 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/pci-ep-cfs.h>
static DEFINE_MUTEX(pci_epf_mutex);
static struct bus_type pci_epf_bus_type;
static const struct device_type pci_epf_type;
/**
* pci_epf_linkup() - Notify the function driver that EPC device has
* established a connection with the Root Complex.
* @epf: the EPF device bound to the EPC device which has established
* the connection with the host
*
* Invoke to notify the function driver that EPC device has established
* a connection with the Root Complex.
*/
void pci_epf_linkup(struct pci_epf *epf)
{
if (!epf->driver) {
dev_WARN(&epf->dev, "epf device not bound to driver\n");
return;
}
epf->driver->ops->linkup(epf);
}
EXPORT_SYMBOL_GPL(pci_epf_linkup);
/**
* pci_epf_unbind() - Notify the function driver that the binding between the
* EPF device and EPC device has been lost
* @epf: the EPF device which has lost the binding with the EPC device
*
* Invoke to notify the function driver that the binding between the EPF device
* and EPC device has been lost.
*/
void pci_epf_unbind(struct pci_epf *epf)
{
if (!epf->driver) {
dev_WARN(&epf->dev, "epf device not bound to driver\n");
return;
}
epf->driver->ops->unbind(epf);
module_put(epf->driver->owner);
}
EXPORT_SYMBOL_GPL(pci_epf_unbind);
/**
* pci_epf_bind() - Notify the function driver that the EPF device has been
* bound to a EPC device
* @epf: the EPF device which has been bound to the EPC device
*
* Invoke to notify the function driver that it has been bound to a EPC device
*/
int pci_epf_bind(struct pci_epf *epf)
{
if (!epf->driver) {
dev_WARN(&epf->dev, "epf device not bound to driver\n");
return -EINVAL;
}
if (!try_module_get(epf->driver->owner))
return -EAGAIN;
return epf->driver->ops->bind(epf);
}
EXPORT_SYMBOL_GPL(pci_epf_bind);
/**
* pci_epf_free_space() - free the allocated PCI EPF register space
* @addr: the virtual address of the PCI EPF register space
* @bar: the BAR number corresponding to the register space
*
* Invoke to free the allocated PCI EPF register space.
*/
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar)
{
struct device *dev = epf->epc->dev.parent;
if (!addr)
return;
dma_free_coherent(dev, epf->bar[bar].size, addr,
epf->bar[bar].phys_addr);
epf->bar[bar].phys_addr = 0;
epf->bar[bar].size = 0;
epf->bar[bar].barno = 0;
epf->bar[bar].flags = 0;
}
EXPORT_SYMBOL_GPL(pci_epf_free_space);
/**
* pci_epf_alloc_space() - allocate memory for the PCI EPF register space
* @size: the size of the memory that has to be allocated
* @bar: the BAR number corresponding to the allocated register space
* @align: alignment size for the allocation region
*
* Invoke to allocate memory for the PCI EPF register space.
*/
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
size_t align)
{
void *space;
struct device *dev = epf->epc->dev.parent;
dma_addr_t phys_addr;
if (size < 128)
size = 128;
if (align)
size = ALIGN(size, align);
else
size = roundup_pow_of_two(size);
space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
if (!space) {
dev_err(dev, "failed to allocate mem space\n");
return NULL;
}
epf->bar[bar].phys_addr = phys_addr;
epf->bar[bar].size = size;
epf->bar[bar].barno = bar;
epf->bar[bar].flags |= upper_32_bits(size) ?
PCI_BASE_ADDRESS_MEM_TYPE_64 :
PCI_BASE_ADDRESS_MEM_TYPE_32;
return space;
}
EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
{
struct config_group *group, *tmp;
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
return;
mutex_lock(&pci_epf_mutex);
list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
pci_ep_cfs_remove_epf_group(group);
list_del(&driver->epf_group);
mutex_unlock(&pci_epf_mutex);
}
/**
* pci_epf_unregister_driver() - unregister the PCI EPF driver
* @driver: the PCI EPF driver that has to be unregistered
*
* Invoke to unregister the PCI EPF driver.
*/
void pci_epf_unregister_driver(struct pci_epf_driver *driver)
{
pci_epf_remove_cfs(driver);
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
static int pci_epf_add_cfs(struct pci_epf_driver *driver)
{
struct config_group *group;
const struct pci_epf_device_id *id;
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
return 0;
INIT_LIST_HEAD(&driver->epf_group);
id = driver->id_table;
while (id->name[0]) {
group = pci_ep_cfs_add_epf_group(id->name);
if (IS_ERR(group)) {
pci_epf_remove_cfs(driver);
return PTR_ERR(group);
}
mutex_lock(&pci_epf_mutex);
list_add_tail(&group->group_entry, &driver->epf_group);
mutex_unlock(&pci_epf_mutex);
id++;
}
return 0;
}
/**
* __pci_epf_register_driver() - register a new PCI EPF driver
* @driver: structure representing PCI EPF driver
* @owner: the owner of the module that registers the PCI EPF driver
*
* Invoke to register a new PCI EPF driver.
*/
int __pci_epf_register_driver(struct pci_epf_driver *driver,
struct module *owner)
{
int ret;
if (!driver->ops)
return -EINVAL;
if (!driver->ops->bind || !driver->ops->unbind || !driver->ops->linkup)
return -EINVAL;
driver->driver.bus = &pci_epf_bus_type;
driver->driver.owner = owner;
ret = driver_register(&driver->driver);
if (ret)
return ret;
pci_epf_add_cfs(driver);
return 0;
}
EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
/**
* pci_epf_destroy() - destroy the created PCI EPF device
* @epf: the PCI EPF device that has to be destroyed.
*
* Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
*/
void pci_epf_destroy(struct pci_epf *epf)
{
device_unregister(&epf->dev);
}
EXPORT_SYMBOL_GPL(pci_epf_destroy);
/**
* pci_epf_create() - create a new PCI EPF device
* @name: the name of the PCI EPF device. This name will be used to bind the
* the EPF device to a EPF driver
*
* Invoke to create a new PCI EPF device by providing the name of the function
* device.
*/
struct pci_epf *pci_epf_create(const char *name)
{
int ret;
struct pci_epf *epf;
struct device *dev;
int len;
epf = kzalloc(sizeof(*epf), GFP_KERNEL);
if (!epf)
return ERR_PTR(-ENOMEM);
len = strchrnul(name, '.') - name;
epf->name = kstrndup(name, len, GFP_KERNEL);
if (!epf->name) {
kfree(epf);
return ERR_PTR(-ENOMEM);
}
dev = &epf->dev;
device_initialize(dev);
dev->bus = &pci_epf_bus_type;
dev->type = &pci_epf_type;
ret = dev_set_name(dev, "%s", name);
if (ret) {
put_device(dev);
return ERR_PTR(ret);
}
ret = device_add(dev);
if (ret) {
put_device(dev);
return ERR_PTR(ret);
}
return epf;
}
EXPORT_SYMBOL_GPL(pci_epf_create);
const struct pci_epf_device_id *
pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf)
{
if (!id || !epf)
return NULL;
while (*id->name) {
if (strcmp(epf->name, id->name) == 0)
return id;
id++;
}
return NULL;
}
EXPORT_SYMBOL_GPL(pci_epf_match_device);
static void pci_epf_dev_release(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);
kfree(epf->name);
kfree(epf);
}
static const struct device_type pci_epf_type = {
.release = pci_epf_dev_release,
};
static int
pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
{
while (id->name[0]) {
if (strcmp(epf->name, id->name) == 0)
return true;
id++;
}
return false;
}
static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
{
struct pci_epf *epf = to_pci_epf(dev);
struct pci_epf_driver *driver = to_pci_epf_driver(drv);
if (driver->id_table)
return pci_epf_match_id(driver->id_table, epf);
return !strcmp(epf->name, drv->name);
}
static int pci_epf_device_probe(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
if (!driver->probe)
return -ENODEV;
epf->driver = driver;
return driver->probe(epf);
}
static int pci_epf_device_remove(struct device *dev)
{
int ret = 0;
struct pci_epf *epf = to_pci_epf(dev);
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
if (driver->remove)
ret = driver->remove(epf);
epf->driver = NULL;
return ret;
}
static struct bus_type pci_epf_bus_type = {
.name = "pci-epf",
.match = pci_epf_device_match,
.probe = pci_epf_device_probe,
.remove = pci_epf_device_remove,
};
static int __init pci_epf_init(void)
{
int ret;
ret = bus_register(&pci_epf_bus_type);
if (ret) {
pr_err("failed to register pci epf bus --> %d\n", ret);
return ret;
}
return 0;
}
module_init(pci_epf_init);
static void __exit pci_epf_exit(void)
{
bus_unregister(&pci_epf_bus_type);
}
module_exit(pci_epf_exit);
MODULE_DESCRIPTION("PCI EPF Library");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");