linux_dsm_epyc7002/drivers/thermal/intel_powerclamp.c
Linus Torvalds 7b9dc3f75f Power management material for v4.10-rc1
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
    for it (Markus Mayer).
 
  - Support for ARM Integrator/AP and Integrator/CP in the generic
    DT cpufreq driver and elimination of the old Integrator cpufreq
    driver (Linus Walleij).
 
  - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
    and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
    Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
 
  - cpufreq core fix to eliminate races that may lead to using
    inactive policy objects and related cleanups (Rafael Wysocki).
 
  - cpufreq schedutil governor update to make it use SCHED_FIFO
    kernel threads (instead of regular workqueues) for doing delayed
    work (to reduce the response latency in some cases) and related
    cleanups (Viresh Kumar).
 
  - New cpufreq sysfs attribute for resetting statistics (Markus
    Mayer).
 
  - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
    Viresh Kumar).
 
  - Support for using generic cpufreq governors in the intel_pstate
    driver (Rafael Wysocki).
 
  - Support for per-logical-CPU P-state limits and the EPP/EPB
    (Energy Performance Preference/Energy Performance Bias) knobs
    in the intel_pstate driver (Srinivas Pandruvada).
 
  - New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
 
  - intel_pstate driver modification to use the P-state selection
    algorithm based on CPU load on platforms with the system profile
    in the ACPI tables set to "mobile" (Srinivas Pandruvada).
 
  - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
    Srinivas Pandruvada).
 
  - cpufreq powernv driver updates including fast switching support
    (for the schedutil governor), fixes and cleanus (Akshay Adiga,
    Andrew Donnellan, Denis Kirjanov).
 
  - acpi-cpufreq driver rework to switch it over to the new CPU
    offline/online state machine (Sebastian Andrzej Siewior).
 
  - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
    Prakash).
 
  - Idle injection rework (to make it use the regular idle path
    instead of a home-grown custom one) and related powerclamp
    thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
    Sebastian Andrzej Siewior).
 
  - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
    Shevchenko, Piotr Luc).
 
  - intel_idle driver cleanups and switch over to using the new CPU
    offline/online state machine (Anna-Maria Gleixner, Sebastian
    Andrzej Siewior).
 
  - cpuidle DT driver update to support suspend-to-idle properly
    (Sudeep Holla).
 
  - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
    Rafael Wysocki).
 
  - Preliminary support for power domains including CPUs in the
    generic power domains (genpd) framework and related DT bindings
    (Lina Iyer).
 
  - Assorted fixes and cleanups in the generic power domains (genpd)
    framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
 
  - Preliminary support for devices with multiple voltage regulators
    and related fixes and cleanups in the Operating Performance Points
    (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
 
  - System sleep state selection interface rework to make it easier
    to support suspend-to-idle as the default system suspend method
    (Rafael Wysocki).
 
  - PM core fixes and cleanups, mostly related to the interactions
    between the system suspend and runtime PM frameworks (Ulf Hansson,
    Sahitya Tummala, Tony Lindgren).
 
  - Latency tolerance PM QoS framework imorovements (Andrew
    Lutomirski).
 
  - New Knights Mill CPU ID for the Intel RAPL power capping driver
    (Piotr Luc).
 
  - Intel RAPL power capping driver fixes, cleanups and switch over
    to using the new CPU offline/online state machine (Jacob Pan,
    Thomas Gleixner, Sebastian Andrzej Siewior).
 
  - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
    rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
    Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
    Kumar).
 
  - Fix for false-positive KASAN warnings during resume from ACPI S3
    (suspend-to-RAM) on x86 (Josh Poimboeuf).
 
  - Memory map verification during resume from hibernation on x86 to
    ensure a consistent address space layout (Chen Yu).
 
  - Wakeup sources debugging enhancement (Xing Wei).
 
  - rockchip-io AVS driver cleanup (Shawn Lin).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
 UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
 gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
 iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
 brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
 AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
 gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
 RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
 0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
 XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
 sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
 LymHcobCK9rSZ1l208Fe
 =vhxI
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "Again, cpufreq gets more changes than the other parts this time (one
  new driver, one old driver less, a bunch of enhancements of the
  existing code, new CPU IDs, fixes, cleanups)

  There also are some changes in cpuidle (idle injection rework, a
  couple of new CPU IDs, online/offline rework in intel_idle, fixes and
  cleanups), in the generic power domains framework (mostly related to
  supporting power domains containing CPUs), and in the Operating
  Performance Points (OPP) library (mostly related to supporting devices
  with multiple voltage regulators)

  In addition to that, the system sleep state selection interface is
  modified to make it easier for distributions with unchanged user space
  to support suspend-to-idle as the default system suspend method, some
  issues are fixed in the PM core, the latency tolerance PM QoS
  framework is improved a bit, the Intel RAPL power capping driver is
  cleaned up and there are some fixes and cleanups in the devfreq
  subsystem

  Specifics:

   - New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
     for it (Markus Mayer)

   - Support for ARM Integrator/AP and Integrator/CP in the generic DT
     cpufreq driver and elimination of the old Integrator cpufreq driver
     (Linus Walleij)

   - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
     and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
     Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)

   - cpufreq core fix to eliminate races that may lead to using inactive
     policy objects and related cleanups (Rafael Wysocki)

   - cpufreq schedutil governor update to make it use SCHED_FIFO kernel
     threads (instead of regular workqueues) for doing delayed work (to
     reduce the response latency in some cases) and related cleanups
     (Viresh Kumar)

   - New cpufreq sysfs attribute for resetting statistics (Markus Mayer)

   - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
     Viresh Kumar)

   - Support for using generic cpufreq governors in the intel_pstate
     driver (Rafael Wysocki)

   - Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
     Performance Preference/Energy Performance Bias) knobs in the
     intel_pstate driver (Srinivas Pandruvada)

   - New CPU ID for Knights Mill in intel_pstate (Piotr Luc)

   - intel_pstate driver modification to use the P-state selection
     algorithm based on CPU load on platforms with the system profile in
     the ACPI tables set to "mobile" (Srinivas Pandruvada)

   - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
     Srinivas Pandruvada)

   - cpufreq powernv driver updates including fast switching support
     (for the schedutil governor), fixes and cleanus (Akshay Adiga,
     Andrew Donnellan, Denis Kirjanov)

   - acpi-cpufreq driver rework to switch it over to the new CPU
     offline/online state machine (Sebastian Andrzej Siewior)

   - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
     Prakash)

   - Idle injection rework (to make it use the regular idle path instead
     of a home-grown custom one) and related powerclamp thermal driver
     updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
     Siewior)

   - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
     Shevchenko, Piotr Luc)

   - intel_idle driver cleanups and switch over to using the new CPU
     offline/online state machine (Anna-Maria Gleixner, Sebastian
     Andrzej Siewior)

   - cpuidle DT driver update to support suspend-to-idle properly
     (Sudeep Holla)

   - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
     Rafael Wysocki)

   - Preliminary support for power domains including CPUs in the generic
     power domains (genpd) framework and related DT bindings (Lina Iyer)

   - Assorted fixes and cleanups in the generic power domains (genpd)
     framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)

   - Preliminary support for devices with multiple voltage regulators
     and related fixes and cleanups in the Operating Performance Points
     (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)

   - System sleep state selection interface rework to make it easier to
     support suspend-to-idle as the default system suspend method
     (Rafael Wysocki)

   - PM core fixes and cleanups, mostly related to the interactions
     between the system suspend and runtime PM frameworks (Ulf Hansson,
     Sahitya Tummala, Tony Lindgren)

   - Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)

   - New Knights Mill CPU ID for the Intel RAPL power capping driver
     (Piotr Luc)

   - Intel RAPL power capping driver fixes, cleanups and switch over to
     using the new CPU offline/online state machine (Jacob Pan, Thomas
     Gleixner, Sebastian Andrzej Siewior)

   - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
     rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
     Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)

   - Fix for false-positive KASAN warnings during resume from ACPI S3
     (suspend-to-RAM) on x86 (Josh Poimboeuf)

   - Memory map verification during resume from hibernation on x86 to
     ensure a consistent address space layout (Chen Yu)

   - Wakeup sources debugging enhancement (Xing Wei)

   - rockchip-io AVS driver cleanup (Shawn Lin)"

* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
  devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
  devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
  devfreq: exynos: Don't use OPP structures outside of RCU locks
  Documentation: intel_pstate: Document HWP energy/performance hints
  cpufreq: intel_pstate: Support for energy performance hints with HWP
  cpufreq: intel_pstate: Add locking around HWP requests
  PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
  PM / core: Fix bug in the error handling of async suspend
  PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
  PM / Domains: Fix compatible for domain idle state
  PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
  PM / OPP: Allow platform specific custom set_opp() callbacks
  PM / OPP: Separate out _generic_set_opp()
  PM / OPP: Add infrastructure to manage multiple regulators
  PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
  PM / OPP: Manage supply's voltage/current in a separate structure
  PM / OPP: Don't use OPP structure outside of rcu protected section
  PM / OPP: Reword binding supporting multiple regulators per device
  PM / OPP: Fix incorrect cpu-supply property in binding
  cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
  ..
2016-12-13 10:41:53 -08:00

819 lines
21 KiB
C

/*
* intel_powerclamp.c - package c-state idle injection
*
* Copyright (c) 2012, Intel Corporation.
*
* Authors:
* Arjan van de Ven <arjan@linux.intel.com>
* Jacob Pan <jacob.jun.pan@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*
* TODO:
* 1. better handle wakeup from external interrupts, currently a fixed
* compensation is added to clamping duration when excessive amount
* of wakeups are observed during idle time. the reason is that in
* case of external interrupts without need for ack, clamping down
* cpu in non-irq context does not reduce irq. for majority of the
* cases, clamping down cpu does help reduce irq as well, we should
* be able to differenciate the two cases and give a quantitative
* solution for the irqs that we can control. perhaps based on
* get_cpu_iowait_time_us()
*
* 2. synchronization with other hw blocks
*
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/cpu.h>
#include <linux/thermal.h>
#include <linux/slab.h>
#include <linux/tick.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/sched/rt.h>
#include <asm/nmi.h>
#include <asm/msr.h>
#include <asm/mwait.h>
#include <asm/cpu_device_id.h>
#include <asm/hardirq.h>
#define MAX_TARGET_RATIO (50U)
/* For each undisturbed clamping period (no extra wake ups during idle time),
* we increment the confidence counter for the given target ratio.
* CONFIDENCE_OK defines the level where runtime calibration results are
* valid.
*/
#define CONFIDENCE_OK (3)
/* Default idle injection duration, driver adjust sleep time to meet target
* idle ratio. Similar to frequency modulation.
*/
#define DEFAULT_DURATION_JIFFIES (6)
static unsigned int target_mwait;
static struct dentry *debug_dir;
/* user selected target */
static unsigned int set_target_ratio;
static unsigned int current_ratio;
static bool should_skip;
static bool reduce_irq;
static atomic_t idle_wakeup_counter;
static unsigned int control_cpu; /* The cpu assigned to collect stat and update
* control parameters. default to BSP but BSP
* can be offlined.
*/
static bool clamping;
static const struct sched_param sparam = {
.sched_priority = MAX_USER_RT_PRIO / 2,
};
struct powerclamp_worker_data {
struct kthread_worker *worker;
struct kthread_work balancing_work;
struct kthread_delayed_work idle_injection_work;
unsigned int cpu;
unsigned int count;
unsigned int guard;
unsigned int window_size_now;
unsigned int target_ratio;
unsigned int duration_jiffies;
bool clamping;
};
static struct powerclamp_worker_data * __percpu worker_data;
static struct thermal_cooling_device *cooling_dev;
static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
* clamping kthread worker
*/
static unsigned int duration;
static unsigned int pkg_cstate_ratio_cur;
static unsigned int window_size;
static int duration_set(const char *arg, const struct kernel_param *kp)
{
int ret = 0;
unsigned long new_duration;
ret = kstrtoul(arg, 10, &new_duration);
if (ret)
goto exit;
if (new_duration > 25 || new_duration < 6) {
pr_err("Out of recommended range %lu, between 6-25ms\n",
new_duration);
ret = -EINVAL;
}
duration = clamp(new_duration, 6ul, 25ul);
smp_mb();
exit:
return ret;
}
static const struct kernel_param_ops duration_ops = {
.set = duration_set,
.get = param_get_int,
};
module_param_cb(duration, &duration_ops, &duration, 0644);
MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
struct powerclamp_calibration_data {
unsigned long confidence; /* used for calibration, basically a counter
* gets incremented each time a clamping
* period is completed without extra wakeups
* once that counter is reached given level,
* compensation is deemed usable.
*/
unsigned long steady_comp; /* steady state compensation used when
* no extra wakeups occurred.
*/
unsigned long dynamic_comp; /* compensate excessive wakeup from idle
* mostly from external interrupts.
*/
};
static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
static int window_size_set(const char *arg, const struct kernel_param *kp)
{
int ret = 0;
unsigned long new_window_size;
ret = kstrtoul(arg, 10, &new_window_size);
if (ret)
goto exit_win;
if (new_window_size > 10 || new_window_size < 2) {
pr_err("Out of recommended window size %lu, between 2-10\n",
new_window_size);
ret = -EINVAL;
}
window_size = clamp(new_window_size, 2ul, 10ul);
smp_mb();
exit_win:
return ret;
}
static const struct kernel_param_ops window_size_ops = {
.set = window_size_set,
.get = param_get_int,
};
module_param_cb(window_size, &window_size_ops, &window_size, 0644);
MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
"\tpowerclamp controls idle ratio within this window. larger\n"
"\twindow size results in slower response time but more smooth\n"
"\tclamping results. default to 2.");
static void find_target_mwait(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
int i;
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
return;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK))
return;
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
}
struct pkg_cstate_info {
bool skip;
int msr_index;
int cstate_id;
};
#define PKG_CSTATE_INIT(id) { \
.msr_index = MSR_PKG_C##id##_RESIDENCY, \
.cstate_id = id \
}
static struct pkg_cstate_info pkg_cstates[] = {
PKG_CSTATE_INIT(2),
PKG_CSTATE_INIT(3),
PKG_CSTATE_INIT(6),
PKG_CSTATE_INIT(7),
PKG_CSTATE_INIT(8),
PKG_CSTATE_INIT(9),
PKG_CSTATE_INIT(10),
{NULL},
};
static bool has_pkg_state_counter(void)
{
u64 val;
struct pkg_cstate_info *info = pkg_cstates;
/* check if any one of the counter msrs exists */
while (info->msr_index) {
if (!rdmsrl_safe(info->msr_index, &val))
return true;
info++;
}
return false;
}
static u64 pkg_state_counter(void)
{
u64 val;
u64 count = 0;
struct pkg_cstate_info *info = pkg_cstates;
while (info->msr_index) {
if (!info->skip) {
if (!rdmsrl_safe(info->msr_index, &val))
count += val;
else
info->skip = true;
}
info++;
}
return count;
}
static unsigned int get_compensation(int ratio)
{
unsigned int comp = 0;
/* we only use compensation if all adjacent ones are good */
if (ratio == 1 &&
cal_data[ratio].confidence >= CONFIDENCE_OK &&
cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
comp = (cal_data[ratio].steady_comp +
cal_data[ratio + 1].steady_comp +
cal_data[ratio + 2].steady_comp) / 3;
} else if (ratio == MAX_TARGET_RATIO - 1 &&
cal_data[ratio].confidence >= CONFIDENCE_OK &&
cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
comp = (cal_data[ratio].steady_comp +
cal_data[ratio - 1].steady_comp +
cal_data[ratio - 2].steady_comp) / 3;
} else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
comp = (cal_data[ratio].steady_comp +
cal_data[ratio - 1].steady_comp +
cal_data[ratio + 1].steady_comp) / 3;
}
/* REVISIT: simple penalty of double idle injection */
if (reduce_irq)
comp = ratio;
/* do not exceed limit */
if (comp + ratio >= MAX_TARGET_RATIO)
comp = MAX_TARGET_RATIO - ratio - 1;
return comp;
}
static void adjust_compensation(int target_ratio, unsigned int win)
{
int delta;
struct powerclamp_calibration_data *d = &cal_data[target_ratio];
/*
* adjust compensations if confidence level has not been reached or
* there are too many wakeups during the last idle injection period, we
* cannot trust the data for compensation.
*/
if (d->confidence >= CONFIDENCE_OK ||
atomic_read(&idle_wakeup_counter) >
win * num_online_cpus())
return;
delta = set_target_ratio - current_ratio;
/* filter out bad data */
if (delta >= 0 && delta <= (1+target_ratio/10)) {
if (d->steady_comp)
d->steady_comp =
roundup(delta+d->steady_comp, 2)/2;
else
d->steady_comp = delta;
d->confidence++;
}
}
static bool powerclamp_adjust_controls(unsigned int target_ratio,
unsigned int guard, unsigned int win)
{
static u64 msr_last, tsc_last;
u64 msr_now, tsc_now;
u64 val64;
/* check result for the last window */
msr_now = pkg_state_counter();
tsc_now = rdtsc();
/* calculate pkg cstate vs tsc ratio */
if (!msr_last || !tsc_last)
current_ratio = 1;
else if (tsc_now-tsc_last) {
val64 = 100*(msr_now-msr_last);
do_div(val64, (tsc_now-tsc_last));
current_ratio = val64;
}
/* update record */
msr_last = msr_now;
tsc_last = tsc_now;
adjust_compensation(target_ratio, win);
/*
* too many external interrupts, set flag such
* that we can take measure later.
*/
reduce_irq = atomic_read(&idle_wakeup_counter) >=
2 * win * num_online_cpus();
atomic_set(&idle_wakeup_counter, 0);
/* if we are above target+guard, skip */
return set_target_ratio + guard <= current_ratio;
}
static void clamp_balancing_func(struct kthread_work *work)
{
struct powerclamp_worker_data *w_data;
int sleeptime;
unsigned long target_jiffies;
unsigned int compensated_ratio;
int interval; /* jiffies to sleep for each attempt */
w_data = container_of(work, struct powerclamp_worker_data,
balancing_work);
/*
* make sure user selected ratio does not take effect until
* the next round. adjust target_ratio if user has changed
* target such that we can converge quickly.
*/
w_data->target_ratio = READ_ONCE(set_target_ratio);
w_data->guard = 1 + w_data->target_ratio / 20;
w_data->window_size_now = window_size;
w_data->duration_jiffies = msecs_to_jiffies(duration);
w_data->count++;
/*
* systems may have different ability to enter package level
* c-states, thus we need to compensate the injected idle ratio
* to achieve the actual target reported by the HW.
*/
compensated_ratio = w_data->target_ratio +
get_compensation(w_data->target_ratio);
if (compensated_ratio <= 0)
compensated_ratio = 1;
interval = w_data->duration_jiffies * 100 / compensated_ratio;
/* align idle time */
target_jiffies = roundup(jiffies, interval);
sleeptime = target_jiffies - jiffies;
if (sleeptime <= 0)
sleeptime = 1;
if (clamping && w_data->clamping && cpu_online(w_data->cpu))
kthread_queue_delayed_work(w_data->worker,
&w_data->idle_injection_work,
sleeptime);
}
static void clamp_idle_injection_func(struct kthread_work *work)
{
struct powerclamp_worker_data *w_data;
w_data = container_of(work, struct powerclamp_worker_data,
idle_injection_work.work);
/*
* only elected controlling cpu can collect stats and update
* control parameters.
*/
if (w_data->cpu == control_cpu &&
!(w_data->count % w_data->window_size_now)) {
should_skip =
powerclamp_adjust_controls(w_data->target_ratio,
w_data->guard,
w_data->window_size_now);
smp_mb();
}
if (should_skip)
goto balance;
play_idle(jiffies_to_msecs(w_data->duration_jiffies));
balance:
if (clamping && w_data->clamping && cpu_online(w_data->cpu))
kthread_queue_work(w_data->worker, &w_data->balancing_work);
}
/*
* 1 HZ polling while clamping is active, useful for userspace
* to monitor actual idle ratio.
*/
static void poll_pkg_cstate(struct work_struct *dummy);
static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
static void poll_pkg_cstate(struct work_struct *dummy)
{
static u64 msr_last;
static u64 tsc_last;
static unsigned long jiffies_last;
u64 msr_now;
unsigned long jiffies_now;
u64 tsc_now;
u64 val64;
msr_now = pkg_state_counter();
tsc_now = rdtsc();
jiffies_now = jiffies;
/* calculate pkg cstate vs tsc ratio */
if (!msr_last || !tsc_last)
pkg_cstate_ratio_cur = 1;
else {
if (tsc_now - tsc_last) {
val64 = 100 * (msr_now - msr_last);
do_div(val64, (tsc_now - tsc_last));
pkg_cstate_ratio_cur = val64;
}
}
/* update record */
msr_last = msr_now;
jiffies_last = jiffies_now;
tsc_last = tsc_now;
if (true == clamping)
schedule_delayed_work(&poll_pkg_cstate_work, HZ);
}
static void start_power_clamp_worker(unsigned long cpu)
{
struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
struct kthread_worker *worker;
worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inject/%ld", cpu);
if (IS_ERR(worker))
return;
w_data->worker = worker;
w_data->count = 0;
w_data->cpu = cpu;
w_data->clamping = true;
set_bit(cpu, cpu_clamping_mask);
sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
kthread_init_delayed_work(&w_data->idle_injection_work,
clamp_idle_injection_func);
kthread_queue_work(w_data->worker, &w_data->balancing_work);
}
static void stop_power_clamp_worker(unsigned long cpu)
{
struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
if (!w_data->worker)
return;
w_data->clamping = false;
/*
* Make sure that all works that get queued after this point see
* the clamping disabled. The counter part is not needed because
* there is an implicit memory barrier when the queued work
* is proceed.
*/
smp_wmb();
kthread_cancel_work_sync(&w_data->balancing_work);
kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
/*
* The balancing work still might be queued here because
* the handling of the "clapming" variable, cancel, and queue
* operations are not synchronized via a lock. But it is not
* a big deal. The balancing work is fast and destroy kthread
* will wait for it.
*/
clear_bit(w_data->cpu, cpu_clamping_mask);
kthread_destroy_worker(w_data->worker);
w_data->worker = NULL;
}
static int start_power_clamp(void)
{
unsigned long cpu;
set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
/* prevent cpu hotplug */
get_online_cpus();
/* prefer BSP */
control_cpu = 0;
if (!cpu_online(control_cpu))
control_cpu = smp_processor_id();
clamping = true;
schedule_delayed_work(&poll_pkg_cstate_work, 0);
/* start one kthread worker per online cpu */
for_each_online_cpu(cpu) {
start_power_clamp_worker(cpu);
}
put_online_cpus();
return 0;
}
static void end_power_clamp(void)
{
int i;
/*
* Block requeuing in all the kthread workers. They will flush and
* stop faster.
*/
clamping = false;
if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
pr_debug("clamping worker for cpu %d alive, destroy\n",
i);
stop_power_clamp_worker(i);
}
}
}
static int powerclamp_cpu_online(unsigned int cpu)
{
if (clamping == false)
return 0;
start_power_clamp_worker(cpu);
/* prefer BSP as controlling CPU */
if (cpu == 0) {
control_cpu = 0;
smp_mb();
}
return 0;
}
static int powerclamp_cpu_predown(unsigned int cpu)
{
if (clamping == false)
return 0;
stop_power_clamp_worker(cpu);
if (cpu != control_cpu)
return 0;
control_cpu = cpumask_first(cpu_online_mask);
if (control_cpu == cpu)
control_cpu = cpumask_next(cpu, cpu_online_mask);
smp_mb();
return 0;
}
static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = MAX_TARGET_RATIO;
return 0;
}
static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
if (true == clamping)
*state = pkg_cstate_ratio_cur;
else
/* to save power, do not poll idle ratio while not clamping */
*state = -1; /* indicates invalid state */
return 0;
}
static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long new_target_ratio)
{
int ret = 0;
new_target_ratio = clamp(new_target_ratio, 0UL,
(unsigned long) (MAX_TARGET_RATIO-1));
if (set_target_ratio == 0 && new_target_ratio > 0) {
pr_info("Start idle injection to reduce power\n");
set_target_ratio = new_target_ratio;
ret = start_power_clamp();
goto exit_set;
} else if (set_target_ratio > 0 && new_target_ratio == 0) {
pr_info("Stop forced idle injection\n");
end_power_clamp();
set_target_ratio = 0;
} else /* adjust currently running */ {
set_target_ratio = new_target_ratio;
/* make new set_target_ratio visible to other cpus */
smp_mb();
}
exit_set:
return ret;
}
/* bind to generic thermal layer as cooling device*/
static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
.get_max_state = powerclamp_get_max_state,
.get_cur_state = powerclamp_get_cur_state,
.set_cur_state = powerclamp_set_cur_state,
};
static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
{ X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
static int __init powerclamp_probe(void)
{
if (!x86_match_cpu(intel_powerclamp_ids)) {
pr_err("CPU does not support MWAIT");
return -ENODEV;
}
/* The goal for idle time alignment is to achieve package cstate. */
if (!has_pkg_state_counter()) {
pr_info("No package C-state available");
return -ENODEV;
}
/* find the deepest mwait value */
find_target_mwait();
return 0;
}
static int powerclamp_debug_show(struct seq_file *m, void *unused)
{
int i = 0;
seq_printf(m, "controlling cpu: %d\n", control_cpu);
seq_printf(m, "pct confidence steady dynamic (compensation)\n");
for (i = 0; i < MAX_TARGET_RATIO; i++) {
seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
i,
cal_data[i].confidence,
cal_data[i].steady_comp,
cal_data[i].dynamic_comp);
}
return 0;
}
static int powerclamp_debug_open(struct inode *inode,
struct file *file)
{
return single_open(file, powerclamp_debug_show, inode->i_private);
}
static const struct file_operations powerclamp_debug_fops = {
.open = powerclamp_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.owner = THIS_MODULE,
};
static inline void powerclamp_create_debug_files(void)
{
debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
if (!debug_dir)
return;
if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
cal_data, &powerclamp_debug_fops))
goto file_error;
return;
file_error:
debugfs_remove_recursive(debug_dir);
}
static enum cpuhp_state hp_state;
static int __init powerclamp_init(void)
{
int retval;
int bitmap_size;
bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
if (!cpu_clamping_mask)
return -ENOMEM;
/* probe cpu features and ids here */
retval = powerclamp_probe();
if (retval)
goto exit_free;
/* set default limit, maybe adjusted during runtime based on feedback */
window_size = 2;
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"thermal/intel_powerclamp:online",
powerclamp_cpu_online,
powerclamp_cpu_predown);
if (retval < 0)
goto exit_free;
hp_state = retval;
worker_data = alloc_percpu(struct powerclamp_worker_data);
if (!worker_data) {
retval = -ENOMEM;
goto exit_unregister;
}
cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
&powerclamp_cooling_ops);
if (IS_ERR(cooling_dev)) {
retval = -ENODEV;
goto exit_free_thread;
}
if (!duration)
duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
powerclamp_create_debug_files();
return 0;
exit_free_thread:
free_percpu(worker_data);
exit_unregister:
cpuhp_remove_state_nocalls(hp_state);
exit_free:
kfree(cpu_clamping_mask);
return retval;
}
module_init(powerclamp_init);
static void __exit powerclamp_exit(void)
{
end_power_clamp();
cpuhp_remove_state_nocalls(hp_state);
free_percpu(worker_data);
thermal_cooling_device_unregister(cooling_dev);
kfree(cpu_clamping_mask);
cancel_delayed_work_sync(&poll_pkg_cstate_work);
debugfs_remove_recursive(debug_dir);
}
module_exit(powerclamp_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");