linux_dsm_epyc7002/fs/ntfs/inode.c
Desmond Cheong Zhi Xi 1738bcf9e6 ntfs: fix validity check for file name attribute
commit d98e4d95411bbde2220a7afa38dcc9c14d71acbe upstream.

When checking the file name attribute, we want to ensure that it fits
within the bounds of ATTR_RECORD.  To do this, we should check that (attr
record + file name offset + file name length) < (attr record + attr record
length).

However, the original check did not include the file name offset in the
calculation.  This means that corrupted on-disk metadata might not caught
by the incorrect file name check, and lead to an invalid memory access.

An example can be seen in the crash report of a memory corruption error
found by Syzbot:
https://syzkaller.appspot.com/bug?id=a1a1e379b225812688566745c3e2f7242bffc246

Adding the file name offset to the validity check fixes this error and
passes the Syzbot reproducer test.

Link: https://lkml.kernel.org/r/20210614050540.289494-1-desmondcheongzx@gmail.com
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reported-by: syzbot+213ac8bb98f7f4420840@syzkaller.appspotmail.com
Tested-by: syzbot+213ac8bb98f7f4420840@syzkaller.appspotmail.com
Acked-by: Anton Altaparmakov <anton@tuxera.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-14 16:55:38 +02:00

3090 lines
96 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/**
* inode.c - NTFS kernel inode handling.
*
* Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
*/
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mount.h>
#include <linux/mutex.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include "aops.h"
#include "attrib.h"
#include "bitmap.h"
#include "dir.h"
#include "debug.h"
#include "inode.h"
#include "lcnalloc.h"
#include "malloc.h"
#include "mft.h"
#include "time.h"
#include "ntfs.h"
/**
* ntfs_test_inode - compare two (possibly fake) inodes for equality
* @vi: vfs inode which to test
* @data: data which is being tested with
*
* Compare the ntfs attribute embedded in the ntfs specific part of the vfs
* inode @vi for equality with the ntfs attribute @data.
*
* If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
* @na->name and @na->name_len are then ignored.
*
* Return 1 if the attributes match and 0 if not.
*
* NOTE: This function runs with the inode_hash_lock spin lock held so it is not
* allowed to sleep.
*/
int ntfs_test_inode(struct inode *vi, void *data)
{
ntfs_attr *na = (ntfs_attr *)data;
ntfs_inode *ni;
if (vi->i_ino != na->mft_no)
return 0;
ni = NTFS_I(vi);
/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
if (likely(!NInoAttr(ni))) {
/* If not looking for a normal inode this is a mismatch. */
if (unlikely(na->type != AT_UNUSED))
return 0;
} else {
/* A fake inode describing an attribute. */
if (ni->type != na->type)
return 0;
if (ni->name_len != na->name_len)
return 0;
if (na->name_len && memcmp(ni->name, na->name,
na->name_len * sizeof(ntfschar)))
return 0;
}
/* Match! */
return 1;
}
/**
* ntfs_init_locked_inode - initialize an inode
* @vi: vfs inode to initialize
* @data: data which to initialize @vi to
*
* Initialize the vfs inode @vi with the values from the ntfs attribute @data in
* order to enable ntfs_test_inode() to do its work.
*
* If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
* In that case, @na->name and @na->name_len should be set to NULL and 0,
* respectively. Although that is not strictly necessary as
* ntfs_read_locked_inode() will fill them in later.
*
* Return 0 on success and -errno on error.
*
* NOTE: This function runs with the inode->i_lock spin lock held so it is not
* allowed to sleep. (Hence the GFP_ATOMIC allocation.)
*/
static int ntfs_init_locked_inode(struct inode *vi, void *data)
{
ntfs_attr *na = (ntfs_attr *)data;
ntfs_inode *ni = NTFS_I(vi);
vi->i_ino = na->mft_no;
ni->type = na->type;
if (na->type == AT_INDEX_ALLOCATION)
NInoSetMstProtected(ni);
ni->name = na->name;
ni->name_len = na->name_len;
/* If initializing a normal inode, we are done. */
if (likely(na->type == AT_UNUSED)) {
BUG_ON(na->name);
BUG_ON(na->name_len);
return 0;
}
/* It is a fake inode. */
NInoSetAttr(ni);
/*
* We have I30 global constant as an optimization as it is the name
* in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
* allocation but that is ok. And most attributes are unnamed anyway,
* thus the fraction of named attributes with name != I30 is actually
* absolutely tiny.
*/
if (na->name_len && na->name != I30) {
unsigned int i;
BUG_ON(!na->name);
i = na->name_len * sizeof(ntfschar);
ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
if (!ni->name)
return -ENOMEM;
memcpy(ni->name, na->name, i);
ni->name[na->name_len] = 0;
}
return 0;
}
static int ntfs_read_locked_inode(struct inode *vi);
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
static int ntfs_read_locked_index_inode(struct inode *base_vi,
struct inode *vi);
/**
* ntfs_iget - obtain a struct inode corresponding to a specific normal inode
* @sb: super block of mounted volume
* @mft_no: mft record number / inode number to obtain
*
* Obtain the struct inode corresponding to a specific normal inode (i.e. a
* file or directory).
*
* If the inode is in the cache, it is just returned with an increased
* reference count. Otherwise, a new struct inode is allocated and initialized,
* and finally ntfs_read_locked_inode() is called to read in the inode and
* fill in the remainder of the inode structure.
*
* Return the struct inode on success. Check the return value with IS_ERR() and
* if true, the function failed and the error code is obtained from PTR_ERR().
*/
struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
{
struct inode *vi;
int err;
ntfs_attr na;
na.mft_no = mft_no;
na.type = AT_UNUSED;
na.name = NULL;
na.name_len = 0;
vi = iget5_locked(sb, mft_no, ntfs_test_inode,
ntfs_init_locked_inode, &na);
if (unlikely(!vi))
return ERR_PTR(-ENOMEM);
err = 0;
/* If this is a freshly allocated inode, need to read it now. */
if (vi->i_state & I_NEW) {
err = ntfs_read_locked_inode(vi);
unlock_new_inode(vi);
}
/*
* There is no point in keeping bad inodes around if the failure was
* due to ENOMEM. We want to be able to retry again later.
*/
if (unlikely(err == -ENOMEM)) {
iput(vi);
vi = ERR_PTR(err);
}
return vi;
}
/**
* ntfs_attr_iget - obtain a struct inode corresponding to an attribute
* @base_vi: vfs base inode containing the attribute
* @type: attribute type
* @name: Unicode name of the attribute (NULL if unnamed)
* @name_len: length of @name in Unicode characters (0 if unnamed)
*
* Obtain the (fake) struct inode corresponding to the attribute specified by
* @type, @name, and @name_len, which is present in the base mft record
* specified by the vfs inode @base_vi.
*
* If the attribute inode is in the cache, it is just returned with an
* increased reference count. Otherwise, a new struct inode is allocated and
* initialized, and finally ntfs_read_locked_attr_inode() is called to read the
* attribute and fill in the inode structure.
*
* Note, for index allocation attributes, you need to use ntfs_index_iget()
* instead of ntfs_attr_iget() as working with indices is a lot more complex.
*
* Return the struct inode of the attribute inode on success. Check the return
* value with IS_ERR() and if true, the function failed and the error code is
* obtained from PTR_ERR().
*/
struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
ntfschar *name, u32 name_len)
{
struct inode *vi;
int err;
ntfs_attr na;
/* Make sure no one calls ntfs_attr_iget() for indices. */
BUG_ON(type == AT_INDEX_ALLOCATION);
na.mft_no = base_vi->i_ino;
na.type = type;
na.name = name;
na.name_len = name_len;
vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
ntfs_init_locked_inode, &na);
if (unlikely(!vi))
return ERR_PTR(-ENOMEM);
err = 0;
/* If this is a freshly allocated inode, need to read it now. */
if (vi->i_state & I_NEW) {
err = ntfs_read_locked_attr_inode(base_vi, vi);
unlock_new_inode(vi);
}
/*
* There is no point in keeping bad attribute inodes around. This also
* simplifies things in that we never need to check for bad attribute
* inodes elsewhere.
*/
if (unlikely(err)) {
iput(vi);
vi = ERR_PTR(err);
}
return vi;
}
/**
* ntfs_index_iget - obtain a struct inode corresponding to an index
* @base_vi: vfs base inode containing the index related attributes
* @name: Unicode name of the index
* @name_len: length of @name in Unicode characters
*
* Obtain the (fake) struct inode corresponding to the index specified by @name
* and @name_len, which is present in the base mft record specified by the vfs
* inode @base_vi.
*
* If the index inode is in the cache, it is just returned with an increased
* reference count. Otherwise, a new struct inode is allocated and
* initialized, and finally ntfs_read_locked_index_inode() is called to read
* the index related attributes and fill in the inode structure.
*
* Return the struct inode of the index inode on success. Check the return
* value with IS_ERR() and if true, the function failed and the error code is
* obtained from PTR_ERR().
*/
struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
u32 name_len)
{
struct inode *vi;
int err;
ntfs_attr na;
na.mft_no = base_vi->i_ino;
na.type = AT_INDEX_ALLOCATION;
na.name = name;
na.name_len = name_len;
vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
ntfs_init_locked_inode, &na);
if (unlikely(!vi))
return ERR_PTR(-ENOMEM);
err = 0;
/* If this is a freshly allocated inode, need to read it now. */
if (vi->i_state & I_NEW) {
err = ntfs_read_locked_index_inode(base_vi, vi);
unlock_new_inode(vi);
}
/*
* There is no point in keeping bad index inodes around. This also
* simplifies things in that we never need to check for bad index
* inodes elsewhere.
*/
if (unlikely(err)) {
iput(vi);
vi = ERR_PTR(err);
}
return vi;
}
struct inode *ntfs_alloc_big_inode(struct super_block *sb)
{
ntfs_inode *ni;
ntfs_debug("Entering.");
ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
if (likely(ni != NULL)) {
ni->state = 0;
return VFS_I(ni);
}
ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
return NULL;
}
void ntfs_free_big_inode(struct inode *inode)
{
kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
}
static inline ntfs_inode *ntfs_alloc_extent_inode(void)
{
ntfs_inode *ni;
ntfs_debug("Entering.");
ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
if (likely(ni != NULL)) {
ni->state = 0;
return ni;
}
ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
return NULL;
}
static void ntfs_destroy_extent_inode(ntfs_inode *ni)
{
ntfs_debug("Entering.");
BUG_ON(ni->page);
if (!atomic_dec_and_test(&ni->count))
BUG();
kmem_cache_free(ntfs_inode_cache, ni);
}
/*
* The attribute runlist lock has separate locking rules from the
* normal runlist lock, so split the two lock-classes:
*/
static struct lock_class_key attr_list_rl_lock_class;
/**
* __ntfs_init_inode - initialize ntfs specific part of an inode
* @sb: super block of mounted volume
* @ni: freshly allocated ntfs inode which to initialize
*
* Initialize an ntfs inode to defaults.
*
* NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
* untouched. Make sure to initialize them elsewhere.
*
* Return zero on success and -ENOMEM on error.
*/
void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
{
ntfs_debug("Entering.");
rwlock_init(&ni->size_lock);
ni->initialized_size = ni->allocated_size = 0;
ni->seq_no = 0;
atomic_set(&ni->count, 1);
ni->vol = NTFS_SB(sb);
ntfs_init_runlist(&ni->runlist);
mutex_init(&ni->mrec_lock);
ni->page = NULL;
ni->page_ofs = 0;
ni->attr_list_size = 0;
ni->attr_list = NULL;
ntfs_init_runlist(&ni->attr_list_rl);
lockdep_set_class(&ni->attr_list_rl.lock,
&attr_list_rl_lock_class);
ni->itype.index.block_size = 0;
ni->itype.index.vcn_size = 0;
ni->itype.index.collation_rule = 0;
ni->itype.index.block_size_bits = 0;
ni->itype.index.vcn_size_bits = 0;
mutex_init(&ni->extent_lock);
ni->nr_extents = 0;
ni->ext.base_ntfs_ino = NULL;
}
/*
* Extent inodes get MFT-mapped in a nested way, while the base inode
* is still mapped. Teach this nesting to the lock validator by creating
* a separate class for nested inode's mrec_lock's:
*/
static struct lock_class_key extent_inode_mrec_lock_key;
inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
unsigned long mft_no)
{
ntfs_inode *ni = ntfs_alloc_extent_inode();
ntfs_debug("Entering.");
if (likely(ni != NULL)) {
__ntfs_init_inode(sb, ni);
lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
ni->mft_no = mft_no;
ni->type = AT_UNUSED;
ni->name = NULL;
ni->name_len = 0;
}
return ni;
}
/**
* ntfs_is_extended_system_file - check if a file is in the $Extend directory
* @ctx: initialized attribute search context
*
* Search all file name attributes in the inode described by the attribute
* search context @ctx and check if any of the names are in the $Extend system
* directory.
*
* Return values:
* 1: file is in $Extend directory
* 0: file is not in $Extend directory
* -errno: failed to determine if the file is in the $Extend directory
*/
static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
{
int nr_links, err;
/* Restart search. */
ntfs_attr_reinit_search_ctx(ctx);
/* Get number of hard links. */
nr_links = le16_to_cpu(ctx->mrec->link_count);
/* Loop through all hard links. */
while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
ctx))) {
FILE_NAME_ATTR *file_name_attr;
ATTR_RECORD *attr = ctx->attr;
u8 *p, *p2;
nr_links--;
/*
* Maximum sanity checking as we are called on an inode that
* we suspect might be corrupt.
*/
p = (u8*)attr + le32_to_cpu(attr->length);
if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
le32_to_cpu(ctx->mrec->bytes_in_use)) {
err_corrupt_attr:
ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
"attribute. You should run chkdsk.");
return -EIO;
}
if (attr->non_resident) {
ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
"name. You should run chkdsk.");
return -EIO;
}
if (attr->flags) {
ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
"invalid flags. You should run "
"chkdsk.");
return -EIO;
}
if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
"name. You should run chkdsk.");
return -EIO;
}
file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
le16_to_cpu(attr->data.resident.value_offset));
p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
if (p2 < (u8*)attr || p2 > p)
goto err_corrupt_attr;
/* This attribute is ok, but is it in the $Extend directory? */
if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
return 1; /* YES, it's an extended system file. */
}
if (unlikely(err != -ENOENT))
return err;
if (unlikely(nr_links)) {
ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
"doesn't match number of name attributes. You "
"should run chkdsk.");
return -EIO;
}
return 0; /* NO, it is not an extended system file. */
}
/**
* ntfs_read_locked_inode - read an inode from its device
* @vi: inode to read
*
* ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
* described by @vi into memory from the device.
*
* The only fields in @vi that we need to/can look at when the function is
* called are i_sb, pointing to the mounted device's super block, and i_ino,
* the number of the inode to load.
*
* ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
* for reading and sets up the necessary @vi fields as well as initializing
* the ntfs inode.
*
* Q: What locks are held when the function is called?
* A: i_state has I_NEW set, hence the inode is locked, also
* i_count is set to 1, so it is not going to go away
* i_flags is set to 0 and we have no business touching it. Only an ioctl()
* is allowed to write to them. We should of course be honouring them but
* we need to do that using the IS_* macros defined in include/linux/fs.h.
* In any case ntfs_read_locked_inode() has nothing to do with i_flags.
*
* Return 0 on success and -errno on error. In the error case, the inode will
* have had make_bad_inode() executed on it.
*/
static int ntfs_read_locked_inode(struct inode *vi)
{
ntfs_volume *vol = NTFS_SB(vi->i_sb);
ntfs_inode *ni;
struct inode *bvi;
MFT_RECORD *m;
ATTR_RECORD *a;
STANDARD_INFORMATION *si;
ntfs_attr_search_ctx *ctx;
int err = 0;
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
/* Setup the generic vfs inode parts now. */
vi->i_uid = vol->uid;
vi->i_gid = vol->gid;
vi->i_mode = 0;
/*
* Initialize the ntfs specific part of @vi special casing
* FILE_MFT which we need to do at mount time.
*/
if (vi->i_ino != FILE_MFT)
ntfs_init_big_inode(vi);
ni = NTFS_I(vi);
m = map_mft_record(ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(ni, m);
if (!ctx) {
err = -ENOMEM;
goto unm_err_out;
}
if (!(m->flags & MFT_RECORD_IN_USE)) {
ntfs_error(vi->i_sb, "Inode is not in use!");
goto unm_err_out;
}
if (m->base_mft_record) {
ntfs_error(vi->i_sb, "Inode is an extent inode!");
goto unm_err_out;
}
/* Transfer information from mft record into vfs and ntfs inodes. */
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
/*
* FIXME: Keep in mind that link_count is two for files which have both
* a long file name and a short file name as separate entries, so if
* we are hiding short file names this will be too high. Either we need
* to account for the short file names by subtracting them or we need
* to make sure we delete files even though i_nlink is not zero which
* might be tricky due to vfs interactions. Need to think about this
* some more when implementing the unlink command.
*/
set_nlink(vi, le16_to_cpu(m->link_count));
/*
* FIXME: Reparse points can have the directory bit set even though
* they would be S_IFLNK. Need to deal with this further below when we
* implement reparse points / symbolic links but it will do for now.
* Also if not a directory, it could be something else, rather than
* a regular file. But again, will do for now.
*/
/* Everyone gets all permissions. */
vi->i_mode |= S_IRWXUGO;
/* If read-only, no one gets write permissions. */
if (IS_RDONLY(vi))
vi->i_mode &= ~S_IWUGO;
if (m->flags & MFT_RECORD_IS_DIRECTORY) {
vi->i_mode |= S_IFDIR;
/*
* Apply the directory permissions mask set in the mount
* options.
*/
vi->i_mode &= ~vol->dmask;
/* Things break without this kludge! */
if (vi->i_nlink > 1)
set_nlink(vi, 1);
} else {
vi->i_mode |= S_IFREG;
/* Apply the file permissions mask set in the mount options. */
vi->i_mode &= ~vol->fmask;
}
/*
* Find the standard information attribute in the mft record. At this
* stage we haven't setup the attribute list stuff yet, so this could
* in fact fail if the standard information is in an extent record, but
* I don't think this actually ever happens.
*/
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx);
if (unlikely(err)) {
if (err == -ENOENT) {
/*
* TODO: We should be performing a hot fix here (if the
* recover mount option is set) by creating a new
* attribute.
*/
ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
"is missing.");
}
goto unm_err_out;
}
a = ctx->attr;
/* Get the standard information attribute value. */
if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
+ le32_to_cpu(a->data.resident.value_length) >
(u8 *)ctx->mrec + vol->mft_record_size) {
ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
goto unm_err_out;
}
si = (STANDARD_INFORMATION*)((u8*)a +
le16_to_cpu(a->data.resident.value_offset));
/* Transfer information from the standard information into vi. */
/*
* Note: The i_?times do not quite map perfectly onto the NTFS times,
* but they are close enough, and in the end it doesn't really matter
* that much...
*/
/*
* mtime is the last change of the data within the file. Not changed
* when only metadata is changed, e.g. a rename doesn't affect mtime.
*/
vi->i_mtime = ntfs2utc(si->last_data_change_time);
/*
* ctime is the last change of the metadata of the file. This obviously
* always changes, when mtime is changed. ctime can be changed on its
* own, mtime is then not changed, e.g. when a file is renamed.
*/
vi->i_ctime = ntfs2utc(si->last_mft_change_time);
/*
* Last access to the data within the file. Not changed during a rename
* for example but changed whenever the file is written to.
*/
vi->i_atime = ntfs2utc(si->last_access_time);
/* Find the attribute list attribute if present. */
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
if (err) {
if (unlikely(err != -ENOENT)) {
ntfs_error(vi->i_sb, "Failed to lookup attribute list "
"attribute.");
goto unm_err_out;
}
} else /* if (!err) */ {
if (vi->i_ino == FILE_MFT)
goto skip_attr_list_load;
ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
NInoSetAttrList(ni);
a = ctx->attr;
if (a->flags & ATTR_COMPRESSION_MASK) {
ntfs_error(vi->i_sb, "Attribute list attribute is "
"compressed.");
goto unm_err_out;
}
if (a->flags & ATTR_IS_ENCRYPTED ||
a->flags & ATTR_IS_SPARSE) {
if (a->non_resident) {
ntfs_error(vi->i_sb, "Non-resident attribute "
"list attribute is encrypted/"
"sparse.");
goto unm_err_out;
}
ntfs_warning(vi->i_sb, "Resident attribute list "
"attribute in inode 0x%lx is marked "
"encrypted/sparse which is not true. "
"However, Windows allows this and "
"chkdsk does not detect or correct it "
"so we will just ignore the invalid "
"flags and pretend they are not set.",
vi->i_ino);
}
/* Now allocate memory for the attribute list. */
ni->attr_list_size = (u32)ntfs_attr_size(a);
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
if (!ni->attr_list) {
ntfs_error(vi->i_sb, "Not enough memory to allocate "
"buffer for attribute list.");
err = -ENOMEM;
goto unm_err_out;
}
if (a->non_resident) {
NInoSetAttrListNonResident(ni);
if (a->data.non_resident.lowest_vcn) {
ntfs_error(vi->i_sb, "Attribute list has non "
"zero lowest_vcn.");
goto unm_err_out;
}
/*
* Setup the runlist. No need for locking as we have
* exclusive access to the inode at this time.
*/
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
a, NULL);
if (IS_ERR(ni->attr_list_rl.rl)) {
err = PTR_ERR(ni->attr_list_rl.rl);
ni->attr_list_rl.rl = NULL;
ntfs_error(vi->i_sb, "Mapping pairs "
"decompression failed.");
goto unm_err_out;
}
/* Now load the attribute list. */
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
ni->attr_list, ni->attr_list_size,
sle64_to_cpu(a->data.non_resident.
initialized_size)))) {
ntfs_error(vi->i_sb, "Failed to load "
"attribute list attribute.");
goto unm_err_out;
}
} else /* if (!a->non_resident) */ {
if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
+ le32_to_cpu(
a->data.resident.value_length) >
(u8*)ctx->mrec + vol->mft_record_size) {
ntfs_error(vi->i_sb, "Corrupt attribute list "
"in inode.");
goto unm_err_out;
}
/* Now copy the attribute list. */
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
a->data.resident.value_offset),
le32_to_cpu(
a->data.resident.value_length));
}
}
skip_attr_list_load:
/*
* If an attribute list is present we now have the attribute list value
* in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
*/
if (S_ISDIR(vi->i_mode)) {
loff_t bvi_size;
ntfs_inode *bni;
INDEX_ROOT *ir;
u8 *ir_end, *index_end;
/* It is a directory, find index root attribute. */
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT) {
// FIXME: File is corrupt! Hot-fix with empty
// index root attribute if recovery option is
// set.
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
"is missing.");
}
goto unm_err_out;
}
a = ctx->attr;
/* Set up the state. */
if (unlikely(a->non_resident)) {
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
"resident.");
goto unm_err_out;
}
/* Ensure the attribute name is placed before the value. */
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(a->data.resident.value_offset)))) {
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
"placed after the attribute value.");
goto unm_err_out;
}
/*
* Compressed/encrypted index root just means that the newly
* created files in that directory should be created compressed/
* encrypted. However index root cannot be both compressed and
* encrypted.
*/
if (a->flags & ATTR_COMPRESSION_MASK)
NInoSetCompressed(ni);
if (a->flags & ATTR_IS_ENCRYPTED) {
if (a->flags & ATTR_COMPRESSION_MASK) {
ntfs_error(vi->i_sb, "Found encrypted and "
"compressed attribute.");
goto unm_err_out;
}
NInoSetEncrypted(ni);
}
if (a->flags & ATTR_IS_SPARSE)
NInoSetSparse(ni);
ir = (INDEX_ROOT*)((u8*)a +
le16_to_cpu(a->data.resident.value_offset));
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
"corrupt.");
goto unm_err_out;
}
index_end = (u8*)&ir->index +
le32_to_cpu(ir->index.index_length);
if (index_end > ir_end) {
ntfs_error(vi->i_sb, "Directory index is corrupt.");
goto unm_err_out;
}
if (ir->type != AT_FILE_NAME) {
ntfs_error(vi->i_sb, "Indexed attribute is not "
"$FILE_NAME.");
goto unm_err_out;
}
if (ir->collation_rule != COLLATION_FILE_NAME) {
ntfs_error(vi->i_sb, "Index collation rule is not "
"COLLATION_FILE_NAME.");
goto unm_err_out;
}
ni->itype.index.collation_rule = ir->collation_rule;
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
if (ni->itype.index.block_size &
(ni->itype.index.block_size - 1)) {
ntfs_error(vi->i_sb, "Index block size (%u) is not a "
"power of two.",
ni->itype.index.block_size);
goto unm_err_out;
}
if (ni->itype.index.block_size > PAGE_SIZE) {
ntfs_error(vi->i_sb, "Index block size (%u) > "
"PAGE_SIZE (%ld) is not "
"supported. Sorry.",
ni->itype.index.block_size,
PAGE_SIZE);
err = -EOPNOTSUPP;
goto unm_err_out;
}
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
ntfs_error(vi->i_sb, "Index block size (%u) < "
"NTFS_BLOCK_SIZE (%i) is not "
"supported. Sorry.",
ni->itype.index.block_size,
NTFS_BLOCK_SIZE);
err = -EOPNOTSUPP;
goto unm_err_out;
}
ni->itype.index.block_size_bits =
ffs(ni->itype.index.block_size) - 1;
/* Determine the size of a vcn in the directory index. */
if (vol->cluster_size <= ni->itype.index.block_size) {
ni->itype.index.vcn_size = vol->cluster_size;
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
} else {
ni->itype.index.vcn_size = vol->sector_size;
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
}
/* Setup the index allocation attribute, even if not present. */
NInoSetMstProtected(ni);
ni->type = AT_INDEX_ALLOCATION;
ni->name = I30;
ni->name_len = 4;
if (!(ir->index.flags & LARGE_INDEX)) {
/* No index allocation. */
vi->i_size = ni->initialized_size =
ni->allocated_size = 0;
/* We are done with the mft record, so we release it. */
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
m = NULL;
ctx = NULL;
goto skip_large_dir_stuff;
} /* LARGE_INDEX: Index allocation present. Setup state. */
NInoSetIndexAllocPresent(ni);
/* Find index allocation attribute. */
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
"attribute is not present but "
"$INDEX_ROOT indicated it is.");
else
ntfs_error(vi->i_sb, "Failed to lookup "
"$INDEX_ALLOCATION "
"attribute.");
goto unm_err_out;
}
a = ctx->attr;
if (!a->non_resident) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
"is resident.");
goto unm_err_out;
}
/*
* Ensure the attribute name is placed before the mapping pairs
* array.
*/
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(
a->data.non_resident.mapping_pairs_offset)))) {
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
"is placed after the mapping pairs "
"array.");
goto unm_err_out;
}
if (a->flags & ATTR_IS_ENCRYPTED) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
"is encrypted.");
goto unm_err_out;
}
if (a->flags & ATTR_IS_SPARSE) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
"is sparse.");
goto unm_err_out;
}
if (a->flags & ATTR_COMPRESSION_MASK) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
"is compressed.");
goto unm_err_out;
}
if (a->data.non_resident.lowest_vcn) {
ntfs_error(vi->i_sb, "First extent of "
"$INDEX_ALLOCATION attribute has non "
"zero lowest_vcn.");
goto unm_err_out;
}
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
ni->initialized_size = sle64_to_cpu(
a->data.non_resident.initialized_size);
ni->allocated_size = sle64_to_cpu(
a->data.non_resident.allocated_size);
/*
* We are done with the mft record, so we release it. Otherwise
* we would deadlock in ntfs_attr_iget().
*/
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
m = NULL;
ctx = NULL;
/* Get the index bitmap attribute inode. */
bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
if (IS_ERR(bvi)) {
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
err = PTR_ERR(bvi);
goto unm_err_out;
}
bni = NTFS_I(bvi);
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
NInoSparse(bni)) {
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
"and/or encrypted and/or sparse.");
goto iput_unm_err_out;
}
/* Consistency check bitmap size vs. index allocation size. */
bvi_size = i_size_read(bvi);
if ((bvi_size << 3) < (vi->i_size >>
ni->itype.index.block_size_bits)) {
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
"for index allocation (0x%llx).",
bvi_size << 3, vi->i_size);
goto iput_unm_err_out;
}
/* No longer need the bitmap attribute inode. */
iput(bvi);
skip_large_dir_stuff:
/* Setup the operations for this inode. */
vi->i_op = &ntfs_dir_inode_ops;
vi->i_fop = &ntfs_dir_ops;
vi->i_mapping->a_ops = &ntfs_mst_aops;
} else {
/* It is a file. */
ntfs_attr_reinit_search_ctx(ctx);
/* Setup the data attribute, even if not present. */
ni->type = AT_DATA;
ni->name = NULL;
ni->name_len = 0;
/* Find first extent of the unnamed data attribute. */
err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
if (unlikely(err)) {
vi->i_size = ni->initialized_size =
ni->allocated_size = 0;
if (err != -ENOENT) {
ntfs_error(vi->i_sb, "Failed to lookup $DATA "
"attribute.");
goto unm_err_out;
}
/*
* FILE_Secure does not have an unnamed $DATA
* attribute, so we special case it here.
*/
if (vi->i_ino == FILE_Secure)
goto no_data_attr_special_case;
/*
* Most if not all the system files in the $Extend
* system directory do not have unnamed data
* attributes so we need to check if the parent
* directory of the file is FILE_Extend and if it is
* ignore this error. To do this we need to get the
* name of this inode from the mft record as the name
* contains the back reference to the parent directory.
*/
if (ntfs_is_extended_system_file(ctx) > 0)
goto no_data_attr_special_case;
// FIXME: File is corrupt! Hot-fix with empty data
// attribute if recovery option is set.
ntfs_error(vi->i_sb, "$DATA attribute is missing.");
goto unm_err_out;
}
a = ctx->attr;
/* Setup the state. */
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
if (a->flags & ATTR_COMPRESSION_MASK) {
NInoSetCompressed(ni);
if (vol->cluster_size > 4096) {
ntfs_error(vi->i_sb, "Found "
"compressed data but "
"compression is "
"disabled due to "
"cluster size (%i) > "
"4kiB.",
vol->cluster_size);
goto unm_err_out;
}
if ((a->flags & ATTR_COMPRESSION_MASK)
!= ATTR_IS_COMPRESSED) {
ntfs_error(vi->i_sb, "Found unknown "
"compression method "
"or corrupt file.");
goto unm_err_out;
}
}
if (a->flags & ATTR_IS_SPARSE)
NInoSetSparse(ni);
}
if (a->flags & ATTR_IS_ENCRYPTED) {
if (NInoCompressed(ni)) {
ntfs_error(vi->i_sb, "Found encrypted and "
"compressed data.");
goto unm_err_out;
}
NInoSetEncrypted(ni);
}
if (a->non_resident) {
NInoSetNonResident(ni);
if (NInoCompressed(ni) || NInoSparse(ni)) {
if (NInoCompressed(ni) && a->data.non_resident.
compression_unit != 4) {
ntfs_error(vi->i_sb, "Found "
"non-standard "
"compression unit (%u "
"instead of 4). "
"Cannot handle this.",
a->data.non_resident.
compression_unit);
err = -EOPNOTSUPP;
goto unm_err_out;
}
if (a->data.non_resident.compression_unit) {
ni->itype.compressed.block_size = 1U <<
(a->data.non_resident.
compression_unit +
vol->cluster_size_bits);
ni->itype.compressed.block_size_bits =
ffs(ni->itype.
compressed.
block_size) - 1;
ni->itype.compressed.block_clusters =
1U << a->data.
non_resident.
compression_unit;
} else {
ni->itype.compressed.block_size = 0;
ni->itype.compressed.block_size_bits =
0;
ni->itype.compressed.block_clusters =
0;
}
ni->itype.compressed.size = sle64_to_cpu(
a->data.non_resident.
compressed_size);
}
if (a->data.non_resident.lowest_vcn) {
ntfs_error(vi->i_sb, "First extent of $DATA "
"attribute has non zero "
"lowest_vcn.");
goto unm_err_out;
}
vi->i_size = sle64_to_cpu(
a->data.non_resident.data_size);
ni->initialized_size = sle64_to_cpu(
a->data.non_resident.initialized_size);
ni->allocated_size = sle64_to_cpu(
a->data.non_resident.allocated_size);
} else { /* Resident attribute. */
vi->i_size = ni->initialized_size = le32_to_cpu(
a->data.resident.value_length);
ni->allocated_size = le32_to_cpu(a->length) -
le16_to_cpu(
a->data.resident.value_offset);
if (vi->i_size > ni->allocated_size) {
ntfs_error(vi->i_sb, "Resident data attribute "
"is corrupt (size exceeds "
"allocation).");
goto unm_err_out;
}
}
no_data_attr_special_case:
/* We are done with the mft record, so we release it. */
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
m = NULL;
ctx = NULL;
/* Setup the operations for this inode. */
vi->i_op = &ntfs_file_inode_ops;
vi->i_fop = &ntfs_file_ops;
vi->i_mapping->a_ops = &ntfs_normal_aops;
if (NInoMstProtected(ni))
vi->i_mapping->a_ops = &ntfs_mst_aops;
else if (NInoCompressed(ni))
vi->i_mapping->a_ops = &ntfs_compressed_aops;
}
/*
* The number of 512-byte blocks used on disk (for stat). This is in so
* far inaccurate as it doesn't account for any named streams or other
* special non-resident attributes, but that is how Windows works, too,
* so we are at least consistent with Windows, if not entirely
* consistent with the Linux Way. Doing it the Linux Way would cause a
* significant slowdown as it would involve iterating over all
* attributes in the mft record and adding the allocated/compressed
* sizes of all non-resident attributes present to give us the Linux
* correct size that should go into i_blocks (after division by 512).
*/
if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
vi->i_blocks = ni->itype.compressed.size >> 9;
else
vi->i_blocks = ni->allocated_size >> 9;
ntfs_debug("Done.");
return 0;
iput_unm_err_out:
iput(bvi);
unm_err_out:
if (!err)
err = -EIO;
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(ni);
err_out:
ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
"inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
make_bad_inode(vi);
if (err != -EOPNOTSUPP && err != -ENOMEM)
NVolSetErrors(vol);
return err;
}
/**
* ntfs_read_locked_attr_inode - read an attribute inode from its base inode
* @base_vi: base inode
* @vi: attribute inode to read
*
* ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
* attribute inode described by @vi into memory from the base mft record
* described by @base_ni.
*
* ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
* reading and looks up the attribute described by @vi before setting up the
* necessary fields in @vi as well as initializing the ntfs inode.
*
* Q: What locks are held when the function is called?
* A: i_state has I_NEW set, hence the inode is locked, also
* i_count is set to 1, so it is not going to go away
*
* Return 0 on success and -errno on error. In the error case, the inode will
* have had make_bad_inode() executed on it.
*
* Note this cannot be called for AT_INDEX_ALLOCATION.
*/
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
{
ntfs_volume *vol = NTFS_SB(vi->i_sb);
ntfs_inode *ni, *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
int err = 0;
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
ntfs_init_big_inode(vi);
ni = NTFS_I(vi);
base_ni = NTFS_I(base_vi);
/* Just mirror the values from the base inode. */
vi->i_uid = base_vi->i_uid;
vi->i_gid = base_vi->i_gid;
set_nlink(vi, base_vi->i_nlink);
vi->i_mtime = base_vi->i_mtime;
vi->i_ctime = base_vi->i_ctime;
vi->i_atime = base_vi->i_atime;
vi->i_generation = ni->seq_no = base_ni->seq_no;
/* Set inode type to zero but preserve permissions. */
vi->i_mode = base_vi->i_mode & ~S_IFMT;
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (!ctx) {
err = -ENOMEM;
goto unm_err_out;
}
/* Find the attribute. */
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err))
goto unm_err_out;
a = ctx->attr;
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
if (a->flags & ATTR_COMPRESSION_MASK) {
NInoSetCompressed(ni);
if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
ni->name_len)) {
ntfs_error(vi->i_sb, "Found compressed "
"non-data or named data "
"attribute. Please report "
"you saw this message to "
"linux-ntfs-dev@lists."
"sourceforge.net");
goto unm_err_out;
}
if (vol->cluster_size > 4096) {
ntfs_error(vi->i_sb, "Found compressed "
"attribute but compression is "
"disabled due to cluster size "
"(%i) > 4kiB.",
vol->cluster_size);
goto unm_err_out;
}
if ((a->flags & ATTR_COMPRESSION_MASK) !=
ATTR_IS_COMPRESSED) {
ntfs_error(vi->i_sb, "Found unknown "
"compression method.");
goto unm_err_out;
}
}
/*
* The compressed/sparse flag set in an index root just means
* to compress all files.
*/
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
ntfs_error(vi->i_sb, "Found mst protected attribute "
"but the attribute is %s. Please "
"report you saw this message to "
"linux-ntfs-dev@lists.sourceforge.net",
NInoCompressed(ni) ? "compressed" :
"sparse");
goto unm_err_out;
}
if (a->flags & ATTR_IS_SPARSE)
NInoSetSparse(ni);
}
if (a->flags & ATTR_IS_ENCRYPTED) {
if (NInoCompressed(ni)) {
ntfs_error(vi->i_sb, "Found encrypted and compressed "
"data.");
goto unm_err_out;
}
/*
* The encryption flag set in an index root just means to
* encrypt all files.
*/
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
ntfs_error(vi->i_sb, "Found mst protected attribute "
"but the attribute is encrypted. "
"Please report you saw this message "
"to linux-ntfs-dev@lists.sourceforge."
"net");
goto unm_err_out;
}
if (ni->type != AT_DATA) {
ntfs_error(vi->i_sb, "Found encrypted non-data "
"attribute.");
goto unm_err_out;
}
NInoSetEncrypted(ni);
}
if (!a->non_resident) {
/* Ensure the attribute name is placed before the value. */
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(a->data.resident.value_offset)))) {
ntfs_error(vol->sb, "Attribute name is placed after "
"the attribute value.");
goto unm_err_out;
}
if (NInoMstProtected(ni)) {
ntfs_error(vi->i_sb, "Found mst protected attribute "
"but the attribute is resident. "
"Please report you saw this message to "
"linux-ntfs-dev@lists.sourceforge.net");
goto unm_err_out;
}
vi->i_size = ni->initialized_size = le32_to_cpu(
a->data.resident.value_length);
ni->allocated_size = le32_to_cpu(a->length) -
le16_to_cpu(a->data.resident.value_offset);
if (vi->i_size > ni->allocated_size) {
ntfs_error(vi->i_sb, "Resident attribute is corrupt "
"(size exceeds allocation).");
goto unm_err_out;
}
} else {
NInoSetNonResident(ni);
/*
* Ensure the attribute name is placed before the mapping pairs
* array.
*/
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(
a->data.non_resident.mapping_pairs_offset)))) {
ntfs_error(vol->sb, "Attribute name is placed after "
"the mapping pairs array.");
goto unm_err_out;
}
if (NInoCompressed(ni) || NInoSparse(ni)) {
if (NInoCompressed(ni) && a->data.non_resident.
compression_unit != 4) {
ntfs_error(vi->i_sb, "Found non-standard "
"compression unit (%u instead "
"of 4). Cannot handle this.",
a->data.non_resident.
compression_unit);
err = -EOPNOTSUPP;
goto unm_err_out;
}
if (a->data.non_resident.compression_unit) {
ni->itype.compressed.block_size = 1U <<
(a->data.non_resident.
compression_unit +
vol->cluster_size_bits);
ni->itype.compressed.block_size_bits =
ffs(ni->itype.compressed.
block_size) - 1;
ni->itype.compressed.block_clusters = 1U <<
a->data.non_resident.
compression_unit;
} else {
ni->itype.compressed.block_size = 0;
ni->itype.compressed.block_size_bits = 0;
ni->itype.compressed.block_clusters = 0;
}
ni->itype.compressed.size = sle64_to_cpu(
a->data.non_resident.compressed_size);
}
if (a->data.non_resident.lowest_vcn) {
ntfs_error(vi->i_sb, "First extent of attribute has "
"non-zero lowest_vcn.");
goto unm_err_out;
}
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
ni->initialized_size = sle64_to_cpu(
a->data.non_resident.initialized_size);
ni->allocated_size = sle64_to_cpu(
a->data.non_resident.allocated_size);
}
vi->i_mapping->a_ops = &ntfs_normal_aops;
if (NInoMstProtected(ni))
vi->i_mapping->a_ops = &ntfs_mst_aops;
else if (NInoCompressed(ni))
vi->i_mapping->a_ops = &ntfs_compressed_aops;
if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
vi->i_blocks = ni->itype.compressed.size >> 9;
else
vi->i_blocks = ni->allocated_size >> 9;
/*
* Make sure the base inode does not go away and attach it to the
* attribute inode.
*/
igrab(base_vi);
ni->ext.base_ntfs_ino = base_ni;
ni->nr_extents = -1;
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
ntfs_debug("Done.");
return 0;
unm_err_out:
if (!err)
err = -EIO;
if (ctx)
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
err_out:
ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
"inode (mft_no 0x%lx, type 0x%x, name_len %i). "
"Marking corrupt inode and base inode 0x%lx as bad. "
"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
base_vi->i_ino);
make_bad_inode(vi);
if (err != -ENOMEM)
NVolSetErrors(vol);
return err;
}
/**
* ntfs_read_locked_index_inode - read an index inode from its base inode
* @base_vi: base inode
* @vi: index inode to read
*
* ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
* index inode described by @vi into memory from the base mft record described
* by @base_ni.
*
* ntfs_read_locked_index_inode() maps, pins and locks the base inode for
* reading and looks up the attributes relating to the index described by @vi
* before setting up the necessary fields in @vi as well as initializing the
* ntfs inode.
*
* Note, index inodes are essentially attribute inodes (NInoAttr() is true)
* with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
* are setup like directory inodes since directories are a special case of
* indices ao they need to be treated in much the same way. Most importantly,
* for small indices the index allocation attribute might not actually exist.
* However, the index root attribute always exists but this does not need to
* have an inode associated with it and this is why we define a new inode type
* index. Also, like for directories, we need to have an attribute inode for
* the bitmap attribute corresponding to the index allocation attribute and we
* can store this in the appropriate field of the inode, just like we do for
* normal directory inodes.
*
* Q: What locks are held when the function is called?
* A: i_state has I_NEW set, hence the inode is locked, also
* i_count is set to 1, so it is not going to go away
*
* Return 0 on success and -errno on error. In the error case, the inode will
* have had make_bad_inode() executed on it.
*/
static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
{
loff_t bvi_size;
ntfs_volume *vol = NTFS_SB(vi->i_sb);
ntfs_inode *ni, *base_ni, *bni;
struct inode *bvi;
MFT_RECORD *m;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
INDEX_ROOT *ir;
u8 *ir_end, *index_end;
int err = 0;
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
ntfs_init_big_inode(vi);
ni = NTFS_I(vi);
base_ni = NTFS_I(base_vi);
/* Just mirror the values from the base inode. */
vi->i_uid = base_vi->i_uid;
vi->i_gid = base_vi->i_gid;
set_nlink(vi, base_vi->i_nlink);
vi->i_mtime = base_vi->i_mtime;
vi->i_ctime = base_vi->i_ctime;
vi->i_atime = base_vi->i_atime;
vi->i_generation = ni->seq_no = base_ni->seq_no;
/* Set inode type to zero but preserve permissions. */
vi->i_mode = base_vi->i_mode & ~S_IFMT;
/* Map the mft record for the base inode. */
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (!ctx) {
err = -ENOMEM;
goto unm_err_out;
}
/* Find the index root attribute. */
err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
"missing.");
goto unm_err_out;
}
a = ctx->attr;
/* Set up the state. */
if (unlikely(a->non_resident)) {
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
goto unm_err_out;
}
/* Ensure the attribute name is placed before the value. */
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(a->data.resident.value_offset)))) {
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
"after the attribute value.");
goto unm_err_out;
}
/*
* Compressed/encrypted/sparse index root is not allowed, except for
* directories of course but those are not dealt with here.
*/
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
ATTR_IS_SPARSE)) {
ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
"root attribute.");
goto unm_err_out;
}
ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
goto unm_err_out;
}
index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
if (index_end > ir_end) {
ntfs_error(vi->i_sb, "Index is corrupt.");
goto unm_err_out;
}
if (ir->type) {
ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
le32_to_cpu(ir->type));
goto unm_err_out;
}
ni->itype.index.collation_rule = ir->collation_rule;
ntfs_debug("Index collation rule is 0x%x.",
le32_to_cpu(ir->collation_rule));
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
if (!is_power_of_2(ni->itype.index.block_size)) {
ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
"two.", ni->itype.index.block_size);
goto unm_err_out;
}
if (ni->itype.index.block_size > PAGE_SIZE) {
ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
"(%ld) is not supported. Sorry.",
ni->itype.index.block_size, PAGE_SIZE);
err = -EOPNOTSUPP;
goto unm_err_out;
}
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
"(%i) is not supported. Sorry.",
ni->itype.index.block_size, NTFS_BLOCK_SIZE);
err = -EOPNOTSUPP;
goto unm_err_out;
}
ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
/* Determine the size of a vcn in the index. */
if (vol->cluster_size <= ni->itype.index.block_size) {
ni->itype.index.vcn_size = vol->cluster_size;
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
} else {
ni->itype.index.vcn_size = vol->sector_size;
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
}
/* Check for presence of index allocation attribute. */
if (!(ir->index.flags & LARGE_INDEX)) {
/* No index allocation. */
vi->i_size = ni->initialized_size = ni->allocated_size = 0;
/* We are done with the mft record, so we release it. */
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
m = NULL;
ctx = NULL;
goto skip_large_index_stuff;
} /* LARGE_INDEX: Index allocation present. Setup state. */
NInoSetIndexAllocPresent(ni);
/* Find index allocation attribute. */
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
"not present but $INDEX_ROOT "
"indicated it is.");
else
ntfs_error(vi->i_sb, "Failed to lookup "
"$INDEX_ALLOCATION attribute.");
goto unm_err_out;
}
a = ctx->attr;
if (!a->non_resident) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
"resident.");
goto unm_err_out;
}
/*
* Ensure the attribute name is placed before the mapping pairs array.
*/
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
le16_to_cpu(
a->data.non_resident.mapping_pairs_offset)))) {
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
"placed after the mapping pairs array.");
goto unm_err_out;
}
if (a->flags & ATTR_IS_ENCRYPTED) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
"encrypted.");
goto unm_err_out;
}
if (a->flags & ATTR_IS_SPARSE) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
goto unm_err_out;
}
if (a->flags & ATTR_COMPRESSION_MASK) {
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
"compressed.");
goto unm_err_out;
}
if (a->data.non_resident.lowest_vcn) {
ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
"attribute has non zero lowest_vcn.");
goto unm_err_out;
}
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
ni->initialized_size = sle64_to_cpu(
a->data.non_resident.initialized_size);
ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
/*
* We are done with the mft record, so we release it. Otherwise
* we would deadlock in ntfs_attr_iget().
*/
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
m = NULL;
ctx = NULL;
/* Get the index bitmap attribute inode. */
bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
if (IS_ERR(bvi)) {
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
err = PTR_ERR(bvi);
goto unm_err_out;
}
bni = NTFS_I(bvi);
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
NInoSparse(bni)) {
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
"encrypted and/or sparse.");
goto iput_unm_err_out;
}
/* Consistency check bitmap size vs. index allocation size. */
bvi_size = i_size_read(bvi);
if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
"index allocation (0x%llx).", bvi_size << 3,
vi->i_size);
goto iput_unm_err_out;
}
iput(bvi);
skip_large_index_stuff:
/* Setup the operations for this index inode. */
vi->i_mapping->a_ops = &ntfs_mst_aops;
vi->i_blocks = ni->allocated_size >> 9;
/*
* Make sure the base inode doesn't go away and attach it to the
* index inode.
*/
igrab(base_vi);
ni->ext.base_ntfs_ino = base_ni;
ni->nr_extents = -1;
ntfs_debug("Done.");
return 0;
iput_unm_err_out:
iput(bvi);
unm_err_out:
if (!err)
err = -EIO;
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
err_out:
ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
ni->name_len);
make_bad_inode(vi);
if (err != -EOPNOTSUPP && err != -ENOMEM)
NVolSetErrors(vol);
return err;
}
/*
* The MFT inode has special locking, so teach the lock validator
* about this by splitting off the locking rules of the MFT from
* the locking rules of other inodes. The MFT inode can never be
* accessed from the VFS side (or even internally), only by the
* map_mft functions.
*/
static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
/**
* ntfs_read_inode_mount - special read_inode for mount time use only
* @vi: inode to read
*
* Read inode FILE_MFT at mount time, only called with super_block lock
* held from within the read_super() code path.
*
* This function exists because when it is called the page cache for $MFT/$DATA
* is not initialized and hence we cannot get at the contents of mft records
* by calling map_mft_record*().
*
* Further it needs to cope with the circular references problem, i.e. cannot
* load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
* we do not know where the other extent mft records are yet and again, because
* we cannot call map_mft_record*() yet. Obviously this applies only when an
* attribute list is actually present in $MFT inode.
*
* We solve these problems by starting with the $DATA attribute before anything
* else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
* extent is found, we ntfs_mapping_pairs_decompress() including the implied
* ntfs_runlists_merge(). Each step of the iteration necessarily provides
* sufficient information for the next step to complete.
*
* This should work but there are two possible pit falls (see inline comments
* below), but only time will tell if they are real pits or just smoke...
*/
int ntfs_read_inode_mount(struct inode *vi)
{
VCN next_vcn, last_vcn, highest_vcn;
s64 block;
struct super_block *sb = vi->i_sb;
ntfs_volume *vol = NTFS_SB(sb);
struct buffer_head *bh;
ntfs_inode *ni;
MFT_RECORD *m = NULL;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
unsigned int i, nr_blocks;
int err;
ntfs_debug("Entering.");
/* Initialize the ntfs specific part of @vi. */
ntfs_init_big_inode(vi);
ni = NTFS_I(vi);
/* Setup the data attribute. It is special as it is mst protected. */
NInoSetNonResident(ni);
NInoSetMstProtected(ni);
NInoSetSparseDisabled(ni);
ni->type = AT_DATA;
ni->name = NULL;
ni->name_len = 0;
/*
* This sets up our little cheat allowing us to reuse the async read io
* completion handler for directories.
*/
ni->itype.index.block_size = vol->mft_record_size;
ni->itype.index.block_size_bits = vol->mft_record_size_bits;
/* Very important! Needed to be able to call map_mft_record*(). */
vol->mft_ino = vi;
/* Allocate enough memory to read the first mft record. */
if (vol->mft_record_size > 64 * 1024) {
ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
vol->mft_record_size);
goto err_out;
}
i = vol->mft_record_size;
if (i < sb->s_blocksize)
i = sb->s_blocksize;
m = (MFT_RECORD*)ntfs_malloc_nofs(i);
if (!m) {
ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
goto err_out;
}
/* Determine the first block of the $MFT/$DATA attribute. */
block = vol->mft_lcn << vol->cluster_size_bits >>
sb->s_blocksize_bits;
nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
if (!nr_blocks)
nr_blocks = 1;
/* Load $MFT/$DATA's first mft record. */
for (i = 0; i < nr_blocks; i++) {
bh = sb_bread(sb, block++);
if (!bh) {
ntfs_error(sb, "Device read failed.");
goto err_out;
}
memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
sb->s_blocksize);
brelse(bh);
}
if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
goto err_out;
}
/* Apply the mst fixups. */
if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
/* FIXME: Try to use the $MFTMirr now. */
ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
goto err_out;
}
/* Need this to sanity check attribute list references to $MFT. */
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
/* Provides readpage() for map_mft_record(). */
vi->i_mapping->a_ops = &ntfs_mst_aops;
ctx = ntfs_attr_get_search_ctx(ni, m);
if (!ctx) {
err = -ENOMEM;
goto err_out;
}
/* Find the attribute list attribute if present. */
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
if (err) {
if (unlikely(err != -ENOENT)) {
ntfs_error(sb, "Failed to lookup attribute list "
"attribute. You should run chkdsk.");
goto put_err_out;
}
} else /* if (!err) */ {
ATTR_LIST_ENTRY *al_entry, *next_al_entry;
u8 *al_end;
static const char *es = " Not allowed. $MFT is corrupt. "
"You should run chkdsk.";
ntfs_debug("Attribute list attribute found in $MFT.");
NInoSetAttrList(ni);
a = ctx->attr;
if (a->flags & ATTR_COMPRESSION_MASK) {
ntfs_error(sb, "Attribute list attribute is "
"compressed.%s", es);
goto put_err_out;
}
if (a->flags & ATTR_IS_ENCRYPTED ||
a->flags & ATTR_IS_SPARSE) {
if (a->non_resident) {
ntfs_error(sb, "Non-resident attribute list "
"attribute is encrypted/"
"sparse.%s", es);
goto put_err_out;
}
ntfs_warning(sb, "Resident attribute list attribute "
"in $MFT system file is marked "
"encrypted/sparse which is not true. "
"However, Windows allows this and "
"chkdsk does not detect or correct it "
"so we will just ignore the invalid "
"flags and pretend they are not set.");
}
/* Now allocate memory for the attribute list. */
ni->attr_list_size = (u32)ntfs_attr_size(a);
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
if (!ni->attr_list) {
ntfs_error(sb, "Not enough memory to allocate buffer "
"for attribute list.");
goto put_err_out;
}
if (a->non_resident) {
NInoSetAttrListNonResident(ni);
if (a->data.non_resident.lowest_vcn) {
ntfs_error(sb, "Attribute list has non zero "
"lowest_vcn. $MFT is corrupt. "
"You should run chkdsk.");
goto put_err_out;
}
/* Setup the runlist. */
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
a, NULL);
if (IS_ERR(ni->attr_list_rl.rl)) {
err = PTR_ERR(ni->attr_list_rl.rl);
ni->attr_list_rl.rl = NULL;
ntfs_error(sb, "Mapping pairs decompression "
"failed with error code %i.",
-err);
goto put_err_out;
}
/* Now load the attribute list. */
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
ni->attr_list, ni->attr_list_size,
sle64_to_cpu(a->data.
non_resident.initialized_size)))) {
ntfs_error(sb, "Failed to load attribute list "
"attribute with error code %i.",
-err);
goto put_err_out;
}
} else /* if (!ctx.attr->non_resident) */ {
if ((u8*)a + le16_to_cpu(
a->data.resident.value_offset) +
le32_to_cpu(
a->data.resident.value_length) >
(u8*)ctx->mrec + vol->mft_record_size) {
ntfs_error(sb, "Corrupt attribute list "
"attribute.");
goto put_err_out;
}
/* Now copy the attribute list. */
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
a->data.resident.value_offset),
le32_to_cpu(
a->data.resident.value_length));
}
/* The attribute list is now setup in memory. */
/*
* FIXME: I don't know if this case is actually possible.
* According to logic it is not possible but I have seen too
* many weird things in MS software to rely on logic... Thus we
* perform a manual search and make sure the first $MFT/$DATA
* extent is in the base inode. If it is not we abort with an
* error and if we ever see a report of this error we will need
* to do some magic in order to have the necessary mft record
* loaded and in the right place in the page cache. But
* hopefully logic will prevail and this never happens...
*/
al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
al_end = (u8*)al_entry + ni->attr_list_size;
for (;; al_entry = next_al_entry) {
/* Out of bounds check. */
if ((u8*)al_entry < ni->attr_list ||
(u8*)al_entry > al_end)
goto em_put_err_out;
/* Catch the end of the attribute list. */
if ((u8*)al_entry == al_end)
goto em_put_err_out;
if (!al_entry->length)
goto em_put_err_out;
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
le16_to_cpu(al_entry->length) > al_end)
goto em_put_err_out;
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
le16_to_cpu(al_entry->length));
if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
goto em_put_err_out;
if (AT_DATA != al_entry->type)
continue;
/* We want an unnamed attribute. */
if (al_entry->name_length)
goto em_put_err_out;
/* Want the first entry, i.e. lowest_vcn == 0. */
if (al_entry->lowest_vcn)
goto em_put_err_out;
/* First entry has to be in the base mft record. */
if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
/* MFT references do not match, logic fails. */
ntfs_error(sb, "BUG: The first $DATA extent "
"of $MFT is not in the base "
"mft record. Please report "
"you saw this message to "
"linux-ntfs-dev@lists."
"sourceforge.net");
goto put_err_out;
} else {
/* Sequence numbers must match. */
if (MSEQNO_LE(al_entry->mft_reference) !=
ni->seq_no)
goto em_put_err_out;
/* Got it. All is ok. We can stop now. */
break;
}
}
}
ntfs_attr_reinit_search_ctx(ctx);
/* Now load all attribute extents. */
a = NULL;
next_vcn = last_vcn = highest_vcn = 0;
while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
ctx))) {
runlist_element *nrl;
/* Cache the current attribute. */
a = ctx->attr;
/* $MFT must be non-resident. */
if (!a->non_resident) {
ntfs_error(sb, "$MFT must be non-resident but a "
"resident extent was found. $MFT is "
"corrupt. Run chkdsk.");
goto put_err_out;
}
/* $MFT must be uncompressed and unencrypted. */
if (a->flags & ATTR_COMPRESSION_MASK ||
a->flags & ATTR_IS_ENCRYPTED ||
a->flags & ATTR_IS_SPARSE) {
ntfs_error(sb, "$MFT must be uncompressed, "
"non-sparse, and unencrypted but a "
"compressed/sparse/encrypted extent "
"was found. $MFT is corrupt. Run "
"chkdsk.");
goto put_err_out;
}
/*
* Decompress the mapping pairs array of this extent and merge
* the result into the existing runlist. No need for locking
* as we have exclusive access to the inode at this time and we
* are a mount in progress task, too.
*/
nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
if (IS_ERR(nrl)) {
ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
"failed with error code %ld. $MFT is "
"corrupt.", PTR_ERR(nrl));
goto put_err_out;
}
ni->runlist.rl = nrl;
/* Are we in the first extent? */
if (!next_vcn) {
if (a->data.non_resident.lowest_vcn) {
ntfs_error(sb, "First extent of $DATA "
"attribute has non zero "
"lowest_vcn. $MFT is corrupt. "
"You should run chkdsk.");
goto put_err_out;
}
/* Get the last vcn in the $DATA attribute. */
last_vcn = sle64_to_cpu(
a->data.non_resident.allocated_size)
>> vol->cluster_size_bits;
/* Fill in the inode size. */
vi->i_size = sle64_to_cpu(
a->data.non_resident.data_size);
ni->initialized_size = sle64_to_cpu(
a->data.non_resident.initialized_size);
ni->allocated_size = sle64_to_cpu(
a->data.non_resident.allocated_size);
/*
* Verify the number of mft records does not exceed
* 2^32 - 1.
*/
if ((vi->i_size >> vol->mft_record_size_bits) >=
(1ULL << 32)) {
ntfs_error(sb, "$MFT is too big! Aborting.");
goto put_err_out;
}
/*
* We have got the first extent of the runlist for
* $MFT which means it is now relatively safe to call
* the normal ntfs_read_inode() function.
* Complete reading the inode, this will actually
* re-read the mft record for $MFT, this time entering
* it into the page cache with which we complete the
* kick start of the volume. It should be safe to do
* this now as the first extent of $MFT/$DATA is
* already known and we would hope that we don't need
* further extents in order to find the other
* attributes belonging to $MFT. Only time will tell if
* this is really the case. If not we will have to play
* magic at this point, possibly duplicating a lot of
* ntfs_read_inode() at this point. We will need to
* ensure we do enough of its work to be able to call
* ntfs_read_inode() on extents of $MFT/$DATA. But lets
* hope this never happens...
*/
ntfs_read_locked_inode(vi);
if (is_bad_inode(vi)) {
ntfs_error(sb, "ntfs_read_inode() of $MFT "
"failed. BUG or corrupt $MFT. "
"Run chkdsk and if no errors "
"are found, please report you "
"saw this message to "
"linux-ntfs-dev@lists."
"sourceforge.net");
ntfs_attr_put_search_ctx(ctx);
/* Revert to the safe super operations. */
ntfs_free(m);
return -1;
}
/*
* Re-initialize some specifics about $MFT's inode as
* ntfs_read_inode() will have set up the default ones.
*/
/* Set uid and gid to root. */
vi->i_uid = GLOBAL_ROOT_UID;
vi->i_gid = GLOBAL_ROOT_GID;
/* Regular file. No access for anyone. */
vi->i_mode = S_IFREG;
/* No VFS initiated operations allowed for $MFT. */
vi->i_op = &ntfs_empty_inode_ops;
vi->i_fop = &ntfs_empty_file_ops;
}
/* Get the lowest vcn for the next extent. */
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
next_vcn = highest_vcn + 1;
/* Only one extent or error, which we catch below. */
if (next_vcn <= 0)
break;
/* Avoid endless loops due to corruption. */
if (next_vcn < sle64_to_cpu(
a->data.non_resident.lowest_vcn)) {
ntfs_error(sb, "$MFT has corrupt attribute list "
"attribute. Run chkdsk.");
goto put_err_out;
}
}
if (err != -ENOENT) {
ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
"$MFT is corrupt. Run chkdsk.");
goto put_err_out;
}
if (!a) {
ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
"corrupt. Run chkdsk.");
goto put_err_out;
}
if (highest_vcn && highest_vcn != last_vcn - 1) {
ntfs_error(sb, "Failed to load the complete runlist for "
"$MFT/$DATA. Driver bug or corrupt $MFT. "
"Run chkdsk.");
ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
(unsigned long long)highest_vcn,
(unsigned long long)last_vcn - 1);
goto put_err_out;
}
ntfs_attr_put_search_ctx(ctx);
ntfs_debug("Done.");
ntfs_free(m);
/*
* Split the locking rules of the MFT inode from the
* locking rules of other inodes:
*/
lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
return 0;
em_put_err_out:
ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
"attribute list. $MFT is corrupt. Run chkdsk.");
put_err_out:
ntfs_attr_put_search_ctx(ctx);
err_out:
ntfs_error(sb, "Failed. Marking inode as bad.");
make_bad_inode(vi);
ntfs_free(m);
return -1;
}
static void __ntfs_clear_inode(ntfs_inode *ni)
{
/* Free all alocated memory. */
down_write(&ni->runlist.lock);
if (ni->runlist.rl) {
ntfs_free(ni->runlist.rl);
ni->runlist.rl = NULL;
}
up_write(&ni->runlist.lock);
if (ni->attr_list) {
ntfs_free(ni->attr_list);
ni->attr_list = NULL;
}
down_write(&ni->attr_list_rl.lock);
if (ni->attr_list_rl.rl) {
ntfs_free(ni->attr_list_rl.rl);
ni->attr_list_rl.rl = NULL;
}
up_write(&ni->attr_list_rl.lock);
if (ni->name_len && ni->name != I30) {
/* Catch bugs... */
BUG_ON(!ni->name);
kfree(ni->name);
}
}
void ntfs_clear_extent_inode(ntfs_inode *ni)
{
ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
BUG_ON(NInoAttr(ni));
BUG_ON(ni->nr_extents != -1);
#ifdef NTFS_RW
if (NInoDirty(ni)) {
if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
"Losing data! This is a BUG!!!");
// FIXME: Do something!!!
}
#endif /* NTFS_RW */
__ntfs_clear_inode(ni);
/* Bye, bye... */
ntfs_destroy_extent_inode(ni);
}
/**
* ntfs_evict_big_inode - clean up the ntfs specific part of an inode
* @vi: vfs inode pending annihilation
*
* When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
* is called, which deallocates all memory belonging to the NTFS specific part
* of the inode and returns.
*
* If the MFT record is dirty, we commit it before doing anything else.
*/
void ntfs_evict_big_inode(struct inode *vi)
{
ntfs_inode *ni = NTFS_I(vi);
truncate_inode_pages_final(&vi->i_data);
clear_inode(vi);
#ifdef NTFS_RW
if (NInoDirty(ni)) {
bool was_bad = (is_bad_inode(vi));
/* Committing the inode also commits all extent inodes. */
ntfs_commit_inode(vi);
if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
ntfs_error(vi->i_sb, "Failed to commit dirty inode "
"0x%lx. Losing data!", vi->i_ino);
// FIXME: Do something!!!
}
}
#endif /* NTFS_RW */
/* No need to lock at this stage as no one else has a reference. */
if (ni->nr_extents > 0) {
int i;
for (i = 0; i < ni->nr_extents; i++)
ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
kfree(ni->ext.extent_ntfs_inos);
}
__ntfs_clear_inode(ni);
if (NInoAttr(ni)) {
/* Release the base inode if we are holding it. */
if (ni->nr_extents == -1) {
iput(VFS_I(ni->ext.base_ntfs_ino));
ni->nr_extents = 0;
ni->ext.base_ntfs_ino = NULL;
}
}
BUG_ON(ni->page);
if (!atomic_dec_and_test(&ni->count))
BUG();
return;
}
/**
* ntfs_show_options - show mount options in /proc/mounts
* @sf: seq_file in which to write our mount options
* @root: root of the mounted tree whose mount options to display
*
* Called by the VFS once for each mounted ntfs volume when someone reads
* /proc/mounts in order to display the NTFS specific mount options of each
* mount. The mount options of fs specified by @root are written to the seq file
* @sf and success is returned.
*/
int ntfs_show_options(struct seq_file *sf, struct dentry *root)
{
ntfs_volume *vol = NTFS_SB(root->d_sb);
int i;
seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
if (vol->fmask == vol->dmask)
seq_printf(sf, ",umask=0%o", vol->fmask);
else {
seq_printf(sf, ",fmask=0%o", vol->fmask);
seq_printf(sf, ",dmask=0%o", vol->dmask);
}
seq_printf(sf, ",nls=%s", vol->nls_map->charset);
if (NVolCaseSensitive(vol))
seq_printf(sf, ",case_sensitive");
if (NVolShowSystemFiles(vol))
seq_printf(sf, ",show_sys_files");
if (!NVolSparseEnabled(vol))
seq_printf(sf, ",disable_sparse");
for (i = 0; on_errors_arr[i].val; i++) {
if (on_errors_arr[i].val & vol->on_errors)
seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
}
seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
return 0;
}
#ifdef NTFS_RW
static const char *es = " Leaving inconsistent metadata. Unmount and run "
"chkdsk.";
/**
* ntfs_truncate - called when the i_size of an ntfs inode is changed
* @vi: inode for which the i_size was changed
*
* We only support i_size changes for normal files at present, i.e. not
* compressed and not encrypted. This is enforced in ntfs_setattr(), see
* below.
*
* The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
* that the change is allowed.
*
* This implies for us that @vi is a file inode rather than a directory, index,
* or attribute inode as well as that @vi is a base inode.
*
* Returns 0 on success or -errno on error.
*
* Called with ->i_mutex held.
*/
int ntfs_truncate(struct inode *vi)
{
s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
VCN highest_vcn;
unsigned long flags;
ntfs_inode *base_ni, *ni = NTFS_I(vi);
ntfs_volume *vol = ni->vol;
ntfs_attr_search_ctx *ctx;
MFT_RECORD *m;
ATTR_RECORD *a;
const char *te = " Leaving file length out of sync with i_size.";
int err, mp_size, size_change, alloc_change;
u32 attr_len;
ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
BUG_ON(NInoAttr(ni));
BUG_ON(S_ISDIR(vi->i_mode));
BUG_ON(NInoMstProtected(ni));
BUG_ON(ni->nr_extents < 0);
retry_truncate:
/*
* Lock the runlist for writing and map the mft record to ensure it is
* safe to mess with the attribute runlist and sizes.
*/
down_write(&ni->runlist.lock);
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
"(error code %d).%s", vi->i_ino, err, te);
ctx = NULL;
m = NULL;
goto old_bad_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
ntfs_error(vi->i_sb, "Failed to allocate a search context for "
"inode 0x%lx (not enough memory).%s",
vi->i_ino, te);
err = -ENOMEM;
goto old_bad_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT) {
ntfs_error(vi->i_sb, "Open attribute is missing from "
"mft record. Inode 0x%lx is corrupt. "
"Run chkdsk.%s", vi->i_ino, te);
err = -EIO;
} else
ntfs_error(vi->i_sb, "Failed to lookup attribute in "
"inode 0x%lx (error code %d).%s",
vi->i_ino, err, te);
goto old_bad_out;
}
m = ctx->mrec;
a = ctx->attr;
/*
* The i_size of the vfs inode is the new size for the attribute value.
*/
new_size = i_size_read(vi);
/* The current size of the attribute value is the old size. */
old_size = ntfs_attr_size(a);
/* Calculate the new allocated size. */
if (NInoNonResident(ni))
new_alloc_size = (new_size + vol->cluster_size - 1) &
~(s64)vol->cluster_size_mask;
else
new_alloc_size = (new_size + 7) & ~7;
/* The current allocated size is the old allocated size. */
read_lock_irqsave(&ni->size_lock, flags);
old_alloc_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
/*
* The change in the file size. This will be 0 if no change, >0 if the
* size is growing, and <0 if the size is shrinking.
*/
size_change = -1;
if (new_size - old_size >= 0) {
size_change = 1;
if (new_size == old_size)
size_change = 0;
}
/* As above for the allocated size. */
alloc_change = -1;
if (new_alloc_size - old_alloc_size >= 0) {
alloc_change = 1;
if (new_alloc_size == old_alloc_size)
alloc_change = 0;
}
/*
* If neither the size nor the allocation are being changed there is
* nothing to do.
*/
if (!size_change && !alloc_change)
goto unm_done;
/* If the size is changing, check if new size is allowed in $AttrDef. */
if (size_change) {
err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
if (unlikely(err)) {
if (err == -ERANGE) {
ntfs_error(vol->sb, "Truncate would cause the "
"inode 0x%lx to %simum size "
"for its attribute type "
"(0x%x). Aborting truncate.",
vi->i_ino,
new_size > old_size ? "exceed "
"the max" : "go under the min",
le32_to_cpu(ni->type));
err = -EFBIG;
} else {
ntfs_error(vol->sb, "Inode 0x%lx has unknown "
"attribute type 0x%x. "
"Aborting truncate.",
vi->i_ino,
le32_to_cpu(ni->type));
err = -EIO;
}
/* Reset the vfs inode size to the old size. */
i_size_write(vi, old_size);
goto err_out;
}
}
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
ntfs_warning(vi->i_sb, "Changes in inode size are not "
"supported yet for %s files, ignoring.",
NInoCompressed(ni) ? "compressed" :
"encrypted");
err = -EOPNOTSUPP;
goto bad_out;
}
if (a->non_resident)
goto do_non_resident_truncate;
BUG_ON(NInoNonResident(ni));
/* Resize the attribute record to best fit the new attribute size. */
if (new_size < vol->mft_record_size &&
!ntfs_resident_attr_value_resize(m, a, new_size)) {
/* The resize succeeded! */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
write_lock_irqsave(&ni->size_lock, flags);
/* Update the sizes in the ntfs inode and all is done. */
ni->allocated_size = le32_to_cpu(a->length) -
le16_to_cpu(a->data.resident.value_offset);
/*
* Note ntfs_resident_attr_value_resize() has already done any
* necessary data clearing in the attribute record. When the
* file is being shrunk vmtruncate() will already have cleared
* the top part of the last partial page, i.e. since this is
* the resident case this is the page with index 0. However,
* when the file is being expanded, the page cache page data
* between the old data_size, i.e. old_size, and the new_size
* has not been zeroed. Fortunately, we do not need to zero it
* either since on one hand it will either already be zero due
* to both readpage and writepage clearing partial page data
* beyond i_size in which case there is nothing to do or in the
* case of the file being mmap()ped at the same time, POSIX
* specifies that the behaviour is unspecified thus we do not
* have to do anything. This means that in our implementation
* in the rare case that the file is mmap()ped and a write
* occurred into the mmap()ped region just beyond the file size
* and writepage has not yet been called to write out the page
* (which would clear the area beyond the file size) and we now
* extend the file size to incorporate this dirty region
* outside the file size, a write of the page would result in
* this data being written to disk instead of being cleared.
* Given both POSIX and the Linux mmap(2) man page specify that
* this corner case is undefined, we choose to leave it like
* that as this is much simpler for us as we cannot lock the
* relevant page now since we are holding too many ntfs locks
* which would result in a lock reversal deadlock.
*/
ni->initialized_size = new_size;
write_unlock_irqrestore(&ni->size_lock, flags);
goto unm_done;
}
/* If the above resize failed, this must be an attribute extension. */
BUG_ON(size_change < 0);
/*
* We have to drop all the locks so we can call
* ntfs_attr_make_non_resident(). This could be optimised by try-
* locking the first page cache page and only if that fails dropping
* the locks, locking the page, and redoing all the locking and
* lookups. While this would be a huge optimisation, it is not worth
* it as this is definitely a slow code path as it only ever can happen
* once for any given file.
*/
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
/*
* Not enough space in the mft record, try to make the attribute
* non-resident and if successful restart the truncation process.
*/
err = ntfs_attr_make_non_resident(ni, old_size);
if (likely(!err))
goto retry_truncate;
/*
* Could not make non-resident. If this is due to this not being
* permitted for this attribute type or there not being enough space,
* try to make other attributes non-resident. Otherwise fail.
*/
if (unlikely(err != -EPERM && err != -ENOSPC)) {
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
"type 0x%x, because the conversion from "
"resident to non-resident attribute failed "
"with error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
if (err != -ENOMEM)
err = -EIO;
goto conv_err_out;
}
/* TODO: Not implemented from here, abort. */
if (err == -ENOSPC)
ntfs_error(vol->sb, "Not enough space in the mft record/on "
"disk for the non-resident attribute value. "
"This case is not implemented yet.");
else /* if (err == -EPERM) */
ntfs_error(vol->sb, "This attribute type may not be "
"non-resident. This case is not implemented "
"yet.");
err = -EOPNOTSUPP;
goto conv_err_out;
#if 0
// TODO: Attempt to make other attributes non-resident.
if (!err)
goto do_resident_extend;
/*
* Both the attribute list attribute and the standard information
* attribute must remain in the base inode. Thus, if this is one of
* these attributes, we have to try to move other attributes out into
* extent mft records instead.
*/
if (ni->type == AT_ATTRIBUTE_LIST ||
ni->type == AT_STANDARD_INFORMATION) {
// TODO: Attempt to move other attributes into extent mft
// records.
err = -EOPNOTSUPP;
if (!err)
goto do_resident_extend;
goto err_out;
}
// TODO: Attempt to move this attribute to an extent mft record, but
// only if it is not already the only attribute in an mft record in
// which case there would be nothing to gain.
err = -EOPNOTSUPP;
if (!err)
goto do_resident_extend;
/* There is nothing we can do to make enough space. )-: */
goto err_out;
#endif
do_non_resident_truncate:
BUG_ON(!NInoNonResident(ni));
if (alloc_change < 0) {
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
if (highest_vcn > 0 &&
old_alloc_size >> vol->cluster_size_bits >
highest_vcn + 1) {
/*
* This attribute has multiple extents. Not yet
* supported.
*/
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
"attribute type 0x%x, because the "
"attribute is highly fragmented (it "
"consists of multiple extents) and "
"this case is not implemented yet.",
vi->i_ino,
(unsigned)le32_to_cpu(ni->type));
err = -EOPNOTSUPP;
goto bad_out;
}
}
/*
* If the size is shrinking, need to reduce the initialized_size and
* the data_size before reducing the allocation.
*/
if (size_change < 0) {
/*
* Make the valid size smaller (i_size is already up-to-date).
*/
write_lock_irqsave(&ni->size_lock, flags);
if (new_size < ni->initialized_size) {
ni->initialized_size = new_size;
a->data.non_resident.initialized_size =
cpu_to_sle64(new_size);
}
a->data.non_resident.data_size = cpu_to_sle64(new_size);
write_unlock_irqrestore(&ni->size_lock, flags);
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
/* If the allocated size is not changing, we are done. */
if (!alloc_change)
goto unm_done;
/*
* If the size is shrinking it makes no sense for the
* allocation to be growing.
*/
BUG_ON(alloc_change > 0);
} else /* if (size_change >= 0) */ {
/*
* The file size is growing or staying the same but the
* allocation can be shrinking, growing or staying the same.
*/
if (alloc_change > 0) {
/*
* We need to extend the allocation and possibly update
* the data size. If we are updating the data size,
* since we are not touching the initialized_size we do
* not need to worry about the actual data on disk.
* And as far as the page cache is concerned, there
* will be no pages beyond the old data size and any
* partial region in the last page between the old and
* new data size (or the end of the page if the new
* data size is outside the page) does not need to be
* modified as explained above for the resident
* attribute truncate case. To do this, we simply drop
* the locks we hold and leave all the work to our
* friendly helper ntfs_attr_extend_allocation().
*/
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
err = ntfs_attr_extend_allocation(ni, new_size,
size_change > 0 ? new_size : -1, -1);
/*
* ntfs_attr_extend_allocation() will have done error
* output already.
*/
goto done;
}
if (!alloc_change)
goto alloc_done;
}
/* alloc_change < 0 */
/* Free the clusters. */
nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
vol->cluster_size_bits, -1, ctx);
m = ctx->mrec;
a = ctx->attr;
if (unlikely(nr_freed < 0)) {
ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
"%lli). Unmount and run chkdsk to recover "
"the lost cluster(s).", (long long)nr_freed);
NVolSetErrors(vol);
nr_freed = 0;
}
/* Truncate the runlist. */
err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
new_alloc_size >> vol->cluster_size_bits);
/*
* If the runlist truncation failed and/or the search context is no
* longer valid, we cannot resize the attribute record or build the
* mapping pairs array thus we mark the inode bad so that no access to
* the freed clusters can happen.
*/
if (unlikely(err || IS_ERR(m))) {
ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
IS_ERR(m) ?
"restore attribute search context" :
"truncate attribute runlist",
IS_ERR(m) ? PTR_ERR(m) : err, es);
err = -EIO;
goto bad_out;
}
/* Get the size for the shrunk mapping pairs array for the runlist. */
mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
if (unlikely(mp_size <= 0)) {
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
"attribute type 0x%x, because determining the "
"size for the mapping pairs failed with error "
"code %i.%s", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), mp_size, es);
err = -EIO;
goto bad_out;
}
/*
* Shrink the attribute record for the new mapping pairs array. Note,
* this cannot fail since we are making the attribute smaller thus by
* definition there is enough space to do so.
*/
attr_len = le32_to_cpu(a->length);
err = ntfs_attr_record_resize(m, a, mp_size +
le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
BUG_ON(err);
/*
* Generate the mapping pairs array directly into the attribute record.
*/
err = ntfs_mapping_pairs_build(vol, (u8*)a +
le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
mp_size, ni->runlist.rl, 0, -1, NULL);
if (unlikely(err)) {
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
"attribute type 0x%x, because building the "
"mapping pairs failed with error code %i.%s",
vi->i_ino, (unsigned)le32_to_cpu(ni->type),
err, es);
err = -EIO;
goto bad_out;
}
/* Update the allocated/compressed size as well as the highest vcn. */
a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
vol->cluster_size_bits) - 1);
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = new_alloc_size;
a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
if (NInoSparse(ni) || NInoCompressed(ni)) {
if (nr_freed) {
ni->itype.compressed.size -= nr_freed <<
vol->cluster_size_bits;
BUG_ON(ni->itype.compressed.size < 0);
a->data.non_resident.compressed_size = cpu_to_sle64(
ni->itype.compressed.size);
vi->i_blocks = ni->itype.compressed.size >> 9;
}
} else
vi->i_blocks = new_alloc_size >> 9;
write_unlock_irqrestore(&ni->size_lock, flags);
/*
* We have shrunk the allocation. If this is a shrinking truncate we
* have already dealt with the initialized_size and the data_size above
* and we are done. If the truncate is only changing the allocation
* and not the data_size, we are also done. If this is an extending
* truncate, need to extend the data_size now which is ensured by the
* fact that @size_change is positive.
*/
alloc_done:
/*
* If the size is growing, need to update it now. If it is shrinking,
* we have already updated it above (before the allocation change).
*/
if (size_change > 0)
a->data.non_resident.data_size = cpu_to_sle64(new_size);
/* Ensure the modified mft record is written out. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
unm_done:
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
done:
/* Update the mtime and ctime on the base inode. */
/* normally ->truncate shouldn't update ctime or mtime,
* but ntfs did before so it got a copy & paste version
* of file_update_time. one day someone should fix this
* for real.
*/
if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
struct timespec64 now = current_time(VFS_I(base_ni));
int sync_it = 0;
if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
!timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
sync_it = 1;
VFS_I(base_ni)->i_mtime = now;
VFS_I(base_ni)->i_ctime = now;
if (sync_it)
mark_inode_dirty_sync(VFS_I(base_ni));
}
if (likely(!err)) {
NInoClearTruncateFailed(ni);
ntfs_debug("Done.");
}
return err;
old_bad_out:
old_size = -1;
bad_out:
if (err != -ENOMEM && err != -EOPNOTSUPP)
NVolSetErrors(vol);
if (err != -EOPNOTSUPP)
NInoSetTruncateFailed(ni);
else if (old_size >= 0)
i_size_write(vi, old_size);
err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
out:
ntfs_debug("Failed. Returning error code %i.", err);
return err;
conv_err_out:
if (err != -ENOMEM && err != -EOPNOTSUPP)
NVolSetErrors(vol);
if (err != -EOPNOTSUPP)
NInoSetTruncateFailed(ni);
else
i_size_write(vi, old_size);
goto out;
}
/**
* ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
* @vi: inode for which the i_size was changed
*
* Wrapper for ntfs_truncate() that has no return value.
*
* See ntfs_truncate() description above for details.
*/
#ifdef NTFS_RW
void ntfs_truncate_vfs(struct inode *vi) {
ntfs_truncate(vi);
}
#endif
/**
* ntfs_setattr - called from notify_change() when an attribute is being changed
* @dentry: dentry whose attributes to change
* @attr: structure describing the attributes and the changes
*
* We have to trap VFS attempts to truncate the file described by @dentry as
* soon as possible, because we do not implement changes in i_size yet. So we
* abort all i_size changes here.
*
* We also abort all changes of user, group, and mode as we do not implement
* the NTFS ACLs yet.
*
* Called with ->i_mutex held.
*/
int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *vi = d_inode(dentry);
int err;
unsigned int ia_valid = attr->ia_valid;
err = setattr_prepare(dentry, attr);
if (err)
goto out;
/* We do not support NTFS ACLs yet. */
if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
"supported yet, ignoring.");
err = -EOPNOTSUPP;
goto out;
}
if (ia_valid & ATTR_SIZE) {
if (attr->ia_size != i_size_read(vi)) {
ntfs_inode *ni = NTFS_I(vi);
/*
* FIXME: For now we do not support resizing of
* compressed or encrypted files yet.
*/
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
ntfs_warning(vi->i_sb, "Changes in inode size "
"are not supported yet for "
"%s files, ignoring.",
NInoCompressed(ni) ?
"compressed" : "encrypted");
err = -EOPNOTSUPP;
} else {
truncate_setsize(vi, attr->ia_size);
ntfs_truncate_vfs(vi);
}
if (err || ia_valid == ATTR_SIZE)
goto out;
} else {
/*
* We skipped the truncate but must still update
* timestamps.
*/
ia_valid |= ATTR_MTIME | ATTR_CTIME;
}
}
if (ia_valid & ATTR_ATIME)
vi->i_atime = attr->ia_atime;
if (ia_valid & ATTR_MTIME)
vi->i_mtime = attr->ia_mtime;
if (ia_valid & ATTR_CTIME)
vi->i_ctime = attr->ia_ctime;
mark_inode_dirty(vi);
out:
return err;
}
/**
* ntfs_write_inode - write out a dirty inode
* @vi: inode to write out
* @sync: if true, write out synchronously
*
* Write out a dirty inode to disk including any extent inodes if present.
*
* If @sync is true, commit the inode to disk and wait for io completion. This
* is done using write_mft_record().
*
* If @sync is false, just schedule the write to happen but do not wait for i/o
* completion. In 2.6 kernels, scheduling usually happens just by virtue of
* marking the page (and in this case mft record) dirty but we do not implement
* this yet as write_mft_record() largely ignores the @sync parameter and
* always performs synchronous writes.
*
* Return 0 on success and -errno on error.
*/
int __ntfs_write_inode(struct inode *vi, int sync)
{
sle64 nt;
ntfs_inode *ni = NTFS_I(vi);
ntfs_attr_search_ctx *ctx;
MFT_RECORD *m;
STANDARD_INFORMATION *si;
int err = 0;
bool modified = false;
ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
vi->i_ino);
/*
* Dirty attribute inodes are written via their real inodes so just
* clean them here. Access time updates are taken care off when the
* real inode is written.
*/
if (NInoAttr(ni)) {
NInoClearDirty(ni);
ntfs_debug("Done.");
return 0;
}
/* Map, pin, and lock the mft record belonging to the inode. */
m = map_mft_record(ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
/* Update the access times in the standard information attribute. */
ctx = ntfs_attr_get_search_ctx(ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto unm_err_out;
}
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
ntfs_attr_put_search_ctx(ctx);
goto unm_err_out;
}
si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
/* Update the access times if they have changed. */
nt = utc2ntfs(vi->i_mtime);
if (si->last_data_change_time != nt) {
ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino, (long long)
sle64_to_cpu(si->last_data_change_time),
(long long)sle64_to_cpu(nt));
si->last_data_change_time = nt;
modified = true;
}
nt = utc2ntfs(vi->i_ctime);
if (si->last_mft_change_time != nt) {
ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino, (long long)
sle64_to_cpu(si->last_mft_change_time),
(long long)sle64_to_cpu(nt));
si->last_mft_change_time = nt;
modified = true;
}
nt = utc2ntfs(vi->i_atime);
if (si->last_access_time != nt) {
ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino,
(long long)sle64_to_cpu(si->last_access_time),
(long long)sle64_to_cpu(nt));
si->last_access_time = nt;
modified = true;
}
/*
* If we just modified the standard information attribute we need to
* mark the mft record it is in dirty. We do this manually so that
* mark_inode_dirty() is not called which would redirty the inode and
* hence result in an infinite loop of trying to write the inode.
* There is no need to mark the base inode nor the base mft record
* dirty, since we are going to write this mft record below in any case
* and the base mft record may actually not have been modified so it
* might not need to be written out.
* NOTE: It is not a problem when the inode for $MFT itself is being
* written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
* on the $MFT inode and hence ntfs_write_inode() will not be
* re-invoked because of it which in turn is ok since the dirtied mft
* record will be cleaned and written out to disk below, i.e. before
* this function returns.
*/
if (modified) {
flush_dcache_mft_record_page(ctx->ntfs_ino);
if (!NInoTestSetDirty(ctx->ntfs_ino))
mark_ntfs_record_dirty(ctx->ntfs_ino->page,
ctx->ntfs_ino->page_ofs);
}
ntfs_attr_put_search_ctx(ctx);
/* Now the access times are updated, write the base mft record. */
if (NInoDirty(ni))
err = write_mft_record(ni, m, sync);
/* Write all attached extent mft records. */
mutex_lock(&ni->extent_lock);
if (ni->nr_extents > 0) {
ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
int i;
ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
for (i = 0; i < ni->nr_extents; i++) {
ntfs_inode *tni = extent_nis[i];
if (NInoDirty(tni)) {
MFT_RECORD *tm = map_mft_record(tni);
int ret;
if (IS_ERR(tm)) {
if (!err || err == -ENOMEM)
err = PTR_ERR(tm);
continue;
}
ret = write_mft_record(tni, tm, sync);
unmap_mft_record(tni);
if (unlikely(ret)) {
if (!err || err == -ENOMEM)
err = ret;
}
}
}
}
mutex_unlock(&ni->extent_lock);
unmap_mft_record(ni);
if (unlikely(err))
goto err_out;
ntfs_debug("Done.");
return 0;
unm_err_out:
unmap_mft_record(ni);
err_out:
if (err == -ENOMEM) {
ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
"Marking the inode dirty again, so the VFS "
"retries later.");
mark_inode_dirty(vi);
} else {
ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
NVolSetErrors(ni->vol);
}
return err;
}
#endif /* NTFS_RW */