mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 00:20:51 +07:00
5fa3ea047a
Signed-off-by: AuxXxilium <info@auxxxilium.tech>
8042 lines
203 KiB
C
8042 lines
203 KiB
C
#ifndef MY_ABC_HERE
|
|
#define MY_ABC_HERE
|
|
#endif
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/security.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/btrfs.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/iversion.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "export.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "inode-map.h"
|
|
#include "backref.h"
|
|
#include "rcu-string.h"
|
|
#include "send.h"
|
|
#include "dev-replace.h"
|
|
#include "props.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "tree-log.h"
|
|
#include "compression.h"
|
|
#include "space-info.h"
|
|
#include "delalloc-space.h"
|
|
#include "block-group.h"
|
|
#ifdef MY_ABC_HERE
|
|
#include "reflink.h"
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
#include "syno-feat-tree.h"
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
|
|
* structures are incorrect, as the timespec structure from userspace
|
|
* is 4 bytes too small. We define these alternatives here to teach
|
|
* the kernel about the 32-bit struct packing.
|
|
*/
|
|
struct btrfs_ioctl_timespec_32 {
|
|
__u64 sec;
|
|
__u32 nsec;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_ioctl_received_subvol_args_32 {
|
|
char uuid[BTRFS_UUID_SIZE]; /* in */
|
|
__u64 stransid; /* in */
|
|
__u64 rtransid; /* out */
|
|
struct btrfs_ioctl_timespec_32 stime; /* in */
|
|
struct btrfs_ioctl_timespec_32 rtime; /* out */
|
|
__u64 flags; /* in */
|
|
#ifdef MY_ABC_HERE
|
|
struct btrfs_ioctl_timespec_32 otime; /* in */
|
|
// why 2 reserved is used(64+64=128bits) but
|
|
// otime only occupies 64+32=96(bits)
|
|
// This is for compatible to 32bits userspace
|
|
// After this change, sizeof(btrfs_ioctl_received_subvol_args_32)
|
|
// changed from 192 bytes to 188 bytes;
|
|
__u64 reserved[14];
|
|
#else /* MY_ABC_HERE */
|
|
__u64 reserved[16]; /* in */
|
|
#endif /* MY_ABC_HERE */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
|
|
struct btrfs_ioctl_received_subvol_args_32)
|
|
#endif
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 {
|
|
__s64 send_fd; /* in */
|
|
__u64 clone_sources_count; /* in */
|
|
compat_uptr_t clone_sources; /* in */
|
|
__u64 parent_root; /* in */
|
|
__u64 flags; /* in */
|
|
__u64 reserved[4]; /* in */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
|
|
struct btrfs_ioctl_send_args_32)
|
|
#endif
|
|
|
|
/* Mask out flags that are inappropriate for the given type of inode. */
|
|
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
|
|
unsigned int flags)
|
|
{
|
|
if (S_ISDIR(inode->i_mode))
|
|
return flags;
|
|
else if (S_ISREG(inode->i_mode))
|
|
return flags & ~FS_DIRSYNC_FL;
|
|
else
|
|
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
|
|
}
|
|
|
|
/*
|
|
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
|
|
* ioctl.
|
|
*/
|
|
static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
|
|
{
|
|
unsigned int iflags = 0;
|
|
|
|
if (flags & BTRFS_INODE_SYNC)
|
|
iflags |= FS_SYNC_FL;
|
|
if (flags & BTRFS_INODE_IMMUTABLE)
|
|
iflags |= FS_IMMUTABLE_FL;
|
|
if (flags & BTRFS_INODE_APPEND)
|
|
iflags |= FS_APPEND_FL;
|
|
if (flags & BTRFS_INODE_NODUMP)
|
|
iflags |= FS_NODUMP_FL;
|
|
if (flags & BTRFS_INODE_NOATIME)
|
|
iflags |= FS_NOATIME_FL;
|
|
if (flags & BTRFS_INODE_DIRSYNC)
|
|
iflags |= FS_DIRSYNC_FL;
|
|
if (flags & BTRFS_INODE_NODATACOW)
|
|
iflags |= FS_NOCOW_FL;
|
|
|
|
if (flags & BTRFS_INODE_NOCOMPRESS)
|
|
iflags |= FS_NOCOMP_FL;
|
|
else if (flags & BTRFS_INODE_COMPRESS)
|
|
iflags |= FS_COMPR_FL;
|
|
|
|
return iflags;
|
|
}
|
|
|
|
/*
|
|
* Update inode->i_flags based on the btrfs internal flags.
|
|
*/
|
|
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
unsigned int new_fl = 0;
|
|
|
|
if (binode->flags & BTRFS_INODE_SYNC)
|
|
new_fl |= S_SYNC;
|
|
if (binode->flags & BTRFS_INODE_IMMUTABLE)
|
|
new_fl |= S_IMMUTABLE;
|
|
if (binode->flags & BTRFS_INODE_APPEND)
|
|
new_fl |= S_APPEND;
|
|
if (binode->flags & BTRFS_INODE_NOATIME)
|
|
new_fl |= S_NOATIME;
|
|
if (binode->flags & BTRFS_INODE_DIRSYNC)
|
|
new_fl |= S_DIRSYNC;
|
|
|
|
set_mask_bits(&inode->i_flags,
|
|
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
|
|
new_fl);
|
|
}
|
|
|
|
static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
|
|
unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
|
|
|
|
#ifdef MY_ABC_HERE
|
|
int ret;
|
|
enum locker_state state;
|
|
|
|
ret = syno_op_locker_state_get(file_inode(file), &state);
|
|
if (!ret) {
|
|
if (IS_LOCKER_STATE_IMMUTABLE(state))
|
|
flags |= FS_IMMUTABLE_FL;
|
|
if (IS_LOCKER_STATE_APPENDABLE(state))
|
|
flags |= FS_APPEND_FL;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if @flags are a supported and valid set of FS_*_FL flags and that
|
|
* the old and new flags are not conflicting
|
|
*/
|
|
static int check_fsflags(unsigned int old_flags, unsigned int flags)
|
|
{
|
|
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
|
|
FS_NOATIME_FL | FS_NODUMP_FL | \
|
|
FS_SYNC_FL | FS_DIRSYNC_FL | \
|
|
FS_NOCOMP_FL | FS_COMPR_FL |
|
|
FS_NOCOW_FL))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* COMPR and NOCOMP on new/old are valid */
|
|
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
|
|
return -EINVAL;
|
|
|
|
/* NOCOW and compression options are mutually exclusive */
|
|
if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
|
|
return -EINVAL;
|
|
if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
struct btrfs_root *root = binode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned int fsflags, old_fsflags;
|
|
int ret;
|
|
const char *comp = NULL;
|
|
u32 binode_flags;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
|
|
return -EFAULT;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
|
|
old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
|
|
|
|
#ifdef MY_ABC_HERE
|
|
/*
|
|
* after locker mode is set, tranditional IMMUTABLE_LF and APPEND_FL are
|
|
* not allowed to prevent the mixed behavior with locker.
|
|
*/
|
|
spin_lock(&root->locker_lock);
|
|
if (root->locker_mode != LM_NONE && (fsflags & (FS_IMMUTABLE_FL|FS_APPEND_FL))) {
|
|
ret = -EPERM;
|
|
spin_unlock(&root->locker_lock);
|
|
goto out_unlock;
|
|
}
|
|
spin_unlock(&root->locker_lock);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
|
|
/*
|
|
* we use IMMUTABLE & SWAPFILE protected data,
|
|
*/
|
|
if (IS_SWAPFILE(inode) &&
|
|
((fsflags ^ old_fsflags) & FS_IMMUTABLE_FL)) {
|
|
ret = -ETXTBSY;
|
|
goto out_unlock;
|
|
}
|
|
#endif /* MY_ABC_HERE || MY_ABC_HERE */
|
|
|
|
ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (fsflags & FS_NOCOW_FL) {
|
|
fsflags &= ~(FS_COMPR_FL | FS_NOCOMP_FL);
|
|
old_fsflags &= ~(FS_COMPR_FL | FS_NOCOMP_FL);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
ret = check_fsflags(old_fsflags, fsflags);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
binode_flags = binode->flags;
|
|
if (fsflags & FS_SYNC_FL)
|
|
binode_flags |= BTRFS_INODE_SYNC;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_SYNC;
|
|
if (fsflags & FS_IMMUTABLE_FL)
|
|
binode_flags |= BTRFS_INODE_IMMUTABLE;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_IMMUTABLE;
|
|
if (fsflags & FS_APPEND_FL)
|
|
binode_flags |= BTRFS_INODE_APPEND;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_APPEND;
|
|
if (fsflags & FS_NODUMP_FL)
|
|
binode_flags |= BTRFS_INODE_NODUMP;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_NODUMP;
|
|
if (fsflags & FS_NOATIME_FL)
|
|
binode_flags |= BTRFS_INODE_NOATIME;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_NOATIME;
|
|
if (fsflags & FS_DIRSYNC_FL)
|
|
binode_flags |= BTRFS_INODE_DIRSYNC;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_DIRSYNC;
|
|
if (fsflags & FS_NOCOW_FL) {
|
|
if (S_ISREG(inode->i_mode)) {
|
|
/*
|
|
* It's safe to turn csums off here, no extents exist.
|
|
* Otherwise we want the flag to reflect the real COW
|
|
* status of the file and will not set it.
|
|
*/
|
|
if (inode->i_size == 0)
|
|
binode_flags |= BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM;
|
|
} else {
|
|
binode_flags |= BTRFS_INODE_NODATACOW;
|
|
}
|
|
} else {
|
|
/*
|
|
* Revert back under same assumptions as above
|
|
*/
|
|
if (S_ISREG(inode->i_mode)) {
|
|
if (inode->i_size == 0)
|
|
binode_flags &= ~(BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM);
|
|
} else {
|
|
binode_flags &= ~BTRFS_INODE_NODATACOW;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
|
|
* flag may be changed automatically if compression code won't make
|
|
* things smaller.
|
|
*/
|
|
if (fsflags & FS_NOCOMP_FL) {
|
|
binode_flags &= ~BTRFS_INODE_COMPRESS;
|
|
binode_flags |= BTRFS_INODE_NOCOMPRESS;
|
|
} else if (fsflags & FS_COMPR_FL) {
|
|
|
|
if (IS_SWAPFILE(inode)) {
|
|
ret = -ETXTBSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
binode_flags |= BTRFS_INODE_COMPRESS;
|
|
binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
|
|
|
|
comp = btrfs_compress_type2str(fs_info->compress_type);
|
|
if (!comp || comp[0] == 0)
|
|
#ifdef MY_ABC_HERE
|
|
comp = btrfs_compress_type2str(BTRFS_COMPRESS_DEFAULT);
|
|
#else
|
|
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
|
|
#endif /* MY_ABC_HERE */
|
|
} else {
|
|
binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
|
|
}
|
|
|
|
/*
|
|
* 1 for inode item
|
|
* 2 for properties
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (comp) {
|
|
ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
|
|
strlen(comp), 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
} else {
|
|
ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
|
|
0, 0);
|
|
if (ret && ret != -ENODATA) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
binode->flags = binode_flags;
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
out_end_trans:
|
|
btrfs_end_transaction(trans);
|
|
out_unlock:
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Translate btrfs internal inode flags to xflags as expected by the
|
|
* FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
|
|
* silently dropped.
|
|
*/
|
|
static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
|
|
{
|
|
unsigned int xflags = 0;
|
|
|
|
if (flags & BTRFS_INODE_APPEND)
|
|
xflags |= FS_XFLAG_APPEND;
|
|
if (flags & BTRFS_INODE_IMMUTABLE)
|
|
xflags |= FS_XFLAG_IMMUTABLE;
|
|
if (flags & BTRFS_INODE_NOATIME)
|
|
xflags |= FS_XFLAG_NOATIME;
|
|
if (flags & BTRFS_INODE_NODUMP)
|
|
xflags |= FS_XFLAG_NODUMP;
|
|
if (flags & BTRFS_INODE_SYNC)
|
|
xflags |= FS_XFLAG_SYNC;
|
|
|
|
return xflags;
|
|
}
|
|
|
|
/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
|
|
static int check_xflags(unsigned int flags)
|
|
{
|
|
if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
|
|
FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
|
|
return -EOPNOTSUPP;
|
|
return 0;
|
|
}
|
|
|
|
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_exclusive_operation type)
|
|
{
|
|
return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
|
|
}
|
|
|
|
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
|
|
{
|
|
WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
|
|
sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
|
|
}
|
|
|
|
/*
|
|
* Set the xflags from the internal inode flags. The remaining items of fsxattr
|
|
* are zeroed.
|
|
*/
|
|
static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
|
|
struct fsxattr fa;
|
|
|
|
simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
|
|
if (copy_to_user(arg, &fa, sizeof(fa)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
struct btrfs_root *root = binode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct fsxattr fa, old_fa;
|
|
unsigned old_flags;
|
|
unsigned old_i_flags;
|
|
int ret = 0;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (copy_from_user(&fa, arg, sizeof(fa)))
|
|
return -EFAULT;
|
|
|
|
ret = check_xflags(fa.fsx_xflags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
old_flags = binode->flags;
|
|
old_i_flags = inode->i_flags;
|
|
|
|
simple_fill_fsxattr(&old_fa,
|
|
btrfs_inode_flags_to_xflags(binode->flags));
|
|
ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (fa.fsx_xflags & FS_XFLAG_SYNC)
|
|
binode->flags |= BTRFS_INODE_SYNC;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_SYNC;
|
|
if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
|
|
binode->flags |= BTRFS_INODE_IMMUTABLE;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_IMMUTABLE;
|
|
if (fa.fsx_xflags & FS_XFLAG_APPEND)
|
|
binode->flags |= BTRFS_INODE_APPEND;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_APPEND;
|
|
if (fa.fsx_xflags & FS_XFLAG_NODUMP)
|
|
binode->flags |= BTRFS_INODE_NODUMP;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NODUMP;
|
|
if (fa.fsx_xflags & FS_XFLAG_NOATIME)
|
|
binode->flags |= BTRFS_INODE_NOATIME;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NOATIME;
|
|
|
|
/* 1 item for the inode */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
btrfs_end_transaction(trans);
|
|
|
|
out_unlock:
|
|
if (ret) {
|
|
binode->flags = old_flags;
|
|
inode->i_flags = old_i_flags;
|
|
}
|
|
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
return put_user(inode->i_generation, arg);
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct request_queue *q;
|
|
struct fstrim_range range;
|
|
u64 minlen = ULLONG_MAX;
|
|
u64 num_devices = 0;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* If the fs is mounted with nologreplay, which requires it to be
|
|
* mounted in RO mode as well, we can not allow discard on free space
|
|
* inside block groups, because log trees refer to extents that are not
|
|
* pinned in a block group's free space cache (pinning the extents is
|
|
* precisely the first phase of replaying a log tree).
|
|
*/
|
|
if (btrfs_test_opt(fs_info, NOLOGREPLAY))
|
|
return -EROFS;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
|
|
dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
q = bdev_get_queue(device->bdev);
|
|
if (blk_queue_discard(q)) {
|
|
num_devices++;
|
|
minlen = min_t(u64, q->limits.discard_granularity,
|
|
minlen);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!num_devices)
|
|
return -EOPNOTSUPP;
|
|
if (copy_from_user(&range, arg, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
|
|
* block group is in the logical address space, which can be any
|
|
* sectorsize aligned bytenr in the range [0, U64_MAX].
|
|
*/
|
|
if (range.len < fs_info->sb->s_blocksize)
|
|
return -EINVAL;
|
|
|
|
range.minlen = max(range.minlen, minlen);
|
|
ret = btrfs_trim_fs(fs_info, &range
|
|
#ifdef MY_ABC_HERE
|
|
, TRIM_SEND_TRIM
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user(arg, &range, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static noinline int btrfs_ioctl_hint_unused(struct file *file, void __user *arg)
|
|
{
|
|
struct fstrim_range range;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
|
|
struct btrfs_device *device;
|
|
u64 num_devices = 0;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
|
|
dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
if (blk_queue_unused_hint(bdev_get_queue(device->bdev)))
|
|
num_devices++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!num_devices)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
|
|
* block group is in the logical address space, which can be any
|
|
* sectorsize aligned bytenr in the range [0, U64_MAX].
|
|
*/
|
|
if (range.len < fs_info->sb->s_blocksize)
|
|
return -EINVAL;
|
|
|
|
ret = btrfs_trim_fs(fs_info, &range, TRIM_SEND_HINT);
|
|
if (!ret)
|
|
btrfs_notice(fs_info, "total send %llu bytes hints", range.len);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
int __pure btrfs_is_empty_uuid(u8 *uuid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
|
|
if (uuid[i])
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static noinline int create_subvol(struct inode *dir,
|
|
struct dentry *dentry,
|
|
const char *name, int namelen,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_block_rsv block_rsv;
|
|
struct timespec64 cur_time = current_time(dir);
|
|
struct inode *inode;
|
|
int ret;
|
|
dev_t anon_dev;
|
|
u64 objectid;
|
|
u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
|
|
u64 index = 0;
|
|
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) || \
|
|
defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
|
|
int credit_for_syno = 0;
|
|
#endif /* MY_ABC_HERE || MY_ABC_HERE ||
|
|
MY_ABC_HERE || MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
struct btrfs_syno_usage_root_status syno_usage_root_status;
|
|
#endif /* MY_ABC_HERE */
|
|
#if defined(MY_ABC_HERE)
|
|
struct btrfs_new_fs_root_args *new_fs_root_args = NULL;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
|
|
if (!root_item)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
|
|
if (ret)
|
|
goto out_root_item;
|
|
|
|
/*
|
|
* Don't create subvolume whose level is not zero. Or qgroup will be
|
|
* screwed up since it assumes subvolume qgroup's level to be 0.
|
|
*/
|
|
if (btrfs_qgroup_level(objectid)) {
|
|
ret = -ENOSPC;
|
|
goto out_root_item;
|
|
}
|
|
|
|
ret = get_anon_bdev(&anon_dev);
|
|
if (ret < 0)
|
|
goto out_root_item;
|
|
|
|
#if defined(MY_ABC_HERE)
|
|
new_fs_root_args = btrfs_alloc_new_fs_root_args();
|
|
if (IS_ERR(new_fs_root_args)) {
|
|
ret = PTR_ERR(new_fs_root_args);
|
|
new_fs_root_args = NULL;
|
|
goto out_root_item;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* The same as the snapshot creation, please see the comment
|
|
* of create_snapshot().
|
|
*/
|
|
#ifdef MY_ABC_HERE
|
|
// 1 for dir_item_caseless
|
|
if (btrfs_super_compat_flags(fs_info->super_copy) & BTRFS_FEATURE_COMPAT_SYNO_CASELESS)
|
|
credit_for_syno++;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
// 1 for xattr to store archive bit
|
|
credit_for_syno++;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
credit_for_syno++;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
// 1 for syno_usage_root_status_item
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
|
|
credit_for_syno++;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) || \
|
|
defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
|
|
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8 + credit_for_syno, false);
|
|
#else /* MY_ABC_HERE || MY_ABC_HERE || \
|
|
MY_ABC_HERE || MY_ABC_HERE */
|
|
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
|
|
#endif /* MY_ABC_HERE || MY_ABC_HERE ||
|
|
MY_ABC_HERE || MY_ABC_HERE */
|
|
if (ret)
|
|
goto out_anon_dev;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_subvolume_release_metadata(root, &block_rsv);
|
|
goto out_anon_dev;
|
|
}
|
|
trans->block_rsv = &block_rsv;
|
|
trans->bytes_reserved = block_rsv.size;
|
|
|
|
ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
|
|
if (ret)
|
|
goto out;
|
|
#ifdef MY_ABC_HERE
|
|
ret = btrfs_usrquota_mksubvol(trans, objectid);
|
|
if (ret)
|
|
goto out;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
inode_item = &root_item->inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item,
|
|
fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags))
|
|
btrfs_set_root_flags(root_item, BTRFS_ROOT_SUBVOL_CMPR_RATIO);
|
|
else
|
|
#endif /* MY_ABC_HERE */
|
|
btrfs_set_root_flags(root_item, 0);
|
|
btrfs_set_root_limit(root_item, 0);
|
|
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
|
|
|
|
btrfs_set_root_bytenr(root_item, leaf->start);
|
|
btrfs_set_root_generation(root_item, trans->transid);
|
|
btrfs_set_root_level(root_item, 0);
|
|
btrfs_set_root_refs(root_item, 1);
|
|
btrfs_set_root_used(root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(root_item, 0);
|
|
|
|
btrfs_set_root_generation_v2(root_item,
|
|
btrfs_root_generation(root_item));
|
|
generate_random_guid(root_item->uuid);
|
|
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
|
|
root_item->ctime = root_item->otime;
|
|
btrfs_set_root_ctransid(root_item, trans->transid);
|
|
btrfs_set_root_otransid(root_item, trans->transid);
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
|
|
btrfs_set_root_dirid(root_item, new_dirid);
|
|
|
|
key.objectid = objectid;
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
|
|
root_item);
|
|
if (ret) {
|
|
/*
|
|
* Since we don't abort the transaction in this case, free the
|
|
* tree block so that we don't leak space and leave the
|
|
* filesystem in an inconsistent state (an extent item in the
|
|
* extent tree without backreferences). Also no need to have
|
|
* the tree block locked since it is not in any tree at this
|
|
* point, so no other task can find it and use it.
|
|
*/
|
|
btrfs_free_tree_block(trans, root, leaf, 0, 1);
|
|
free_extent_buffer(leaf);
|
|
goto out;
|
|
}
|
|
|
|
free_extent_buffer(leaf);
|
|
leaf = NULL;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags)) {
|
|
btrfs_syno_usage_root_status_init(&syno_usage_root_status, NULL, false, false);
|
|
ret = btrfs_syno_usage_root_status_update(trans, objectid, &syno_usage_root_status);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (test_bit(BTRFS_FS_SYNO_QUOTA_V2_ENABLED, &fs_info->flags)) {
|
|
struct syno_quota_rescan_item_updater updater;
|
|
|
|
syno_quota_rescan_item_init(&updater);
|
|
updater.flags = SYNO_QUOTA_RESCAN_DONE;
|
|
updater.version = BTRFS_QGROUP_V2_STATUS_VERSION;
|
|
updater.rescan_inode = (u64)-1;
|
|
updater.end_inode = (u64)-1;
|
|
updater.tree_size = 0;
|
|
updater.next_root = 0;
|
|
ret = btrfs_add_update_syno_quota_rescan_item(trans, fs_info->quota_root,
|
|
objectid, &updater);
|
|
if (ret)
|
|
btrfs_warn(fs_info,
|
|
"Failed to create syno quota rescan item for root %llu, ret = %d",
|
|
objectid, ret);
|
|
ret = 0; // No need to abort transaction, we can fix it by doing a quota rescan.
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
key.offset = (u64)-1;
|
|
new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev
|
|
#if defined(MY_ABC_HERE)
|
|
, new_fs_root_args
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
/* anon_dev is owned by new_root now. */
|
|
anon_dev = 0;
|
|
|
|
btrfs_record_root_in_trans(trans, new_root);
|
|
|
|
ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
|
|
btrfs_put_root(new_root);
|
|
if (ret) {
|
|
/* We potentially lose an unused inode item here */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&new_root->objectid_mutex);
|
|
new_root->highest_objectid = new_dirid;
|
|
mutex_unlock(&new_root->objectid_mutex);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
|
|
BTRFS_FT_DIR, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
|
|
ret = btrfs_update_inode(trans, root, dir);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
|
|
btrfs_ino(BTRFS_I(dir)), index, name, namelen);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
|
|
BTRFS_UUID_KEY_SUBVOL, objectid);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
|
|
out:
|
|
trans->block_rsv = NULL;
|
|
trans->bytes_reserved = 0;
|
|
btrfs_subvolume_release_metadata(root, &block_rsv);
|
|
|
|
if (ret)
|
|
btrfs_end_transaction(trans);
|
|
else
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
if (!ret) {
|
|
#ifdef MY_ABC_HERE
|
|
inode = btrfs_lookup_dentry(dir, dentry, 0);
|
|
#else /* MY_ABC_HERE */
|
|
inode = btrfs_lookup_dentry(dir, dentry);
|
|
#endif /* MY_ABC_HERE */
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
d_instantiate(dentry, inode);
|
|
}
|
|
out_anon_dev:
|
|
if (anon_dev)
|
|
free_anon_bdev(anon_dev);
|
|
out_root_item:
|
|
#if defined(MY_ABC_HERE)
|
|
btrfs_free_new_fs_root_args(new_fs_root_args);
|
|
#endif /* MY_ABC_HERE */
|
|
kfree(root_item);
|
|
return ret;
|
|
}
|
|
|
|
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
|
|
struct dentry *dentry, bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit
|
|
#ifdef MY_ABC_HERE
|
|
,u64 copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode;
|
|
struct btrfs_pending_snapshot *pending_snapshot;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) \
|
|
|| defined(MY_ABC_HERE)
|
|
int credit_for_syno = 0;
|
|
#endif /* MY_ABC_HERE || MY_ABC_HERE
|
|
|| MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
u64 reserve_usrquota_items = 0;
|
|
u64 reserve_usrquota_leafs = 0;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
return -EINVAL;
|
|
|
|
if (atomic_read(&root->nr_swapfiles)) {
|
|
btrfs_warn(fs_info,
|
|
"cannot snapshot subvolume with active swapfile");
|
|
return -ETXTBSY;
|
|
}
|
|
|
|
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
|
|
if (!pending_snapshot)
|
|
return -ENOMEM;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
mutex_lock(&fs_info->usrquota_ioctl_lock);
|
|
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags) ||
|
|
test_bit(BTRFS_FS_SYNO_USRQUOTA_V2_ENABLED, &fs_info->flags)) {
|
|
ret = usrquota_subtree_load(fs_info, root->root_key.objectid);
|
|
if (ret)
|
|
btrfs_warn(fs_info,
|
|
"failed to load usrquota subtree %llu", root->root_key.objectid);
|
|
|
|
if (!ret && copy_limit_from)
|
|
ret = usrquota_subtree_load(fs_info, copy_limit_from);
|
|
if (ret)
|
|
btrfs_warn(fs_info,
|
|
"failed to load usrquota subtree %llu", copy_limit_from);
|
|
|
|
if (ret) {
|
|
ret = -ENOENT;
|
|
mutex_unlock(&fs_info->usrquota_ioctl_lock);
|
|
goto free_pending;
|
|
}
|
|
}
|
|
mutex_unlock(&fs_info->usrquota_ioctl_lock);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
ret = get_anon_bdev(&pending_snapshot->anon_dev);
|
|
if (ret < 0)
|
|
goto free_pending;
|
|
|
|
#if defined(MY_ABC_HERE)
|
|
pending_snapshot->new_fs_root_args = btrfs_alloc_new_fs_root_args();
|
|
if (IS_ERR(pending_snapshot->new_fs_root_args)) {
|
|
ret = PTR_ERR(pending_snapshot->new_fs_root_args);
|
|
pending_snapshot->new_fs_root_args = NULL;
|
|
goto free_pending;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
|
|
GFP_KERNEL);
|
|
pending_snapshot->path = btrfs_alloc_path();
|
|
if (!pending_snapshot->root_item || !pending_snapshot->path) {
|
|
ret = -ENOMEM;
|
|
goto free_pending;
|
|
}
|
|
|
|
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
|
|
BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* 1 - parent dir inode
|
|
* 2 - dir entries
|
|
* 1 - root item
|
|
* 2 - root ref/backref
|
|
* 1 - root of snapshot
|
|
* 1 - UUID item
|
|
*/
|
|
|
|
#ifdef MY_ABC_HERE
|
|
ret = btrfs_usrquota_calc_reserve_snap(root, copy_limit_from, &reserve_usrquota_items);
|
|
if (ret < 0)
|
|
goto free_pending;
|
|
reserve_usrquota_leafs = 1 + div_u64(reserve_usrquota_items,
|
|
(u32)BTRFS_USRQUOTA_MAX_ITEMS_LEAF(fs_info));
|
|
credit_for_syno += (int)reserve_usrquota_leafs;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
// 1 for dir_item_caseless
|
|
if (btrfs_super_compat_flags(fs_info->super_copy) & BTRFS_FEATURE_COMPAT_SYNO_CASELESS)
|
|
credit_for_syno++;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
// 1 for syno_usage_root_status_item
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
|
|
credit_for_syno++;
|
|
#endif /*MY_ABC_HERE */
|
|
|
|
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
|
|
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
|
|
&pending_snapshot->block_rsv,
|
|
8 + credit_for_syno,
|
|
false);
|
|
#else /* MY_ABC_HERE || MY_ABC_HERE */
|
|
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
|
|
&pending_snapshot->block_rsv, 8,
|
|
false);
|
|
#endif /* MY_ABC_HERE || MY_ABC_HERE*/
|
|
if (ret)
|
|
goto free_pending;
|
|
|
|
pending_snapshot->dentry = dentry;
|
|
pending_snapshot->root = root;
|
|
pending_snapshot->readonly = readonly;
|
|
pending_snapshot->dir = dir;
|
|
pending_snapshot->inherit = inherit;
|
|
#ifdef MY_ABC_HERE
|
|
pending_snapshot->copy_limit_from = copy_limit_from;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto fail;
|
|
}
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_add(&pending_snapshot->list,
|
|
&trans->transaction->pending_snapshots);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = pending_snapshot->error;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry, 0);
|
|
#else /* MY_ABC_HERE */
|
|
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
|
|
#endif /* MY_ABC_HERE */
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto fail;
|
|
}
|
|
|
|
d_instantiate(dentry, inode);
|
|
ret = 0;
|
|
pending_snapshot->anon_dev = 0;
|
|
fail:
|
|
/* Prevent double freeing of anon_dev */
|
|
if (ret && pending_snapshot->snap)
|
|
pending_snapshot->snap->anon_dev = 0;
|
|
btrfs_put_root(pending_snapshot->snap);
|
|
btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
|
|
free_pending:
|
|
if (pending_snapshot->anon_dev)
|
|
free_anon_bdev(pending_snapshot->anon_dev);
|
|
#if defined(MY_ABC_HERE)
|
|
btrfs_free_new_fs_root_args(pending_snapshot->new_fs_root_args);
|
|
#endif /* MY_ABC_HERE */
|
|
kfree(pending_snapshot->root_item);
|
|
btrfs_free_path(pending_snapshot->path);
|
|
kfree(pending_snapshot);
|
|
#ifdef MY_ABC_HERE
|
|
mutex_lock(&fs_info->usrquota_ioctl_lock);
|
|
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags) ||
|
|
test_bit(BTRFS_FS_SYNO_USRQUOTA_V2_ENABLED, &fs_info->flags)) {
|
|
usrquota_subtree_unload(fs_info, root->root_key.objectid);
|
|
usrquota_subtree_unload(fs_info, copy_limit_from);
|
|
}
|
|
mutex_unlock(&fs_info->usrquota_ioctl_lock);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* copy of may_delete in fs/namei.c()
|
|
* Check whether we can remove a link victim from directory dir, check
|
|
* whether the type of victim is right.
|
|
* 1. We can't do it if dir is read-only (done in permission())
|
|
* 2. We should have write and exec permissions on dir
|
|
* 3. We can't remove anything from append-only dir
|
|
* 4. We can't do anything with immutable dir (done in permission())
|
|
* 5. If the sticky bit on dir is set we should either
|
|
* a. be owner of dir, or
|
|
* b. be owner of victim, or
|
|
* c. have CAP_FOWNER capability
|
|
* 6. If the victim is append-only or immutable we can't do anything with
|
|
* links pointing to it.
|
|
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
|
|
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
|
|
* 9. We can't remove a root or mountpoint.
|
|
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
|
|
* nfs_async_unlink().
|
|
*/
|
|
|
|
static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
|
|
{
|
|
int error;
|
|
|
|
if (d_really_is_negative(victim))
|
|
return -ENOENT;
|
|
|
|
BUG_ON(d_inode(victim->d_parent) != dir);
|
|
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
|
|
|
|
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
return error;
|
|
if (IS_APPEND(dir))
|
|
return -EPERM;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if ((IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim))) &&
|
|
!IS_EXPIRED(d_inode(victim)))
|
|
return -EPERM;
|
|
if (check_sticky(dir, d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
|
|
return -EPERM;
|
|
#else
|
|
if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
|
|
IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
|
|
return -EPERM;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
if (isdir) {
|
|
if (!d_is_dir(victim))
|
|
return -ENOTDIR;
|
|
if (IS_ROOT(victim))
|
|
return -EBUSY;
|
|
} else if (d_is_dir(victim))
|
|
return -EISDIR;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/* copy of may_create in fs/namei.c() */
|
|
static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
|
|
{
|
|
if (d_really_is_positive(child))
|
|
return -EEXIST;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
}
|
|
|
|
/*
|
|
* Create a new subvolume below @parent. This is largely modeled after
|
|
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
|
|
* inside this filesystem so it's quite a bit simpler.
|
|
*/
|
|
static noinline int btrfs_mksubvol(const struct path *parent,
|
|
const char *name, int namelen,
|
|
struct btrfs_root *snap_src,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit
|
|
#ifdef MY_ABC_HERE
|
|
,u64 copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
)
|
|
{
|
|
struct inode *dir = d_inode(parent->dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct dentry *dentry;
|
|
int error;
|
|
|
|
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (error == -EINTR)
|
|
return error;
|
|
|
|
dentry = lookup_one_len(name, parent->dentry, namelen);
|
|
error = PTR_ERR(dentry);
|
|
if (IS_ERR(dentry))
|
|
goto out_unlock;
|
|
|
|
error = btrfs_may_create(dir, dentry);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
/*
|
|
* even if this name doesn't exist, we may get hash collisions.
|
|
* check for them now when we can safely fail
|
|
*/
|
|
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
|
|
dir->i_ino,
|
|
name,
|
|
namelen
|
|
#ifdef MY_ABC_HERE
|
|
, 1
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
|
|
goto out_up_read;
|
|
|
|
if (snap_src)
|
|
error = create_snapshot(snap_src, dir, dentry, readonly, inherit
|
|
#ifdef MY_ABC_HERE
|
|
,copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
else
|
|
error = create_subvol(dir, dentry, name, namelen, inherit);
|
|
|
|
if (!error)
|
|
fsnotify_mkdir(dir, dentry);
|
|
out_up_read:
|
|
up_read(&fs_info->subvol_sem);
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock:
|
|
inode_unlock(dir);
|
|
return error;
|
|
}
|
|
|
|
static noinline int btrfs_mksnapshot(const struct path *parent,
|
|
const char *name, int namelen,
|
|
struct btrfs_root *root,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit
|
|
#ifdef MY_ABC_HERE
|
|
,u64 copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
)
|
|
{
|
|
int ret;
|
|
bool snapshot_force_cow = false;
|
|
|
|
/*
|
|
* Force new buffered writes to reserve space even when NOCOW is
|
|
* possible. This is to avoid later writeback (running dealloc) to
|
|
* fallback to COW mode and unexpectedly fail with ENOSPC.
|
|
*/
|
|
btrfs_drew_read_lock(&root->snapshot_lock);
|
|
|
|
ret = btrfs_start_delalloc_snapshot(root);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* All previous writes have started writeback in NOCOW mode, so now
|
|
* we force future writes to fallback to COW mode during snapshot
|
|
* creation.
|
|
*/
|
|
atomic_inc(&root->snapshot_force_cow);
|
|
snapshot_force_cow = true;
|
|
|
|
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
|
|
|
|
ret = btrfs_mksubvol(parent, name, namelen,
|
|
root, readonly, inherit
|
|
#ifdef MY_ABC_HERE
|
|
,copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
out:
|
|
if (snapshot_force_cow)
|
|
atomic_dec(&root->snapshot_force_cow);
|
|
btrfs_drew_read_unlock(&root->snapshot_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* When we're defragging a range, we don't want to kick it off again
|
|
* if it is really just waiting for delalloc to send it down.
|
|
* If we find a nice big extent or delalloc range for the bytes in the
|
|
* file you want to defrag, we return 0 to let you know to skip this
|
|
* part of the file
|
|
*/
|
|
static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
|
|
{
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 end;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (em) {
|
|
end = extent_map_end(em);
|
|
free_extent_map(em);
|
|
if (end - offset > thresh)
|
|
return 0;
|
|
}
|
|
/* if we already have a nice delalloc here, just stop */
|
|
thresh /= 2;
|
|
end = count_range_bits(io_tree, &offset, offset + thresh,
|
|
thresh, EXTENT_DELALLOC, 1);
|
|
if (end >= thresh)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* helper function to walk through a file and find extents
|
|
* newer than a specific transid, and smaller than thresh.
|
|
*
|
|
* This is used by the defragging code to find new and small
|
|
* extents
|
|
*/
|
|
static int find_new_extents(struct btrfs_root *root,
|
|
struct inode *inode, u64 newer_than,
|
|
u64 *off, u32 thresh)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_key min_key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *extent;
|
|
int type;
|
|
int ret;
|
|
u64 ino = btrfs_ino(BTRFS_I(inode));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
min_key.objectid = ino;
|
|
min_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
min_key.offset = *off;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_forward(root, &min_key, path, newer_than);
|
|
if (ret != 0)
|
|
goto none;
|
|
process_slot:
|
|
if (min_key.objectid != ino)
|
|
goto none;
|
|
if (min_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
goto none;
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
type = btrfs_file_extent_type(leaf, extent);
|
|
if (type == BTRFS_FILE_EXTENT_REG &&
|
|
btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
|
|
check_defrag_in_cache(inode, min_key.offset, thresh)) {
|
|
*off = min_key.offset;
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
path->slots[0]++;
|
|
if (path->slots[0] < btrfs_header_nritems(leaf)) {
|
|
btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
|
|
goto process_slot;
|
|
}
|
|
|
|
if (min_key.offset == (u64)-1)
|
|
goto none;
|
|
|
|
min_key.offset++;
|
|
btrfs_release_path(path);
|
|
}
|
|
none:
|
|
btrfs_free_path(path);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
u64 len = PAGE_SIZE;
|
|
|
|
/*
|
|
* hopefully we have this extent in the tree already, try without
|
|
* the full extent lock
|
|
*/
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
struct extent_state *cached = NULL;
|
|
u64 end = start + len - 1;
|
|
|
|
/* get the big lock and read metadata off disk */
|
|
lock_extent_bits(io_tree, start, end, &cached);
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
|
|
unlock_extent_cached(io_tree, start, end, &cached);
|
|
|
|
if (IS_ERR(em))
|
|
return NULL;
|
|
}
|
|
|
|
return em;
|
|
}
|
|
|
|
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
|
|
{
|
|
struct extent_map *next;
|
|
bool ret = true;
|
|
|
|
/* this is the last extent */
|
|
if (em->start + em->len >= i_size_read(inode))
|
|
return false;
|
|
|
|
next = defrag_lookup_extent(inode, em->start + em->len);
|
|
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
|
|
ret = false;
|
|
else if ((em->block_start + em->block_len == next->block_start) &&
|
|
(em->block_len > SZ_128K && next->block_len > SZ_128K))
|
|
ret = false;
|
|
|
|
free_extent_map(next);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
/*
|
|
* Check if extent item usage is below threshold, this traverse the file
|
|
* extent data item in the way that clone range does.
|
|
*/
|
|
static int reclaim_check_extent_usage(struct inode *inode,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
struct ulist *disko_ulist, u64 start, u64 *endoff, u64 *release_size)
|
|
{
|
|
int ret = 0;
|
|
int extent_rewrite = 0;
|
|
int slot;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct ulist_node *unode;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_file_extent_item *item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
u8 type;
|
|
u64 extent_item_use = 0;
|
|
u32 syno_ratio_denom = 3; // Use 2/3 as default value
|
|
u32 syno_ratio_nom = 2;
|
|
u32 syno_thresh = 8 * 1024 * 1024; // Default thresh is 8MiB
|
|
u64 extent_disko = 0;
|
|
u64 extent_ram_bytes = 0;
|
|
u64 extent_datao = 0;
|
|
u64 num_bytes;
|
|
u64 search_end = 0;
|
|
u32 nritems;
|
|
u64 relative_offset;
|
|
bool skip_cross_ref_check = false, strict = false;
|
|
|
|
if (range->syno_ratio_denom != 0 && range->syno_ratio_nom != 0) {
|
|
syno_ratio_denom = range->syno_ratio_denom;
|
|
syno_ratio_nom = range->syno_ratio_nom;
|
|
}
|
|
if (range->syno_thresh != 0)
|
|
syno_thresh = (u32)range->syno_thresh * 4096;
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SKIP_CROSS_REF_CHECK)
|
|
skip_cross_ref_check = true;
|
|
else if (range->flags & BTRFS_DEFRAG_RANGE_SKIP_FAST_SNAPSHOT_CHECK)
|
|
strict = true;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
extent_rewrite = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
path->reada = READA_FORWARD;
|
|
path->leave_spinning = 1;
|
|
|
|
key.objectid = btrfs_ino(binode);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = start;
|
|
|
|
again:
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
extent_rewrite = ret;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* First search, if no extent item that starts at offset off was
|
|
* found but the previous item is an extent item, it's possible
|
|
* it might overlap our target range, therefore process it.
|
|
*/
|
|
if (key.offset == start && ret > 0 && path->slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0] - 1);
|
|
if (key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
extent_rewrite = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0) {
|
|
*endoff = (u64) -1; // skip to the end
|
|
goto out;
|
|
}
|
|
}
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
key.objectid != btrfs_ino(binode)) {
|
|
*endoff = (u64) -1; // skip to the end
|
|
goto out;
|
|
}
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
btrfs_release_path(path);
|
|
key.offset++;
|
|
goto again;
|
|
}
|
|
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
type = btrfs_file_extent_type(leaf, item);
|
|
if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
*endoff = (u64)-1; // skip to the end
|
|
goto out;
|
|
}
|
|
extent_disko = btrfs_file_extent_disk_bytenr(leaf, item);
|
|
extent_ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
|
|
extent_datao = btrfs_file_extent_offset(leaf, item);
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, item);
|
|
|
|
*endoff = key.offset + num_bytes - 1;
|
|
if (extent_disko == 0)
|
|
goto out;
|
|
|
|
unode = ulist_search(disko_ulist, extent_disko);
|
|
if (unode) {
|
|
btrfs_free_path(path);
|
|
return unode->aux;
|
|
}
|
|
|
|
if (btrfs_file_extent_compression(leaf, item) ||
|
|
btrfs_file_extent_encryption(leaf, item) ||
|
|
btrfs_file_extent_other_encoding(leaf, item) ||
|
|
btrfs_extent_readonly(root->fs_info, extent_disko))
|
|
goto add_list;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (skip_cross_ref_check) {
|
|
// don't cow the data which we already dedupe while deduping reclaim
|
|
if (BTRFS_FILE_EXTENT_DEDUPED & btrfs_file_extent_syno_flag(leaf, item))
|
|
goto add_list;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If this EXTENT_ITEM spans across the file offset beyond our range,
|
|
* don't defrag it.
|
|
*/
|
|
relative_offset = key.offset - extent_datao;
|
|
if (relative_offset >= LLONG_MAX)
|
|
relative_offset = 0;
|
|
if (relative_offset < range->start)
|
|
goto add_list;
|
|
|
|
btrfs_release_path(path);
|
|
|
|
if (!skip_cross_ref_check) {
|
|
/*
|
|
* There's possible race between the time this check is done
|
|
* and before we actuaully rewrite all extent data key that
|
|
* reference this extent item.
|
|
*/
|
|
ret = btrfs_cross_ref_exist(root, btrfs_ino(binode),
|
|
key.offset - extent_datao, extent_disko, strict);
|
|
if (ret)
|
|
goto add_list;
|
|
}
|
|
|
|
extent_item_use = num_bytes;
|
|
search_end = key.offset + extent_ram_bytes - extent_datao;
|
|
key.offset += num_bytes;
|
|
while (1) {
|
|
u64 disko, datal;
|
|
u64 next_key_min_offset = key.offset + 1;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
extent_rewrite = ret;
|
|
goto out;
|
|
}
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
extent_rewrite = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
}
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY ||
|
|
key.objectid != btrfs_ino(binode))
|
|
break;
|
|
if (key.offset > search_end)
|
|
break;
|
|
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
type = btrfs_file_extent_type(leaf, item);
|
|
if (type == BTRFS_FILE_EXTENT_INLINE)
|
|
goto next;
|
|
disko = btrfs_file_extent_disk_bytenr(leaf, item);
|
|
datal = btrfs_file_extent_num_bytes(leaf, item);
|
|
next_key_min_offset = key.offset + datal;
|
|
/*
|
|
* This extent data points to a hole
|
|
*/
|
|
if (disko == 0)
|
|
goto next;
|
|
/*
|
|
* <---written---><---prealloc--->
|
|
* <------- extent item 1 ------->
|
|
* There are some parts of extent that are prealloc, so don't
|
|
* rewrite this. Otherwise, we'll end up like the following,
|
|
* <---written---> <---prealloc--->
|
|
* <extent item 2> <------- extent item 1 ------->
|
|
*/
|
|
if (disko != extent_disko)
|
|
goto next;
|
|
if (type == BTRFS_FILE_EXTENT_PREALLOC)
|
|
goto add_list;
|
|
/*
|
|
* If this EXTENT_ITEM spans across the file offset beyond our range,
|
|
* don't reclaim it.
|
|
*/
|
|
if (range->len != (u64) -1 && range->len != 0 &&
|
|
key.offset + datal > range->start + range->len)
|
|
goto add_list;
|
|
extent_item_use += datal;
|
|
next:
|
|
btrfs_release_path(path);
|
|
key.offset = next_key_min_offset;
|
|
}
|
|
if (extent_item_use * syno_ratio_denom <= extent_ram_bytes * syno_ratio_nom ||
|
|
extent_ram_bytes >= extent_item_use + syno_thresh) {
|
|
extent_rewrite = 1;
|
|
*release_size += extent_ram_bytes - extent_item_use;
|
|
}
|
|
add_list:
|
|
btrfs_release_path(path);
|
|
/*
|
|
* bytenr is stored in val.
|
|
* If the extent_item is to be rewritten, we have aux = 1.
|
|
* Otherwise, aux = 0.
|
|
*/
|
|
if (ulist_add_lru_adjust(disko_ulist, extent_disko, extent_rewrite, GFP_NOFS) &&
|
|
disko_ulist->nnodes > ULIST_NODES_MAX)
|
|
ulist_remove_first(disko_ulist);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return extent_rewrite;
|
|
}
|
|
|
|
static int reclaim_check_partial_used(struct inode *inode, u64 start, u64 *endoff,
|
|
struct ulist *fileo_ulist, u64 *rewrite_size)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
int extent_rewrite = 0;
|
|
u64 disk_offset = 0, disk_bytenr = 0;
|
|
u64 file_extent_start = 0, file_extent_num_bytes = 0;
|
|
struct ulist_node *unode;
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_file_extent_item *item;
|
|
struct extent_buffer *leaf;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
extent_rewrite = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root, path,
|
|
btrfs_ino(BTRFS_I(inode)), start, 0);
|
|
if (0 > ret) {
|
|
extent_rewrite = ret;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
|
|
disk_offset = btrfs_file_extent_offset(leaf, item);
|
|
file_extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
|
|
file_extent_start = key.offset;
|
|
|
|
*endoff = key.offset + file_extent_num_bytes - 1;
|
|
|
|
unode = ulist_search(fileo_ulist, file_extent_start);
|
|
if (unode) {
|
|
extent_rewrite = unode->aux;
|
|
goto out;
|
|
}
|
|
|
|
if (BTRFS_FILE_EXTENT_REG != btrfs_file_extent_type(leaf, item) ||
|
|
btrfs_file_extent_compression(leaf, item) ||
|
|
btrfs_file_extent_encryption(leaf, item) ||
|
|
btrfs_file_extent_other_encoding(leaf, item) ||
|
|
btrfs_extent_readonly(root->fs_info, disk_bytenr))
|
|
goto out;
|
|
|
|
/* skip full used and hole */
|
|
if (file_extent_num_bytes >= btrfs_file_extent_disk_num_bytes(leaf, item))
|
|
goto out;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
// don't cow the data which we already dedupe while deduping reclaim
|
|
if (BTRFS_FILE_EXTENT_DEDUPED & btrfs_file_extent_syno_flag(leaf, item))
|
|
goto out;
|
|
#endif
|
|
extent_rewrite = 1;
|
|
*rewrite_size += file_extent_num_bytes;
|
|
|
|
out:
|
|
if (ulist_add_lru_adjust(fileo_ulist, file_extent_start, extent_rewrite, GFP_NOFS) &&
|
|
fileo_ulist->nnodes > ULIST_NODES_MAX)
|
|
ulist_remove_first(fileo_ulist);
|
|
|
|
btrfs_free_path(path);
|
|
return extent_rewrite;
|
|
}
|
|
|
|
static int should_force_reclaim_range(struct inode *inode, u64 start,
|
|
u64 *skip, u64 *defrag_end, struct ulist *fileo_ulist,
|
|
u64 *rewrite_size)
|
|
{
|
|
int ret;
|
|
|
|
ret = reclaim_check_partial_used(inode, start, skip, fileo_ulist, rewrite_size);
|
|
*defrag_end = *skip;
|
|
return ret;
|
|
}
|
|
|
|
static int should_reclaim_range(struct inode *inode, u64 start,
|
|
u64 *skip, u64 *defrag_end,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
struct ulist *disko_ulist,
|
|
u64 *release_size)
|
|
{
|
|
int ret;
|
|
|
|
ret = reclaim_check_extent_usage(inode, range,
|
|
disko_ulist, start, skip, release_size);
|
|
*defrag_end = *skip;
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
|
|
static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
|
|
u64 *last_len, u64 *skip, u64 *defrag_end,
|
|
int compress)
|
|
{
|
|
struct extent_map *em;
|
|
int ret = 1;
|
|
bool next_mergeable = true;
|
|
bool prev_mergeable = true;
|
|
|
|
/*
|
|
* make sure that once we start defragging an extent, we keep on
|
|
* defragging it
|
|
*/
|
|
if (start < *defrag_end)
|
|
return 1;
|
|
|
|
*skip = 0;
|
|
|
|
em = defrag_lookup_extent(inode, start);
|
|
if (!em)
|
|
return 0;
|
|
|
|
/* this will cover holes, and inline extents */
|
|
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!*defrag_end)
|
|
prev_mergeable = false;
|
|
|
|
next_mergeable = defrag_check_next_extent(inode, em);
|
|
/*
|
|
* we hit a real extent, if it is big or the next extent is not a
|
|
* real extent, don't bother defragging it
|
|
*/
|
|
if (!compress && (*last_len == 0 || *last_len >= thresh) &&
|
|
(em->len >= thresh || (!next_mergeable && !prev_mergeable)))
|
|
ret = 0;
|
|
out:
|
|
/*
|
|
* last_len ends up being a counter of how many bytes we've defragged.
|
|
* every time we choose not to defrag an extent, we reset *last_len
|
|
* so that the next tiny extent will force a defrag.
|
|
*
|
|
* The end result of this is that tiny extents before a single big
|
|
* extent will force at least part of that big extent to be defragged.
|
|
*/
|
|
if (ret) {
|
|
*defrag_end = extent_map_end(em);
|
|
} else {
|
|
*last_len = 0;
|
|
*skip = extent_map_end(em);
|
|
*defrag_end = 0;
|
|
}
|
|
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* it doesn't do much good to defrag one or two pages
|
|
* at a time. This pulls in a nice chunk of pages
|
|
* to COW and defrag.
|
|
*
|
|
* It also makes sure the delalloc code has enough
|
|
* dirty data to avoid making new small extents as part
|
|
* of the defrag
|
|
*
|
|
* It's a good idea to start RA on this range
|
|
* before calling this.
|
|
*/
|
|
#ifdef MY_ABC_HERE
|
|
int cluster_pages_for_defrag(struct inode *inode,
|
|
#else
|
|
static int cluster_pages_for_defrag(struct inode *inode,
|
|
#endif /* MY_ABC_HERE */
|
|
struct page **pages,
|
|
unsigned long start_index,
|
|
unsigned long num_pages)
|
|
{
|
|
unsigned long file_end;
|
|
u64 isize = i_size_read(inode);
|
|
u64 page_start;
|
|
u64 page_end;
|
|
u64 page_cnt;
|
|
u64 start = (u64)start_index << PAGE_SHIFT;
|
|
u64 search_start;
|
|
int ret;
|
|
int i;
|
|
int i_done;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_io_tree *tree;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
|
|
|
|
file_end = (isize - 1) >> PAGE_SHIFT;
|
|
if (!isize || start_index > file_end)
|
|
return 0;
|
|
|
|
page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
|
|
|
|
ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
|
|
start, page_cnt << PAGE_SHIFT);
|
|
if (ret)
|
|
return ret;
|
|
i_done = 0;
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
|
|
/* step one, lock all the pages */
|
|
for (i = 0; i < page_cnt; i++) {
|
|
struct page *page;
|
|
again:
|
|
page = find_or_create_page(inode->i_mapping,
|
|
start_index + i, mask);
|
|
if (!page)
|
|
break;
|
|
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_SIZE - 1;
|
|
while (1) {
|
|
lock_extent_bits(tree, page_start, page_end,
|
|
&cached_state);
|
|
ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
|
|
page_start);
|
|
unlock_extent_cached(tree, page_start, page_end,
|
|
&cached_state);
|
|
if (!ordered)
|
|
break;
|
|
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_page(page);
|
|
/*
|
|
* we unlocked the page above, so we need check if
|
|
* it was released or not.
|
|
*/
|
|
if (page->mapping != inode->i_mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (!PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (page->mapping != inode->i_mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
|
|
pages[i] = page;
|
|
i_done++;
|
|
}
|
|
if (!i_done || ret)
|
|
goto out;
|
|
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE))
|
|
goto out;
|
|
|
|
/*
|
|
* so now we have a nice long stream of locked
|
|
* and up to date pages, lets wait on them
|
|
*/
|
|
for (i = 0; i < i_done; i++)
|
|
wait_on_page_writeback(pages[i]);
|
|
|
|
page_start = page_offset(pages[0]);
|
|
page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree,
|
|
page_start, page_end - 1, &cached_state);
|
|
|
|
/*
|
|
* When defragmenting we skip ranges that have holes or inline extents,
|
|
* (check should_defrag_range()), to avoid unnecessary IO and wasting
|
|
* space. At btrfs_defrag_file(), we check if a range should be defragged
|
|
* before locking the inode and then, if it should, we trigger a sync
|
|
* page cache readahead - we lock the inode only after that to avoid
|
|
* blocking for too long other tasks that possibly want to operate on
|
|
* other file ranges. But before we were able to get the inode lock,
|
|
* some other task may have punched a hole in the range, or we may have
|
|
* now an inline extent, in which case we should not defrag. So check
|
|
* for that here, where we have the inode and the range locked, and bail
|
|
* out if that happened.
|
|
*/
|
|
search_start = page_start;
|
|
while (search_start < page_end) {
|
|
struct extent_map *em;
|
|
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
|
|
page_end - search_start);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_unlock_range;
|
|
}
|
|
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
|
|
free_extent_map(em);
|
|
/* Ok, 0 means we did not defrag anything */
|
|
ret = 0;
|
|
goto out_unlock_range;
|
|
}
|
|
search_start = extent_map_end(em);
|
|
free_extent_map(em);
|
|
}
|
|
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
|
|
page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 0, 0, &cached_state);
|
|
|
|
if (i_done != page_cnt) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
|
|
start, (page_cnt - i_done) << PAGE_SHIFT, true);
|
|
}
|
|
|
|
|
|
set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
|
|
&cached_state);
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
page_start, page_end - 1, &cached_state);
|
|
|
|
for (i = 0; i < i_done; i++) {
|
|
clear_page_dirty_for_io(pages[i]);
|
|
ClearPageChecked(pages[i]);
|
|
set_page_extent_mapped(pages[i]);
|
|
set_page_dirty(pages[i]);
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
|
|
extent_changeset_free(data_reserved);
|
|
return i_done;
|
|
|
|
out_unlock_range:
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
page_start, page_end - 1, &cached_state);
|
|
out:
|
|
for (i = 0; i < i_done; i++) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
|
|
start, page_cnt << PAGE_SHIFT, true);
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
extern int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
int btrfs_defrag_file(struct inode *inode, struct file *file,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
u64 newer_than, unsigned long max_to_defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct file_ra_state *ra = NULL;
|
|
unsigned long last_index;
|
|
u64 isize = i_size_read(inode);
|
|
u64 last_len = 0;
|
|
u64 skip = 0;
|
|
u64 defrag_end = 0;
|
|
u64 newer_off = range->start;
|
|
unsigned long i;
|
|
unsigned long ra_index = 0;
|
|
int ret;
|
|
int defrag_count = 0;
|
|
#ifdef MY_ABC_HERE
|
|
int compress_type = BTRFS_COMPRESS_DEFAULT;
|
|
#else
|
|
int compress_type = BTRFS_COMPRESS_ZLIB;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
u64 last_rec_pos = 0;
|
|
u64 one_tenth_isize = i_size_read(inode) / 10;
|
|
int should_defrag_range_ret = 0;
|
|
int defrag_success = 0;
|
|
struct ulist *disko_ulist = NULL;
|
|
struct ulist *fileo_ulist = NULL;
|
|
struct ulist *orig_extent = NULL;
|
|
time64_t last_show = ktime_get_seconds();
|
|
int print_stdout = 0;
|
|
u64 release_size = 0, rewrite_size = 0;
|
|
struct file *file_stdout = NULL;
|
|
loff_t off;
|
|
char buf[512];
|
|
#endif /* MY_ABC_HERE */
|
|
u32 extent_thresh = range->extent_thresh;
|
|
unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
|
|
unsigned long cluster = max_cluster;
|
|
u64 new_align = ~((u64)SZ_128K - 1);
|
|
struct page **pages = NULL;
|
|
bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG &&
|
|
range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
|
|
memset(buf, 0, sizeof(buf));
|
|
off = 0;
|
|
snprintf(buf, sizeof(buf), "[syno defrag] root:%llu ino:%llu "
|
|
"start:%llu len:%llu thresh:%u dem:%u nom:%u\n",
|
|
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)),
|
|
range->start, range->len,
|
|
range->syno_thresh, range->syno_ratio_denom,
|
|
range->syno_ratio_nom);
|
|
file_stdout = fget(1);
|
|
write_buf(file_stdout, buf, sizeof(buf), &off);
|
|
if (one_tenth_isize < 256 * 1024 * 1024)
|
|
one_tenth_isize = 256 * 1024 * 1024;
|
|
}
|
|
i = 0; // To avoid use maybe-uninitialized warning
|
|
#endif /* MY_ABC_HERE */
|
|
if (range->start >= isize)
|
|
return -EINVAL;
|
|
|
|
if (do_compress) {
|
|
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
|
|
return -EINVAL;
|
|
if (range->compress_type)
|
|
compress_type = range->compress_type;
|
|
}
|
|
|
|
if (extent_thresh == 0)
|
|
extent_thresh = SZ_256K;
|
|
|
|
/*
|
|
* If we were not given a file, allocate a readahead context. As
|
|
* readahead is just an optimization, defrag will work without it so
|
|
* we don't error out.
|
|
*/
|
|
if (!file) {
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (ra)
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
} else {
|
|
ra = &file->f_ra;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
|
|
disko_ulist = ulist_alloc(GFP_NOFS);
|
|
if (!disko_ulist) {
|
|
ret = -ENOMEM;
|
|
goto out_ra;
|
|
}
|
|
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
|
|
fileo_ulist = ulist_alloc(GFP_NOFS);
|
|
if (!fileo_ulist) {
|
|
ret = -ENOMEM;
|
|
goto out_ra;
|
|
}
|
|
orig_extent = ulist_alloc(GFP_NOFS);
|
|
if (!orig_extent) {
|
|
ret = -ENOMEM;
|
|
goto out_ra;
|
|
}
|
|
ret = get_extent_item_list(inode, range->start, range->len, orig_extent);
|
|
if (0 > ret)
|
|
goto out_ra;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages) {
|
|
ret = -ENOMEM;
|
|
goto out_ra;
|
|
}
|
|
|
|
/* find the last page to defrag */
|
|
if (range->start + range->len > range->start) {
|
|
last_index = min_t(u64, isize - 1,
|
|
range->start + range->len - 1) >> PAGE_SHIFT;
|
|
} else {
|
|
last_index = (isize - 1) >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (newer_than) {
|
|
ret = find_new_extents(root, inode, newer_than,
|
|
&newer_off, SZ_64K);
|
|
if (!ret) {
|
|
range->start = newer_off;
|
|
/*
|
|
* we always align our defrag to help keep
|
|
* the extents in the file evenly spaced
|
|
*/
|
|
i = (newer_off & new_align) >> PAGE_SHIFT;
|
|
} else
|
|
goto out_ra;
|
|
} else {
|
|
i = range->start >> PAGE_SHIFT;
|
|
}
|
|
if (!max_to_defrag)
|
|
max_to_defrag = last_index - i + 1;
|
|
|
|
/*
|
|
* make writeback starts from i, so the defrag range can be
|
|
* written sequentially.
|
|
*/
|
|
if (i < inode->i_mapping->writeback_index)
|
|
inode->i_mapping->writeback_index = i;
|
|
|
|
while (i <= last_index && defrag_count < max_to_defrag &&
|
|
(i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
|
|
/*
|
|
* make sure we stop running if someone unmounts
|
|
* the FS
|
|
*/
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE))
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
btrfs_debug(fs_info, "defrag_file cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
|
|
if (((u64)i << PAGE_SHIFT) - last_rec_pos >= one_tenth_isize) {
|
|
last_rec_pos = (u64)i << PAGE_SHIFT;
|
|
print_stdout = 1;
|
|
}
|
|
if (print_stdout || ktime_get_seconds() - last_show > 60) {
|
|
memset(buf, 0, sizeof(buf));
|
|
off = 0;
|
|
snprintf(buf, sizeof(buf), "[syno defrag status] root:%llu ino:%llu "
|
|
"progress:%lu/%lu release size:%llu\n",
|
|
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)),
|
|
i, last_index, release_size);
|
|
write_buf(file_stdout, buf, sizeof(buf), &off);
|
|
last_show = ktime_get_seconds();
|
|
print_stdout = 0;
|
|
}
|
|
}
|
|
should_defrag_range_ret = should_reclaim_range(inode, (u64)i << PAGE_SHIFT,
|
|
&skip, &defrag_end, range, disko_ulist, &release_size);
|
|
if (should_defrag_range_ret < 0) {
|
|
ret = should_defrag_range_ret;
|
|
goto out_ra;
|
|
}
|
|
if (!should_defrag_range_ret) {
|
|
unsigned long next;
|
|
if (skip == (u64) -1)
|
|
break;
|
|
/*
|
|
* the should_defrag function tells us how much to skip
|
|
* bump our counter by the suggested amount
|
|
*/
|
|
next = DIV_ROUND_UP(skip, PAGE_SIZE);
|
|
i = max(i + 1, next);
|
|
continue;
|
|
}
|
|
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
|
|
should_defrag_range_ret = should_force_reclaim_range(inode, (u64)i << PAGE_SHIFT,
|
|
&skip, &defrag_end, fileo_ulist, &rewrite_size);
|
|
if (should_defrag_range_ret < 0) {
|
|
ret = should_defrag_range_ret;
|
|
goto out_ra;
|
|
}
|
|
if (!should_defrag_range_ret) {
|
|
unsigned long next;
|
|
if (skip == (u64) -1)
|
|
break;
|
|
/*
|
|
* the should_defrag function tells us how much to skip
|
|
* bump our counter by the suggested amount
|
|
*/
|
|
next = DIV_ROUND_UP(skip, PAGE_SIZE);
|
|
i = max(i + 1, next);
|
|
continue;
|
|
}
|
|
} else
|
|
#endif /* MY_ABC_HERE */
|
|
if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
|
|
extent_thresh, &last_len, &skip,
|
|
&defrag_end, do_compress)){
|
|
unsigned long next;
|
|
/*
|
|
* the should_defrag function tells us how much to skip
|
|
* bump our counter by the suggested amount
|
|
*/
|
|
next = DIV_ROUND_UP(skip, PAGE_SIZE);
|
|
i = max(i + 1, next);
|
|
continue;
|
|
}
|
|
|
|
if (!newer_than) {
|
|
cluster = (PAGE_ALIGN(defrag_end) >>
|
|
PAGE_SHIFT) - i;
|
|
cluster = min(cluster, max_cluster);
|
|
} else {
|
|
cluster = max_cluster;
|
|
}
|
|
|
|
if (i + cluster > ra_index) {
|
|
ra_index = max(i, ra_index);
|
|
if (ra)
|
|
page_cache_sync_readahead(inode->i_mapping, ra,
|
|
file, ra_index, cluster);
|
|
ra_index += cluster;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
if (IS_SWAPFILE(inode)) {
|
|
ret = -ETXTBSY;
|
|
} else {
|
|
if (do_compress)
|
|
BTRFS_I(inode)->defrag_compress = compress_type;
|
|
ret = cluster_pages_for_defrag(inode, pages, i, cluster);
|
|
}
|
|
if (ret < 0) {
|
|
inode_unlock(inode);
|
|
goto out_ra;
|
|
}
|
|
#ifdef MY_ABC_HERE
|
|
defrag_success = 1;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
defrag_count += ret;
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
inode_unlock(inode);
|
|
|
|
if (newer_than) {
|
|
if (newer_off == (u64)-1)
|
|
break;
|
|
|
|
if (ret > 0)
|
|
i += ret;
|
|
|
|
newer_off = max(newer_off + 1,
|
|
(u64)i << PAGE_SHIFT);
|
|
|
|
ret = find_new_extents(root, inode, newer_than,
|
|
&newer_off, SZ_64K);
|
|
if (!ret) {
|
|
range->start = newer_off;
|
|
i = (newer_off & new_align) >> PAGE_SHIFT;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
if (ret > 0) {
|
|
i += ret;
|
|
last_len += ret << PAGE_SHIFT;
|
|
} else {
|
|
i++;
|
|
last_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (defrag_success && (range->flags & BTRFS_DEFRAG_RANGE_START_IO_RANGE)) {
|
|
btrfs_wait_ordered_range(inode, range->start, range->len);
|
|
} else
|
|
#endif /* MY_ABC_HERE */
|
|
if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
|
|
if (range->compress_type == BTRFS_COMPRESS_LZO) {
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
|
|
} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
|
|
}
|
|
|
|
ret = defrag_count;
|
|
|
|
out_ra:
|
|
if (do_compress) {
|
|
inode_lock(inode);
|
|
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
inode_unlock(inode);
|
|
}
|
|
#ifdef MY_ABC_HERE
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
|
|
memset(buf, 0, sizeof(buf));
|
|
off = 0;
|
|
snprintf(buf, sizeof(buf), "[syno defrag] finish root:%llu ino:%llu "
|
|
"end_pos: %lu release size:%llu\n",
|
|
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)), i, release_size);
|
|
write_buf(file_stdout, buf, sizeof(buf), &off);
|
|
}
|
|
range->release_size = release_size;
|
|
ulist_free(disko_ulist);
|
|
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
|
|
u64 release_extent_size = 0;
|
|
if (!extent_same_release_size_accounting(orig_extent, root, &release_extent_size)) {
|
|
/*
|
|
* rewrite_size may larger than released in force reclaim,
|
|
* but range->release_size is unsigned, user space should handle it.
|
|
*/
|
|
range->release_size = release_extent_size - rewrite_size;
|
|
}
|
|
ulist_free(fileo_ulist);
|
|
ulist_free(orig_extent);
|
|
}
|
|
if (file_stdout)
|
|
fput(file_stdout);
|
|
#endif /* MY_ABC_HERE */
|
|
if (!file)
|
|
kfree(ra);
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_resize(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 new_size;
|
|
u64 old_size;
|
|
u64 devid = 1;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device = NULL;
|
|
char *sizestr;
|
|
char *retptr;
|
|
char *devstr = NULL;
|
|
int ret = 0;
|
|
int mod = 0;
|
|
#ifdef MY_ABC_HERE
|
|
int dry_run = 0;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
|
|
mnt_drop_write_file(file);
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
}
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
|
|
sizestr = vol_args->name;
|
|
devstr = strchr(sizestr, ':');
|
|
if (devstr) {
|
|
sizestr = devstr + 1;
|
|
*devstr = '\0';
|
|
devstr = vol_args->name;
|
|
ret = kstrtoull(devstr, 10, &devid);
|
|
if (ret)
|
|
goto out_free;
|
|
if (!devid) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
btrfs_info(fs_info, "resizing devid %llu", devid);
|
|
}
|
|
|
|
device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
|
|
if (!device) {
|
|
btrfs_info(fs_info, "resizer unable to find device %llu",
|
|
devid);
|
|
ret = -ENODEV;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
btrfs_info(fs_info,
|
|
"resizer unable to apply on readonly device %llu",
|
|
devid);
|
|
ret = -EPERM;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!strcmp(sizestr, "max"))
|
|
new_size = device->bdev->bd_inode->i_size;
|
|
else {
|
|
if (sizestr[0] == '-') {
|
|
mod = -1;
|
|
sizestr++;
|
|
} else if (sizestr[0] == '+') {
|
|
mod = 1;
|
|
sizestr++;
|
|
#ifdef MY_ABC_HERE
|
|
if (sizestr[0] == '?') {
|
|
dry_run = 1;
|
|
sizestr++;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
}
|
|
new_size = memparse(sizestr, &retptr);
|
|
if (*retptr != '\0' || new_size == 0) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
ret = -EPERM;
|
|
goto out_free;
|
|
}
|
|
|
|
old_size = btrfs_device_get_total_bytes(device);
|
|
|
|
if (mod < 0) {
|
|
if (new_size > old_size) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
new_size = old_size - new_size;
|
|
} else if (mod > 0) {
|
|
if (new_size > ULLONG_MAX - old_size) {
|
|
ret = -ERANGE;
|
|
goto out_free;
|
|
}
|
|
new_size = old_size + new_size;
|
|
}
|
|
|
|
if (new_size < SZ_256M) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
if (new_size > device->bdev->bd_inode->i_size) {
|
|
ret = -EFBIG;
|
|
goto out_free;
|
|
}
|
|
#ifdef MY_ABC_HERE
|
|
if (dry_run)
|
|
goto out_free;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
new_size = round_down(new_size, fs_info->sectorsize);
|
|
|
|
if (new_size > old_size) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
ret = btrfs_grow_device(trans, device, new_size);
|
|
btrfs_commit_transaction(trans);
|
|
} else if (new_size < old_size) {
|
|
ret = btrfs_shrink_device(device, new_size);
|
|
} /* equal, nothing need to do */
|
|
|
|
if (ret == 0 && new_size != old_size)
|
|
btrfs_info_in_rcu(fs_info,
|
|
"resize device %s (devid %llu) from %llu to %llu",
|
|
rcu_str_deref(device->name), device->devid,
|
|
old_size, new_size);
|
|
out_free:
|
|
kfree(vol_args);
|
|
out:
|
|
btrfs_exclop_finish(fs_info);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int __btrfs_ioctl_snap_create(struct file *file,
|
|
const char *name, unsigned long fd, int subvol,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit
|
|
#ifdef MY_ABC_HERE
|
|
,u64 copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
)
|
|
{
|
|
int namelen;
|
|
int ret = 0;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
namelen = strlen(name);
|
|
if (strchr(name, '/')) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (name[0] == '.' &&
|
|
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
|
|
ret = -EEXIST;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (subvol) {
|
|
ret = btrfs_mksubvol(&file->f_path, name, namelen,
|
|
NULL, readonly, inherit
|
|
#ifdef MY_ABC_HERE
|
|
,copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
} else {
|
|
struct fd src = fdget(fd);
|
|
struct inode *src_inode;
|
|
if (!src.file) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
src_inode = file_inode(src.file);
|
|
if (src_inode->i_sb != file_inode(file)->i_sb) {
|
|
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
|
|
"Snapshot src from another FS");
|
|
ret = -EXDEV;
|
|
} else if (!inode_owner_or_capable(src_inode)) {
|
|
/*
|
|
* Subvolume creation is not restricted, but snapshots
|
|
* are limited to own subvolumes only
|
|
*/
|
|
ret = -EPERM;
|
|
} else {
|
|
ret = btrfs_mksnapshot(&file->f_path, name, namelen,
|
|
BTRFS_I(src_inode)->root,
|
|
readonly, inherit
|
|
#ifdef MY_ABC_HERE
|
|
,copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
}
|
|
fdput(src);
|
|
}
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
|
|
ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
|
|
subvol, false, NULL
|
|
#ifdef MY_ABC_HERE
|
|
,0
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
int ret;
|
|
bool readonly = false;
|
|
struct btrfs_qgroup_inherit *inherit = NULL;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
|
|
if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto free_args;
|
|
}
|
|
|
|
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
|
|
readonly = true;
|
|
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
|
|
u64 nums;
|
|
|
|
if (vol_args->size < sizeof(*inherit) ||
|
|
vol_args->size > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_args;
|
|
}
|
|
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
|
|
if (IS_ERR(inherit)) {
|
|
ret = PTR_ERR(inherit);
|
|
goto free_args;
|
|
}
|
|
|
|
if (inherit->num_qgroups > PAGE_SIZE ||
|
|
inherit->num_ref_copies > PAGE_SIZE ||
|
|
inherit->num_excl_copies > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_inherit;
|
|
}
|
|
|
|
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
|
|
2 * inherit->num_excl_copies;
|
|
if (vol_args->size != struct_size(inherit, qgroups, nums)) {
|
|
ret = -EINVAL;
|
|
goto free_inherit;
|
|
}
|
|
}
|
|
|
|
ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
|
|
subvol, readonly, inherit
|
|
#ifdef MY_ABC_HERE
|
|
,vol_args->copy_limit_from
|
|
#endif /* MY_ABC_HERE */
|
|
);
|
|
if (ret)
|
|
goto free_inherit;
|
|
free_inherit:
|
|
kfree(inherit);
|
|
free_args:
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
u64 flags = 0;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
|
|
return -EINVAL;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
if (btrfs_root_readonly(root))
|
|
flags |= BTRFS_SUBVOL_RDONLY;
|
|
#ifdef MY_ABC_HERE
|
|
if (btrfs_root_hide(root))
|
|
flags |= BTRFS_SUBVOL_HIDE;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
if (btrfs_root_disable_quota(root))
|
|
flags |= BTRFS_SUBVOL_DISABLE_QUOTA;
|
|
if (btrfs_root_noload_usrquota(root))
|
|
flags |= BTRFS_SUBVOL_NOLOAD_USRQUOTA;
|
|
if (btrfs_root_cmpr_ratio(root))
|
|
flags |= BTRFS_SUBVOL_CMPR_RATIO;
|
|
#endif /* MY_ABC_HERE */
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 root_flags;
|
|
u64 flags;
|
|
int ret = 0;
|
|
#if defined(MY_ABC_HERE) || \
|
|
defined(MY_ABC_HERE)
|
|
u64 mask = BTRFS_SUBVOL_RDONLY;
|
|
#endif /* MY_ABC_HERE ||
|
|
MY_ABC_HERE */
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (copy_from_user(&flags, arg, sizeof(flags))) {
|
|
ret = -EFAULT;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
mask |= BTRFS_SUBVOL_HIDE;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
mask |= BTRFS_SUBVOL_NOLOAD_USRQUOTA;
|
|
mask |= BTRFS_SUBVOL_CMPR_RATIO;
|
|
mask |= BTRFS_SUBVOL_DISABLE_QUOTA;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#if defined(MY_ABC_HERE) || \
|
|
defined(MY_ABC_HERE)
|
|
if (flags & ~mask) {
|
|
#else
|
|
if (flags & ~BTRFS_SUBVOL_RDONLY) {
|
|
#endif /* MY_ABC_HERE ||
|
|
MY_ABC_HERE */
|
|
ret = -EOPNOTSUPP;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (!!(flags & BTRFS_SUBVOL_HIDE) != btrfs_root_hide(root))
|
|
goto update_flags;
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
if (!!(flags & BTRFS_SUBVOL_DISABLE_QUOTA) != btrfs_root_disable_quota(root))
|
|
goto update_flags;
|
|
if (!!(flags & BTRFS_SUBVOL_NOLOAD_USRQUOTA) != btrfs_root_noload_usrquota(root))
|
|
goto update_flags;
|
|
if (!!(flags & BTRFS_SUBVOL_CMPR_RATIO) != btrfs_root_cmpr_ratio(root))
|
|
goto update_flags;
|
|
#endif /* MY_ABC_HERE */
|
|
/* nothing to do */
|
|
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
|
|
goto out_drop_sem;
|
|
|
|
#if defined(MY_ABC_HERE) || \
|
|
defined(MY_ABC_HERE)
|
|
update_flags:
|
|
#endif /* MY_ABC_HERE ||
|
|
MY_ABC_HERE */
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_RDONLY) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
|
|
#ifdef MY_ABC_HERE
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
|
|
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state)) {
|
|
spin_lock(&root->syno_usage_lock);
|
|
if (!(root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY)) {
|
|
spin_lock(&fs_info->syno_usage_lock);
|
|
if (fs_info->syno_usage_status.total_syno_subvol_usage_items >= root->syno_usage_root_status.total_syno_subvol_usage_items)
|
|
fs_info->syno_usage_status.total_syno_subvol_usage_items -= root->syno_usage_root_status.total_syno_subvol_usage_items;
|
|
else
|
|
fs_info->syno_usage_status.total_syno_subvol_usage_items = 0;
|
|
spin_unlock(&fs_info->syno_usage_lock);
|
|
}
|
|
root->syno_usage_root_status.flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY;
|
|
spin_unlock(&root->syno_usage_lock);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
} else {
|
|
/*
|
|
* Block RO -> RW transition if this subvolume is involved in
|
|
* send
|
|
*/
|
|
spin_lock(&root->root_item_lock);
|
|
if (root->send_in_progress == 0) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
|
|
#ifdef MY_ABC_HERE
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
|
|
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state)) {
|
|
spin_lock(&root->syno_usage_lock);
|
|
if (root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY) {
|
|
spin_lock(&fs_info->syno_usage_lock);
|
|
fs_info->syno_usage_status.total_syno_subvol_usage_items += root->syno_usage_root_status.total_syno_subvol_usage_items;
|
|
spin_unlock(&fs_info->syno_usage_lock);
|
|
}
|
|
root->syno_usage_root_status.flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY;
|
|
spin_unlock(&root->syno_usage_lock);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
spin_unlock(&root->root_item_lock);
|
|
} else {
|
|
spin_unlock(&root->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"Attempt to set subvolume %llu read-write during send",
|
|
root->root_key.objectid);
|
|
ret = -EPERM;
|
|
goto out_drop_sem;
|
|
}
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_HIDE)
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_HIDE);
|
|
else
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_HIDE);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_DISABLE_QUOTA)
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_DISABLE_QUOTA);
|
|
else
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_DISABLE_QUOTA);
|
|
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_CMPR_RATIO)
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_CMPR_RATIO);
|
|
else
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_CMPR_RATIO);
|
|
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_NOLOAD_USRQUOTA)
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_NOLOAD_USRQUOTA);
|
|
else
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_NOLOAD_USRQUOTA);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_reset:
|
|
if (ret)
|
|
btrfs_set_root_flags(&root->root_item, root_flags);
|
|
out_drop_sem:
|
|
up_write(&fs_info->subvol_sem);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int key_in_sk(struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk)
|
|
{
|
|
struct btrfs_key test;
|
|
int ret;
|
|
|
|
test.objectid = sk->min_objectid;
|
|
test.type = sk->min_type;
|
|
test.offset = sk->min_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret > 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int copy_to_sk(struct btrfs_path *path,
|
|
struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf,
|
|
unsigned long *sk_offset,
|
|
int *num_found)
|
|
{
|
|
u64 found_transid;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_ioctl_search_header sh;
|
|
struct btrfs_key test;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
int nritems;
|
|
int i;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
if (btrfs_header_generation(leaf) > sk->max_transid) {
|
|
i = nritems;
|
|
goto advance_key;
|
|
}
|
|
found_transid = btrfs_header_generation(leaf);
|
|
|
|
for (i = slot; i < nritems; i++) {
|
|
item_off = btrfs_item_ptr_offset(leaf, i);
|
|
item_len = btrfs_item_size_nr(leaf, i);
|
|
|
|
btrfs_item_key_to_cpu(leaf, key, i);
|
|
if (!key_in_sk(key, sk))
|
|
continue;
|
|
|
|
if (sizeof(sh) + item_len > *buf_size) {
|
|
if (*num_found) {
|
|
#ifdef MY_ABC_HERE
|
|
ret = -EAGAIN;
|
|
#else /* MY_ABC_HERE */
|
|
ret = 1;
|
|
#endif /* MY_ABC_HERE */
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* return one empty item back for v1, which does not
|
|
* handle -EOVERFLOW
|
|
*/
|
|
|
|
*buf_size = sizeof(sh) + item_len;
|
|
item_len = 0;
|
|
ret = -EOVERFLOW;
|
|
}
|
|
|
|
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
|
|
#ifdef MY_ABC_HERE
|
|
ret = -EAGAIN;
|
|
#else /* MY_ABC_HERE */
|
|
ret = 1;
|
|
#endif /* MY_ABC_HERE */
|
|
goto out;
|
|
}
|
|
|
|
sh.objectid = key->objectid;
|
|
sh.offset = key->offset;
|
|
sh.type = key->type;
|
|
sh.len = item_len;
|
|
sh.transid = found_transid;
|
|
|
|
/*
|
|
* Copy search result header. If we fault then loop again so we
|
|
* can fault in the pages and -EFAULT there if there's a
|
|
* problem. Otherwise we'll fault and then copy the buffer in
|
|
* properly this next time through
|
|
*/
|
|
if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += sizeof(sh);
|
|
|
|
if (item_len) {
|
|
char __user *up = ubuf + *sk_offset;
|
|
/*
|
|
* Copy the item, same behavior as above, but reset the
|
|
* * sk_offset so we copy the full thing again.
|
|
*/
|
|
if (read_extent_buffer_to_user_nofault(leaf, up,
|
|
item_off, item_len)) {
|
|
ret = 0;
|
|
*sk_offset -= sizeof(sh);
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += item_len;
|
|
}
|
|
(*num_found)++;
|
|
|
|
if (ret) /* -EOVERFLOW from above */
|
|
goto out;
|
|
|
|
if (*num_found >= sk->nr_items) {
|
|
#ifdef MY_ABC_HERE
|
|
ret = -EAGAIN;
|
|
#else /* MY_ABC_HERE */
|
|
ret = 1;
|
|
#endif /* MY_ABC_HERE */
|
|
goto out;
|
|
}
|
|
}
|
|
advance_key:
|
|
ret = 0;
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
if (btrfs_comp_cpu_keys(key, &test) >= 0)
|
|
ret = 1;
|
|
else if (key->offset < (u64)-1)
|
|
key->offset++;
|
|
else if (key->type < (u8)-1) {
|
|
key->offset = 0;
|
|
key->type++;
|
|
} else if (key->objectid < (u64)-1) {
|
|
key->offset = 0;
|
|
key->type = 0;
|
|
key->objectid++;
|
|
} else
|
|
ret = 1;
|
|
out:
|
|
/*
|
|
* 0: all items from this leaf copied, continue with next
|
|
* 1: * more items can be copied, but unused buffer is too small
|
|
* * all items were found
|
|
* Either way, it will stops the loop which iterates to the next
|
|
* leaf
|
|
#ifdef MY_ABC_HERE
|
|
* -EAGAIN: try again to get more
|
|
#endif
|
|
* -EOVERFLOW: item was to large for buffer
|
|
* -EFAULT: could not copy extent buffer back to userspace
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
static noinline int search_ioctl(struct inode *inode,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf)
|
|
{
|
|
struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int num_found = 0;
|
|
#ifdef MY_ABC_HERE
|
|
u64 orig_min_offset = sk->min_offset;
|
|
#endif /* MY_ABC_HERE */
|
|
unsigned long sk_offset = 0;
|
|
|
|
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
|
|
*buf_size = sizeof(struct btrfs_ioctl_search_header);
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (sk->tree_id == 0) {
|
|
/* search the root of the inode that was passed */
|
|
root = btrfs_grab_root(BTRFS_I(inode)->root);
|
|
} else {
|
|
root = btrfs_get_fs_root(info, sk->tree_id, true);
|
|
if (IS_ERR(root)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(root);
|
|
}
|
|
}
|
|
|
|
key.objectid = sk->min_objectid;
|
|
key.type = sk->min_type;
|
|
key.offset = sk->min_offset;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (sk->search_flag & BTRFS_SEARCH_FLAG_READAHEAD)
|
|
path->reada = READA_FORWARD_ALWAYS;
|
|
if ((sk->search_flag & BTRFS_SEARCH_FLAG_ADJUST_MIN) &&
|
|
(sk->min_type == BTRFS_EXTENT_DATA_KEY)) {
|
|
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root,
|
|
path, sk->min_objectid, sk->min_offset, 0);
|
|
if (0 > ret && -ENOENT != ret)
|
|
goto err;
|
|
if (!ret) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
sk->min_offset = key.offset;
|
|
}
|
|
btrfs_release_path(path);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
while (1) {
|
|
ret = fault_in_pages_writeable(ubuf + sk_offset,
|
|
*buf_size - sk_offset);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
|
|
if (ret != 0) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
goto err;
|
|
}
|
|
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
|
|
&sk_offset, &num_found);
|
|
btrfs_release_path(path);
|
|
if (ret)
|
|
break;
|
|
|
|
}
|
|
if (ret > 0)
|
|
ret = 0;
|
|
err:
|
|
#ifdef MY_ABC_HERE
|
|
sk->min_offset = orig_min_offset;
|
|
#endif /* MY_ABC_HERE */
|
|
sk->nr_items = num_found;
|
|
btrfs_put_root(root);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args __user *uargs;
|
|
struct btrfs_ioctl_search_key sk;
|
|
struct inode *inode;
|
|
int ret;
|
|
size_t buf_size;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
uargs = (struct btrfs_ioctl_search_args __user *)argp;
|
|
|
|
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
|
|
return -EFAULT;
|
|
|
|
buf_size = sizeof(uargs->buf);
|
|
|
|
inode = file_inode(file);
|
|
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
|
|
|
|
/*
|
|
* In the origin implementation an overflow is handled by returning a
|
|
* search header with a len of zero, so reset ret.
|
|
*/
|
|
#ifdef MY_ABC_HERE
|
|
if (ret == -EOVERFLOW || ret == -EAGAIN)
|
|
#else /* MY_ABC_HERE */
|
|
if (ret == -EOVERFLOW)
|
|
#endif /* MY_ABC_HERE */
|
|
ret = 0;
|
|
|
|
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
|
|
ret = -EFAULT;
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args_v2 __user *uarg;
|
|
struct btrfs_ioctl_search_args_v2 args;
|
|
struct inode *inode;
|
|
int ret;
|
|
size_t buf_size;
|
|
const size_t buf_limit = SZ_16M;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/* copy search header and buffer size */
|
|
uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
|
|
if (copy_from_user(&args, uarg, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
buf_size = args.buf_size;
|
|
|
|
/* limit result size to 16MB */
|
|
if (buf_size > buf_limit)
|
|
buf_size = buf_limit;
|
|
|
|
inode = file_inode(file);
|
|
ret = search_ioctl(inode, &args.key, &buf_size,
|
|
(char __user *)(&uarg->buf[0]));
|
|
#ifdef MY_ABC_HERE
|
|
if (!(args.key.search_flag & BTRFS_SEARCH_FLAG_REPORT_BUF_FULL) && ret == -EAGAIN)
|
|
ret = 0;
|
|
if ((ret == 0 || ret == -EAGAIN) && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
|
|
#else /* MY_ABC_HERE */
|
|
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
|
|
#endif /* MY_ABC_HERE */
|
|
ret = -EFAULT;
|
|
else if (ret == -EOVERFLOW &&
|
|
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search INODE_REFs to identify path name of 'dirid' directory
|
|
* in a 'tree_id' tree. and sets path name to 'name'.
|
|
*/
|
|
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
|
|
u64 tree_id, u64 dirid, char *name)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
char *ptr;
|
|
int ret = -1;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
struct btrfs_inode_ref *iref;
|
|
struct extent_buffer *l;
|
|
struct btrfs_path *path;
|
|
|
|
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
name[0]='\0';
|
|
return 0;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
|
|
|
|
root = btrfs_get_fs_root(info, tree_id, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
root = NULL;
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_REF_KEY);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(l, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < name) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
|
|
|
|
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
|
|
break;
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
memmove(name, ptr, total_len);
|
|
name[total_len] = '\0';
|
|
ret = 0;
|
|
out:
|
|
btrfs_put_root(root);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_search_path_in_tree_user(struct inode *inode,
|
|
struct btrfs_ioctl_ino_lookup_user_args *args)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct btrfs_key upper_limit = BTRFS_I(inode)->location;
|
|
u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
|
|
u64 dirid = args->dirid;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_root *root = NULL;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key, key2;
|
|
struct extent_buffer *leaf;
|
|
struct inode *temp_inode;
|
|
char *ptr;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If the bottom subvolume does not exist directly under upper_limit,
|
|
* construct the path in from the bottom up.
|
|
*/
|
|
if (dirid != upper_limit.objectid) {
|
|
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
|
|
|
|
root = btrfs_get_fs_root(fs_info, treeid, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out_put;
|
|
} else if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_REF_KEY);
|
|
if (ret < 0) {
|
|
goto out_put;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(leaf, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < args->path) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out_put;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(leaf, ptr,
|
|
(unsigned long)(iref + 1), len);
|
|
|
|
/* Check the read+exec permission of this directory */
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_ITEM_KEY);
|
|
if (ret < 0) {
|
|
goto out_put;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key2, slot);
|
|
if (key2.objectid != dirid) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
|
|
temp_inode = btrfs_iget(sb, key2.objectid, root);
|
|
if (IS_ERR(temp_inode)) {
|
|
ret = PTR_ERR(temp_inode);
|
|
goto out_put;
|
|
}
|
|
ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
|
|
iput(temp_inode);
|
|
if (ret) {
|
|
ret = -EACCES;
|
|
goto out_put;
|
|
}
|
|
|
|
if (key.offset == upper_limit.objectid)
|
|
break;
|
|
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EACCES;
|
|
goto out_put;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
|
|
memmove(args->path, ptr, total_len);
|
|
args->path[total_len] = '\0';
|
|
btrfs_put_root(root);
|
|
root = NULL;
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
/* Get the bottom subvolume's name from ROOT_REF */
|
|
key.objectid = treeid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = args->treeid;
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot);
|
|
item_len = btrfs_item_size_nr(leaf, slot);
|
|
/* Check if dirid in ROOT_REF corresponds to passed dirid */
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Copy subvolume's name */
|
|
item_off += sizeof(struct btrfs_root_ref);
|
|
item_len -= sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, args->name, item_off, item_len);
|
|
args->name[item_len] = 0;
|
|
|
|
out_put:
|
|
btrfs_put_root(root);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_ino_lookup(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_args *args;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
inode = file_inode(file);
|
|
|
|
/*
|
|
* Unprivileged query to obtain the containing subvolume root id. The
|
|
* path is reset so it's consistent with btrfs_search_path_in_tree.
|
|
*/
|
|
if (args->treeid == 0)
|
|
args->treeid = BTRFS_I(inode)->root->root_key.objectid;
|
|
|
|
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
args->name[0] = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
|
|
args->treeid, args->objectid,
|
|
args->name);
|
|
|
|
out:
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Version of ino_lookup ioctl (unprivileged)
|
|
*
|
|
* The main differences from ino_lookup ioctl are:
|
|
*
|
|
* 1. Read + Exec permission will be checked using inode_permission() during
|
|
* path construction. -EACCES will be returned in case of failure.
|
|
* 2. Path construction will be stopped at the inode number which corresponds
|
|
* to the fd with which this ioctl is called. If constructed path does not
|
|
* exist under fd's inode, -EACCES will be returned.
|
|
* 3. The name of bottom subvolume is also searched and filled.
|
|
*/
|
|
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_user_args *args;
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
inode = file_inode(file);
|
|
|
|
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
|
|
BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
|
|
/*
|
|
* The subvolume does not exist under fd with which this is
|
|
* called
|
|
*/
|
|
kfree(args);
|
|
return -EACCES;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree_user(inode, args);
|
|
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
|
|
static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_root_ref *rref;
|
|
struct extent_buffer *leaf;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
struct inode *inode;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
|
|
if (!subvol_info) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
inode = file_inode(file);
|
|
fs_info = BTRFS_I(inode)->root->fs_info;
|
|
|
|
/* Get root_item of inode's subvolume */
|
|
key.objectid = BTRFS_I(inode)->root->root_key.objectid;
|
|
root = btrfs_get_fs_root(fs_info, key.objectid, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out_free;
|
|
}
|
|
root_item = &root->root_item;
|
|
|
|
subvol_info->treeid = key.objectid;
|
|
|
|
subvol_info->generation = btrfs_root_generation(root_item);
|
|
subvol_info->flags = btrfs_root_flags(root_item);
|
|
|
|
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->received_uuid, root_item->received_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
|
|
subvol_info->ctransid = btrfs_root_ctransid(root_item);
|
|
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
|
|
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
|
|
|
|
subvol_info->otransid = btrfs_root_otransid(root_item);
|
|
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
|
|
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
|
|
|
|
subvol_info->stransid = btrfs_root_stransid(root_item);
|
|
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
|
|
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
|
|
|
|
subvol_info->rtransid = btrfs_root_rtransid(root_item);
|
|
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
|
|
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
|
|
|
|
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
|
|
/* Search root tree for ROOT_BACKREF of this subvolume */
|
|
key.type = BTRFS_ROOT_BACKREF_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(fs_info->tree_root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == subvol_info->treeid &&
|
|
key.type == BTRFS_ROOT_BACKREF_KEY) {
|
|
subvol_info->parent_id = key.offset;
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot)
|
|
+ sizeof(struct btrfs_root_ref);
|
|
item_len = btrfs_item_size_nr(leaf, slot)
|
|
- sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, subvol_info->name,
|
|
item_off, item_len);
|
|
} else {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_put_root(root);
|
|
out_free:
|
|
btrfs_free_path(path);
|
|
kfree(subvol_info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return ROOT_REF information of the subvolume containing this inode
|
|
* except the subvolume name.
|
|
*/
|
|
static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct inode *inode;
|
|
u64 objectid;
|
|
int slot;
|
|
int ret;
|
|
u8 found;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
rootrefs = memdup_user(argp, sizeof(*rootrefs));
|
|
if (IS_ERR(rootrefs)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(rootrefs);
|
|
}
|
|
|
|
inode = file_inode(file);
|
|
root = BTRFS_I(inode)->root->fs_info->tree_root;
|
|
objectid = BTRFS_I(inode)->root->root_key.objectid;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = rootrefs->min_treeid;
|
|
found = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
|
|
ret = -EOVERFLOW;
|
|
goto out;
|
|
}
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
rootrefs->rootref[found].treeid = key.offset;
|
|
rootrefs->rootref[found].dirid =
|
|
btrfs_root_ref_dirid(leaf, rref);
|
|
found++;
|
|
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (!ret || ret == -EOVERFLOW) {
|
|
rootrefs->num_items = found;
|
|
/* update min_treeid for next search */
|
|
if (found)
|
|
rootrefs->min_treeid =
|
|
rootrefs->rootref[found - 1].treeid + 1;
|
|
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
kfree(rootrefs);
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
|
|
void __user *arg,
|
|
bool destroy_v2)
|
|
{
|
|
struct dentry *parent = file->f_path.dentry;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
|
|
struct dentry *dentry;
|
|
struct inode *dir = d_inode(parent);
|
|
struct inode *inode;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *dest = NULL;
|
|
struct btrfs_ioctl_vol_args *vol_args = NULL;
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
|
|
char *subvol_name, *subvol_name_ptr = NULL;
|
|
int subvol_namelen;
|
|
int err = 0;
|
|
bool destroy_parent = false;
|
|
|
|
if (destroy_v2) {
|
|
vol_args2 = memdup_user(arg, sizeof(*vol_args2));
|
|
if (IS_ERR(vol_args2))
|
|
return PTR_ERR(vol_args2);
|
|
|
|
if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If SPEC_BY_ID is not set, we are looking for the subvolume by
|
|
* name, same as v1 currently does.
|
|
*/
|
|
if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
|
|
vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
|
|
subvol_name = vol_args2->name;
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
} else {
|
|
if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
|
|
dentry = btrfs_get_dentry(fs_info->sb,
|
|
BTRFS_FIRST_FREE_OBJECTID,
|
|
vol_args2->subvolid, 0, 0);
|
|
if (IS_ERR(dentry)) {
|
|
err = PTR_ERR(dentry);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
/*
|
|
* Change the default parent since the subvolume being
|
|
* deleted can be outside of the current mount point.
|
|
*/
|
|
parent = btrfs_get_parent(dentry);
|
|
|
|
/*
|
|
* At this point dentry->d_name can point to '/' if the
|
|
* subvolume we want to destroy is outsite of the
|
|
* current mount point, so we need to release the
|
|
* current dentry and execute the lookup to return a new
|
|
* one with ->d_name pointing to the
|
|
* <mount point>/subvol_name.
|
|
*/
|
|
dput(dentry);
|
|
if (IS_ERR(parent)) {
|
|
err = PTR_ERR(parent);
|
|
goto out_drop_write;
|
|
}
|
|
dir = d_inode(parent);
|
|
|
|
/*
|
|
* If v2 was used with SPEC_BY_ID, a new parent was
|
|
* allocated since the subvolume can be outside of the
|
|
* current mount point. Later on we need to release this
|
|
* new parent dentry.
|
|
*/
|
|
destroy_parent = true;
|
|
|
|
subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
|
|
fs_info, vol_args2->subvolid);
|
|
if (IS_ERR(subvol_name_ptr)) {
|
|
err = PTR_ERR(subvol_name_ptr);
|
|
goto free_parent;
|
|
}
|
|
/* subvol_name_ptr is already NULL termined */
|
|
subvol_name = (char *)kbasename(subvol_name_ptr);
|
|
}
|
|
} else {
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
|
|
subvol_name = vol_args->name;
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
subvol_namelen = strlen(subvol_name);
|
|
|
|
if (strchr(subvol_name, '/') ||
|
|
strncmp(subvol_name, "..", subvol_namelen) == 0) {
|
|
err = -EINVAL;
|
|
goto free_subvol_name;
|
|
}
|
|
|
|
if (!S_ISDIR(dir->i_mode)) {
|
|
err = -ENOTDIR;
|
|
goto free_subvol_name;
|
|
}
|
|
|
|
err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (err == -EINTR)
|
|
goto free_subvol_name;
|
|
dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
|
|
if (IS_ERR(dentry)) {
|
|
err = PTR_ERR(dentry);
|
|
goto out_unlock_dir;
|
|
}
|
|
|
|
if (d_really_is_negative(dentry)) {
|
|
err = -ENOENT;
|
|
goto out_dput;
|
|
}
|
|
|
|
inode = d_inode(dentry);
|
|
dest = BTRFS_I(inode)->root;
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
/*
|
|
* Regular user. Only allow this with a special mount
|
|
* option, when the user has write+exec access to the
|
|
* subvol root, and when rmdir(2) would have been
|
|
* allowed.
|
|
*
|
|
* Note that this is _not_ check that the subvol is
|
|
* empty or doesn't contain data that we wouldn't
|
|
* otherwise be able to delete.
|
|
*
|
|
* Users who want to delete empty subvols should try
|
|
* rmdir(2).
|
|
*/
|
|
err = -EPERM;
|
|
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
|
|
goto out_dput;
|
|
|
|
/*
|
|
* Do not allow deletion if the parent dir is the same
|
|
* as the dir to be deleted. That means the ioctl
|
|
* must be called on the dentry referencing the root
|
|
* of the subvol, not a random directory contained
|
|
* within it.
|
|
*/
|
|
err = -EINVAL;
|
|
if (root == dest)
|
|
goto out_dput;
|
|
|
|
err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
|
|
if (err)
|
|
goto out_dput;
|
|
}
|
|
|
|
/* check if subvolume may be deleted by a user */
|
|
err = btrfs_may_delete(dir, dentry, 1);
|
|
if (err)
|
|
goto out_dput;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
err = -EINVAL;
|
|
goto out_dput;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
err = btrfs_delete_subvolume(dir, dentry);
|
|
inode_unlock(inode);
|
|
if (!err) {
|
|
fsnotify_rmdir(dir, dentry);
|
|
d_delete(dentry);
|
|
}
|
|
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock_dir:
|
|
inode_unlock(dir);
|
|
free_subvol_name:
|
|
kfree(subvol_name_ptr);
|
|
free_parent:
|
|
if (destroy_parent)
|
|
dput(parent);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(vol_args2);
|
|
kfree(vol_args);
|
|
return err;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static inline void get_min_max_range(u64 *min, u64 *max, u64 file_extent_offset,
|
|
u64 extent_item_offset, u64 extent_item_size)
|
|
{
|
|
u64 local_start = 0, local_end = 0;
|
|
|
|
if (file_extent_offset > extent_item_offset)
|
|
local_start = file_extent_offset - extent_item_offset;
|
|
|
|
local_end = file_extent_offset + (extent_item_size - extent_item_offset);
|
|
|
|
*min = min(*min, local_start);
|
|
*max = max(*max, local_end);
|
|
}
|
|
|
|
static void syno_reclaim_range_adjust(struct btrfs_inode *inode,
|
|
struct btrfs_ioctl_defrag_range_args *range)
|
|
{
|
|
int ret = 0;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 end = range->start + range->len;
|
|
u64 min_begin = range->start;
|
|
u64 max_end = range->start + range->len;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path = NULL;
|
|
struct extent_buffer *leaf = NULL;
|
|
struct btrfs_file_extent_item *fi = NULL;
|
|
|
|
if (0 == min_begin && (u64)-1 == max_end)
|
|
return;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return;
|
|
|
|
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root, path, ino,
|
|
range->start, 0);
|
|
if (0 > ret) {
|
|
if (-ENOENT != ret) {
|
|
btrfs_info(root->fs_info,
|
|
"lookup ino[%llu] offset[%llu] failed %d",
|
|
ino, range->start, ret);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
while (key.offset < end) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
|
|
|
|
get_min_max_range(&min_begin, &max_end, key.offset,
|
|
btrfs_file_extent_offset(leaf, fi),
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi));
|
|
|
|
ret = btrfs_search_next_file_extent(&key, root, path);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
if (min_begin < range->start)
|
|
range->start = min_begin;
|
|
if (max_end - min_begin > range->len)
|
|
range->len = max_end - min_begin;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_defrag_range_args *range;
|
|
int ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFDIR:
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
ret = btrfs_defrag_root(root);
|
|
break;
|
|
case S_IFREG:
|
|
/*
|
|
* Note that this does not check the file descriptor for write
|
|
* access. This prevents defragmenting executables that are
|
|
* running and allows defrag on files open in read-only mode.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN) &&
|
|
inode_permission(inode, MAY_WRITE)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
range = kzalloc(sizeof(*range), GFP_KERNEL);
|
|
if (!range) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (argp) {
|
|
if (copy_from_user(range, argp,
|
|
sizeof(*range))) {
|
|
ret = -EFAULT;
|
|
kfree(range);
|
|
goto out;
|
|
}
|
|
/* compression requires us to start the IO */
|
|
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
|
|
range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
|
|
range->extent_thresh = (u32)-1;
|
|
}
|
|
#ifdef MY_ABC_HERE
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
|
|
syno_reclaim_range_adjust(BTRFS_I(inode), range);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
} else {
|
|
/* the rest are all set to zero by kzalloc */
|
|
range->len = (u64)-1;
|
|
}
|
|
ret = btrfs_defrag_file(file_inode(file), file,
|
|
range, BTRFS_OLDEST_GENERATION, 0);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
#ifdef MY_ABC_HERE
|
|
if (argp && ret == 0 && copy_to_user(argp, range, sizeof(*range))) {
|
|
ret = -EFAULT;
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
kfree(range);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
ret = btrfs_init_new_device(fs_info, vol_args->name);
|
|
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk added %s", vol_args->name);
|
|
|
|
kfree(vol_args);
|
|
out:
|
|
btrfs_exclop_finish(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto err_drop;
|
|
}
|
|
|
|
if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out;
|
|
}
|
|
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
|
|
ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
|
|
} else {
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
|
|
}
|
|
btrfs_exclop_finish(fs_info);
|
|
|
|
if (!ret) {
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
|
|
btrfs_info(fs_info, "device deleted: id %llu",
|
|
vol_args->devid);
|
|
else
|
|
btrfs_info(fs_info, "device deleted: %s",
|
|
vol_args->name);
|
|
}
|
|
out:
|
|
kfree(vol_args);
|
|
err_drop:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
|
|
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
|
|
kfree(vol_args);
|
|
out:
|
|
btrfs_exclop_finish(fs_info);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_fs_info_args *fi_args;
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u64 flags_in;
|
|
int ret = 0;
|
|
|
|
fi_args = memdup_user(arg, sizeof(*fi_args));
|
|
if (IS_ERR(fi_args))
|
|
return PTR_ERR(fi_args);
|
|
|
|
flags_in = fi_args->flags;
|
|
memset(fi_args, 0, sizeof(*fi_args));
|
|
|
|
rcu_read_lock();
|
|
fi_args->num_devices = fs_devices->num_devices;
|
|
|
|
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
|
|
if (device->devid > fi_args->max_id)
|
|
fi_args->max_id = device->devid;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
|
|
fi_args->nodesize = fs_info->nodesize;
|
|
fi_args->sectorsize = fs_info->sectorsize;
|
|
fi_args->clone_alignment = fs_info->sectorsize;
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
|
|
fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
|
|
fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
|
|
}
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
|
|
fi_args->generation = fs_info->generation;
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
|
|
}
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
|
|
memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
|
|
sizeof(fi_args->metadata_uuid));
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
|
|
}
|
|
|
|
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(fi_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_dev_info_args *di_args;
|
|
struct btrfs_device *dev;
|
|
int ret = 0;
|
|
char *s_uuid = NULL;
|
|
|
|
di_args = memdup_user(arg, sizeof(*di_args));
|
|
if (IS_ERR(di_args))
|
|
return PTR_ERR(di_args);
|
|
|
|
if (!btrfs_is_empty_uuid(di_args->uuid))
|
|
s_uuid = di_args->uuid;
|
|
|
|
rcu_read_lock();
|
|
dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
|
|
NULL, true);
|
|
|
|
if (!dev) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
di_args->devid = dev->devid;
|
|
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
|
|
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
|
|
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
|
|
if (dev->name) {
|
|
strncpy(di_args->path, rcu_str_deref(dev->name),
|
|
sizeof(di_args->path) - 1);
|
|
di_args->path[sizeof(di_args->path) - 1] = 0;
|
|
} else {
|
|
di_args->path[0] = '\0';
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(di_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_disk_key disk_key;
|
|
u64 objectid = 0;
|
|
u64 dir_id;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (!objectid)
|
|
objectid = BTRFS_FS_TREE_OBJECTID;
|
|
|
|
new_root = btrfs_get_fs_root(fs_info, objectid, true);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
goto out;
|
|
}
|
|
if (!is_fstree(new_root->root_key.objectid)) {
|
|
ret = -ENOENT;
|
|
goto out_free;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
path->leave_spinning = 1;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
|
|
dir_id, "default", 7, 1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
btrfs_release_path(path);
|
|
btrfs_end_transaction(trans);
|
|
btrfs_err(fs_info,
|
|
"Umm, you don't have the default diritem, this isn't going to work");
|
|
ret = -ENOENT;
|
|
goto out_free;
|
|
}
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
|
|
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_release_path(path);
|
|
|
|
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
|
|
btrfs_end_transaction(trans);
|
|
out_free:
|
|
btrfs_put_root(new_root);
|
|
btrfs_free_path(path);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static void get_block_group_info(struct list_head *groups_list,
|
|
struct btrfs_ioctl_space_info *space)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
|
|
space->total_bytes = 0;
|
|
space->used_bytes = 0;
|
|
space->flags = 0;
|
|
list_for_each_entry(block_group, groups_list, list) {
|
|
space->flags = block_group->flags;
|
|
space->total_bytes += block_group->length;
|
|
space->used_bytes += block_group->used;
|
|
}
|
|
}
|
|
|
|
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_space_args space_args;
|
|
struct btrfs_ioctl_space_info space;
|
|
struct btrfs_ioctl_space_info *dest;
|
|
struct btrfs_ioctl_space_info *dest_orig;
|
|
struct btrfs_ioctl_space_info __user *user_dest;
|
|
struct btrfs_space_info *info;
|
|
static const u64 types[] = {
|
|
BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
|
|
};
|
|
int num_types = 4;
|
|
int alloc_size;
|
|
int ret = 0;
|
|
u64 slot_count = 0;
|
|
int i, c;
|
|
|
|
if (copy_from_user(&space_args,
|
|
(struct btrfs_ioctl_space_args __user *)arg,
|
|
sizeof(space_args)))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
info = NULL;
|
|
list_for_each_entry(tmp, &fs_info->space_info, list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
continue;
|
|
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c]))
|
|
slot_count++;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Global block reserve, exported as a space_info
|
|
*/
|
|
slot_count++;
|
|
|
|
/* space_slots == 0 means they are asking for a count */
|
|
if (space_args.space_slots == 0) {
|
|
space_args.total_spaces = slot_count;
|
|
goto out;
|
|
}
|
|
|
|
slot_count = min_t(u64, space_args.space_slots, slot_count);
|
|
|
|
alloc_size = sizeof(*dest) * slot_count;
|
|
|
|
/* we generally have at most 6 or so space infos, one for each raid
|
|
* level. So, a whole page should be more than enough for everyone
|
|
*/
|
|
if (alloc_size > PAGE_SIZE)
|
|
return -ENOMEM;
|
|
|
|
space_args.total_spaces = 0;
|
|
dest = kmalloc(alloc_size, GFP_KERNEL);
|
|
if (!dest)
|
|
return -ENOMEM;
|
|
dest_orig = dest;
|
|
|
|
/* now we have a buffer to copy into */
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
if (!slot_count)
|
|
break;
|
|
|
|
info = NULL;
|
|
list_for_each_entry(tmp, &fs_info->space_info, list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
continue;
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c])) {
|
|
get_block_group_info(&info->block_groups[c],
|
|
&space);
|
|
memcpy(dest, &space, sizeof(space));
|
|
dest++;
|
|
space_args.total_spaces++;
|
|
slot_count--;
|
|
}
|
|
if (!slot_count)
|
|
break;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Add global block reserve
|
|
*/
|
|
if (slot_count) {
|
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
space.total_bytes = block_rsv->size;
|
|
space.used_bytes = block_rsv->size - block_rsv->reserved;
|
|
spin_unlock(&block_rsv->lock);
|
|
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
|
|
memcpy(dest, &space, sizeof(space));
|
|
space_args.total_spaces++;
|
|
}
|
|
|
|
user_dest = (struct btrfs_ioctl_space_info __user *)
|
|
(arg + sizeof(struct btrfs_ioctl_space_args));
|
|
|
|
if (copy_to_user(user_dest, dest_orig, alloc_size))
|
|
ret = -EFAULT;
|
|
|
|
kfree(dest_orig);
|
|
out:
|
|
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static long btrfs_ioctl_trigger_transcation(struct super_block *sb)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
/* no transaction, don't bother */
|
|
if (PTR_ERR(trans) == -ENOENT) {
|
|
/*
|
|
* Exit unless we have some pending changes
|
|
* that need to go through commit
|
|
*/
|
|
if (fs_info->pending_changes == 0)
|
|
return 0;
|
|
/*
|
|
* A non-blocking test if the fs is frozen. We must not
|
|
* start a new transaction here otherwise a deadlock
|
|
* happens. The pending operations are delayed to the
|
|
* next commit after thawing.
|
|
*/
|
|
if (sb_start_write_trylock(sb))
|
|
sb_end_write(sb);
|
|
else
|
|
return 0;
|
|
trans = btrfs_start_transaction(root, 0);
|
|
}
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
}
|
|
return btrfs_commit_transaction(trans);
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 transid;
|
|
int ret;
|
|
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
return PTR_ERR(trans);
|
|
|
|
/* No running transaction, don't bother */
|
|
transid = root->fs_info->last_trans_committed;
|
|
goto out;
|
|
}
|
|
transid = trans->transid;
|
|
ret = btrfs_commit_transaction_async(trans, 0);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
out:
|
|
if (argp)
|
|
if (copy_to_user(argp, &transid, sizeof(transid)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
|
|
void __user *argp)
|
|
{
|
|
u64 transid;
|
|
|
|
if (argp) {
|
|
if (copy_from_user(&transid, argp, sizeof(transid)))
|
|
return -EFAULT;
|
|
} else {
|
|
transid = 0; /* current trans */
|
|
}
|
|
return btrfs_wait_for_commit(fs_info, transid);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
|
|
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
|
|
0);
|
|
|
|
/*
|
|
* Copy scrub args to user space even if btrfs_scrub_dev() returned an
|
|
* error. This is important as it allows user space to know how much
|
|
* progress scrub has done. For example, if scrub is canceled we get
|
|
* -ECANCELED from btrfs_scrub_dev() and return that error back to user
|
|
* space. Later user space can inspect the progress from the structure
|
|
* btrfs_ioctl_scrub_args and resume scrub from where it left off
|
|
* previously (btrfs-progs does this).
|
|
* If we fail to copy the btrfs_ioctl_scrub_args structure to user space
|
|
* then return -EFAULT to signal the structure was not copied or it may
|
|
* be corrupt and unreliable due to a partial copy.
|
|
*/
|
|
if (copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY))
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_scrub_cancel(fs_info);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
|
|
|
|
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_get_dev_stats *sa;
|
|
int ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
|
|
kfree(sa);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = btrfs_get_dev_stats(fs_info, sa);
|
|
|
|
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_dev_replace_args *p;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
p = memdup_user(arg, sizeof(*p));
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
switch (p->cmd) {
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
} else {
|
|
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
|
|
btrfs_exclop_finish(fs_info);
|
|
}
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
|
|
btrfs_dev_replace_status(fs_info, p);
|
|
ret = 0;
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
|
|
p->result = btrfs_dev_replace_cancel(fs_info);
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
|
|
ret = -EFAULT;
|
|
out:
|
|
kfree(p);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
u64 rel_ptr;
|
|
int size;
|
|
struct btrfs_ioctl_ino_path_args *ipa = NULL;
|
|
struct inode_fs_paths *ipath = NULL;
|
|
struct btrfs_path *path;
|
|
|
|
if (!capable(CAP_DAC_READ_SEARCH))
|
|
return -EPERM;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ipa = memdup_user(arg, sizeof(*ipa));
|
|
if (IS_ERR(ipa)) {
|
|
ret = PTR_ERR(ipa);
|
|
ipa = NULL;
|
|
goto out;
|
|
}
|
|
|
|
size = min_t(u32, ipa->size, 4096);
|
|
ipath = init_ipath(size, root, path);
|
|
if (IS_ERR(ipath)) {
|
|
ret = PTR_ERR(ipath);
|
|
ipath = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = paths_from_inode(ipa->inum, ipath);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
|
|
rel_ptr = ipath->fspath->val[i] -
|
|
(u64)(unsigned long)ipath->fspath->val;
|
|
ipath->fspath->val[i] = rel_ptr;
|
|
}
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
|
|
ipath->fspath, size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
free_ipath(ipath);
|
|
kfree(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
/*
|
|
* Similar to BTRFS_IOC_INO_PATHS, but we only output one path, regardless of how many
|
|
* links this inode should have, since the vfs caller should not know too much about
|
|
* how to parse struct btrfs_ioctl_ino_path_args and struct inode_fs_paths.
|
|
*/
|
|
int btrfs_vfs_ino_to_path(struct inode *inode, u64 inum, char *outpath, int len)
|
|
{
|
|
int ret = 0;
|
|
struct inode_fs_paths *ipath = NULL;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root;
|
|
|
|
if (len < PATH_MAX)
|
|
return -EINVAL;
|
|
|
|
if (inode->i_sb->s_magic == BTRFS_SUPER_MAGIC)
|
|
root = BTRFS_I(inode)->root;
|
|
else
|
|
return -EINVAL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ipath = init_ipath(len + offsetof(struct btrfs_data_container, val[1]),
|
|
root, path);
|
|
if (IS_ERR(ipath)) {
|
|
ret = PTR_ERR(ipath);
|
|
ipath = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = paths_from_inode(inum, ipath);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ipath->fspath->elem_cnt > 0)
|
|
strncpy(outpath, (char *)(ipath->fspath->val[0]), len);
|
|
else
|
|
ret = -ENOENT;
|
|
|
|
out:
|
|
free_ipath(ipath);
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(btrfs_vfs_ino_to_path);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
/* copy from backref:iterate_irefs_t */
|
|
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx);
|
|
|
|
/* copy from backref:iterate_inode_refs */
|
|
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
u32 cur;
|
|
u32 len;
|
|
u32 name_len;
|
|
u64 dir_index;
|
|
u64 skip_dir = index->dir;
|
|
u64 skip_dir_index = index->dir_index;
|
|
u64 parent = index->dir;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_item *item;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_key found_key;
|
|
|
|
while (!ret) {
|
|
ret = btrfs_find_item(fs_root, path, inum,
|
|
parent, BTRFS_INODE_REF_KEY,
|
|
&found_key);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
parent = found_key.offset;
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
item = btrfs_item_nr(slot);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
dir_index = btrfs_inode_ref_index(eb, iref);
|
|
|
|
if (parent < skip_dir)
|
|
goto next;
|
|
if (parent == skip_dir && dir_index <= skip_dir_index)
|
|
goto next;
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)(iref + 1), eb, ctx);
|
|
if (ret)
|
|
break;
|
|
next:
|
|
if (parent > index->dir ||
|
|
(parent == index->dir && dir_index > index->dir_index)) {
|
|
index->dir = parent;
|
|
index->dir_index = dir_index;
|
|
}
|
|
len = sizeof(*iref) + name_len;
|
|
iref = (struct btrfs_inode_ref *)((char *)iref + len);
|
|
}
|
|
free_extent_buffer(eb);
|
|
parent++;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* copy from backref:iterate_inode_extrefs */
|
|
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
int slot;
|
|
u64 skip_offset = index->offset;
|
|
u64 offset = index->offset;
|
|
u64 parent;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_inode_extref *extref;
|
|
u32 item_size;
|
|
u32 cur_offset;
|
|
unsigned long ptr;
|
|
|
|
while (1) {
|
|
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
|
|
&offset);
|
|
if (ret < 0 && ret != -ENOENT)
|
|
break;
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (offset <= skip_offset) {
|
|
btrfs_release_path(path);
|
|
goto next;
|
|
}
|
|
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
cur_offset = 0;
|
|
|
|
/*
|
|
* Because EXTREF is not sorted, all refs in the
|
|
* entire item must be output together, otherwise
|
|
* there will be a duplicate item next time.
|
|
*
|
|
* Because btrfs btrfs_hardlink_entry is smaller than
|
|
* btrfs_inode_extref, so we only need to check
|
|
* free space >= item size.
|
|
*/
|
|
if (index->free_space < item_size) {
|
|
ret = -ENOSPC;
|
|
goto free;
|
|
}
|
|
|
|
while (cur_offset < item_size) {
|
|
u32 name_len;
|
|
|
|
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
|
|
parent = btrfs_inode_extref_parent(eb, extref);
|
|
name_len = btrfs_inode_extref_name_len(eb, extref);
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)&extref->name, eb, ctx);
|
|
if (ret)
|
|
break;
|
|
|
|
cur_offset += btrfs_inode_extref_name_len(eb, extref);
|
|
cur_offset += sizeof(*extref);
|
|
}
|
|
free:
|
|
free_extent_buffer(eb);
|
|
next:
|
|
if (ret)
|
|
break;
|
|
if (offset > index->offset)
|
|
index->offset = offset;
|
|
offset++;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if (index->type == SYNO_BTRFS_LIST_HARDLINKS_INDEX_TYPE_INODE_REF) {
|
|
ret = iterate_inode_refs(inum, fs_root, path, index, iterate, ctx);
|
|
if (ret)
|
|
goto out;
|
|
index->type = SYNO_BTRFS_LIST_HARDLINKS_INDEX_TYPE_INODE_EXTREF;
|
|
index->dir = -1;
|
|
index->dir_index = -1;
|
|
}
|
|
|
|
ret = iterate_inode_extrefs(inum, fs_root, path, index, iterate, ctx);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int record_hardlink(u64 inum, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx)
|
|
{
|
|
int ret;
|
|
struct btrfs_list_hardlinks_args *args = ctx;
|
|
struct btrfs_hardlink_entry *entry;
|
|
u32 entry_len = sizeof(*entry) + name_len + 1;
|
|
unsigned long ptr;
|
|
char *dest;
|
|
|
|
if (entry_len > args->index.free_space) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
ptr = (unsigned long)args->buf;
|
|
ptr += args->index.cursor;
|
|
entry = (struct btrfs_hardlink_entry *)ptr;
|
|
dest = (char*)(entry + 1);
|
|
|
|
entry->record_len = entry_len;
|
|
entry->parent_inum = inum;
|
|
entry->name_len = name_len;
|
|
read_extent_buffer(eb, dest, name_off, name_len);
|
|
dest[name_len] = '\0';
|
|
|
|
args->elem_cnt++;
|
|
args->index.cursor += entry_len;
|
|
args->index.free_space -= entry_len;
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int links_from_inum(struct btrfs_root *fs_root, struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index, struct btrfs_list_hardlinks_args *args)
|
|
{
|
|
return iterate_irefs(args->inum, fs_root, path, index, record_hardlink, args);
|
|
}
|
|
|
|
int btrfs_list_hardlinks(struct btrfs_list_hardlinks_args *args)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_root *root;
|
|
|
|
if (!args ||
|
|
!args->inode ||
|
|
!S_ISREG(args->inode->i_mode) ||
|
|
args->inode->i_sb->s_magic != BTRFS_SUPER_MAGIC ||
|
|
!args->buf_size) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
root = BTRFS_I(args->inode)->root;
|
|
args->elem_cnt = 0;
|
|
args->index.cursor = 0;
|
|
args->index.free_space = args->buf_size;
|
|
|
|
ret = links_from_inum(root, path, &args->index, args);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(btrfs_list_hardlinks);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx
|
|
#ifdef MY_ABC_HERE
|
|
, int extent_type
|
|
#endif /* MY_ABC_HERE */
|
|
)
|
|
{
|
|
struct btrfs_data_container *inodes = ctx;
|
|
const size_t c = 3 * sizeof(u64);
|
|
|
|
if (inodes->bytes_left >= c) {
|
|
inodes->bytes_left -= c;
|
|
inodes->val[inodes->elem_cnt] = inum;
|
|
inodes->val[inodes->elem_cnt + 1] = offset;
|
|
inodes->val[inodes->elem_cnt + 2] = root;
|
|
inodes->elem_cnt += 3;
|
|
} else {
|
|
inodes->bytes_missing += c - inodes->bytes_left;
|
|
inodes->bytes_left = 0;
|
|
inodes->elem_missed += 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
|
|
void __user *arg, int version)
|
|
{
|
|
int ret = 0;
|
|
int size;
|
|
struct btrfs_ioctl_logical_ino_args *loi;
|
|
struct btrfs_data_container *inodes = NULL;
|
|
struct btrfs_path *path = NULL;
|
|
bool ignore_offset;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
loi = memdup_user(arg, sizeof(*loi));
|
|
if (IS_ERR(loi))
|
|
return PTR_ERR(loi);
|
|
|
|
if (version == 1) {
|
|
ignore_offset = false;
|
|
size = min_t(u32, loi->size, SZ_64K);
|
|
} else {
|
|
/* All reserved bits must be 0 for now */
|
|
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
/* Only accept flags we have defined so far */
|
|
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
|
|
size = min_t(u32, loi->size, SZ_16M);
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
inodes = init_data_container(size);
|
|
if (IS_ERR(inodes)) {
|
|
ret = PTR_ERR(inodes);
|
|
inodes = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
|
|
build_ino_list, inodes, ignore_offset);
|
|
if (ret == -EINVAL)
|
|
ret = -ENOENT;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
|
|
size);
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kvfree(inodes);
|
|
out_loi:
|
|
kfree(loi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ioctl_balance_args *bargs)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
|
|
bargs->flags = bctl->flags;
|
|
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
|
|
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
|
|
if (atomic_read(&fs_info->balance_pause_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
|
|
if (atomic_read(&fs_info->balance_cancel_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
|
|
|
|
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
|
|
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
|
|
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
|
|
|
|
#ifdef MY_ABC_HERE
|
|
bargs->total_chunk_used = bctl->total_chunk_used;
|
|
#endif /* SYNO_BTRFS_BALANCE_DRY_RUN */
|
|
spin_lock(&fs_info->balance_lock);
|
|
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
struct btrfs_balance_control *bctl;
|
|
bool need_unlock; /* for mut. excl. ops lock */
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
again:
|
|
if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
need_unlock = true;
|
|
goto locked;
|
|
}
|
|
|
|
/*
|
|
* mut. excl. ops lock is locked. Three possibilities:
|
|
* (1) some other op is running
|
|
* (2) balance is running
|
|
* (3) balance is paused -- special case (think resume)
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (fs_info->balance_ctl) {
|
|
/* this is either (2) or (3) */
|
|
if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
/*
|
|
* Lock released to allow other waiters to continue,
|
|
* we'll reexamine the status again.
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl &&
|
|
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
/* this is (3) */
|
|
need_unlock = false;
|
|
goto locked;
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
goto again;
|
|
} else {
|
|
/* this is (2) */
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
ret = -EINPROGRESS;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* this is (1) */
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out;
|
|
}
|
|
|
|
locked:
|
|
|
|
if (arg) {
|
|
bargs = memdup_user(arg, sizeof(*bargs));
|
|
if (IS_ERR(bargs)) {
|
|
ret = PTR_ERR(bargs);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (bargs->flags & BTRFS_BALANCE_RESUME) {
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out_bargs;
|
|
}
|
|
|
|
bctl = fs_info->balance_ctl;
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->flags |= BTRFS_BALANCE_RESUME;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
goto do_balance;
|
|
}
|
|
} else {
|
|
bargs = NULL;
|
|
}
|
|
|
|
if (fs_info->balance_ctl) {
|
|
ret = -EINPROGRESS;
|
|
goto out_bargs;
|
|
}
|
|
|
|
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
|
|
if (!bctl) {
|
|
ret = -ENOMEM;
|
|
goto out_bargs;
|
|
}
|
|
|
|
if (arg) {
|
|
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
|
|
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
|
|
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
|
|
|
|
bctl->flags = bargs->flags;
|
|
} else {
|
|
/* balance everything - no filters */
|
|
bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (bargs->key_offset) {
|
|
if (fs_info->super_copy->total_bytes <= 50ULL * SZ_1G) {
|
|
ret = -ENOSPC;
|
|
goto out_bctl;
|
|
} else
|
|
bctl->fast_key_offset = bargs->key_offset;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
bctl->total_chunk_used = 0;
|
|
if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK | BTRFS_BALANCE_DRY_RUN)) {
|
|
#else
|
|
if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
|
|
#endif /* SYNO_BTRFS_BALANCE_DRY_RUN */
|
|
ret = -EINVAL;
|
|
goto out_bctl;
|
|
}
|
|
|
|
do_balance:
|
|
/*
|
|
* Ownership of bctl and exclusive operation goes to btrfs_balance.
|
|
* bctl is freed in reset_balance_state, or, if restriper was paused
|
|
* all the way until unmount, in free_fs_info. The flag should be
|
|
* cleared after reset_balance_state.
|
|
*/
|
|
need_unlock = false;
|
|
|
|
ret = btrfs_balance(fs_info, bctl, bargs);
|
|
bctl = NULL;
|
|
|
|
if ((ret == 0 || ret == -ECANCELED) && arg) {
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
out_bctl:
|
|
kfree(bctl);
|
|
out_bargs:
|
|
kfree(bargs);
|
|
out_unlock:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
if (need_unlock)
|
|
btrfs_exclop_finish(fs_info);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case BTRFS_BALANCE_CTL_PAUSE:
|
|
return btrfs_pause_balance(fs_info);
|
|
case BTRFS_BALANCE_CTL_CANCEL:
|
|
return btrfs_cancel_balance(fs_info);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
|
|
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
|
|
if (!bargs) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_update_ioctl_balance_args(fs_info, bargs);
|
|
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(bargs);
|
|
out:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_ctl_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
switch (sa->cmd) {
|
|
case BTRFS_QUOTA_CTL_ENABLE:
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_QUOTA_V1_CTL_ENABLE:
|
|
case BTRFS_QUOTA_V2_CTL_ENABLE:
|
|
ret = btrfs_quota_enable(fs_info, sa->cmd);
|
|
#else
|
|
ret = btrfs_quota_enable(fs_info);
|
|
#endif /* MY_ABC_HERE */
|
|
break;
|
|
case BTRFS_QUOTA_CTL_DISABLE:
|
|
ret = btrfs_quota_disable(fs_info);
|
|
break;
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_QUOTA_CTL_UNLOAD:
|
|
ret = btrfs_quota_unload(fs_info);
|
|
break;
|
|
case BTRFS_QUOTA_CTL_REMOVE_V1:
|
|
ret = btrfs_quota_remove_v1(fs_info);
|
|
break;
|
|
#endif /* MY_ABC_HERE */
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
kfree(sa);
|
|
up_write(&fs_info->subvol_sem);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_assign_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->assign) {
|
|
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
|
|
} else {
|
|
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
|
|
}
|
|
|
|
/* update qgroup status and info */
|
|
err = btrfs_run_qgroups(trans);
|
|
if (err < 0)
|
|
btrfs_handle_fs_error(fs_info, err,
|
|
"failed to update qgroup status and info");
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_create_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (!sa->qgroupid) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->create) {
|
|
ret = btrfs_create_qgroup(trans, sa->qgroupid);
|
|
} else {
|
|
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
|
|
}
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_limit_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
u64 qgroupid;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (root->invalid_quota)
|
|
return -ESRCH;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
qgroupid = sa->qgroupid;
|
|
if (!qgroupid) {
|
|
/* take the current subvol as qgroup */
|
|
qgroupid = root->root_key.objectid;
|
|
}
|
|
|
|
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
|
|
{
|
|
#ifdef MY_ABC_HERE
|
|
return -EOPNOTSUPP;
|
|
#else
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_rescan_args *qsa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
qsa = memdup_user(arg, sizeof(*qsa));
|
|
if (IS_ERR(qsa)) {
|
|
ret = PTR_ERR(qsa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (qsa->flags) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_qgroup_rescan(fs_info);
|
|
|
|
out:
|
|
kfree(qsa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
#endif /* MY_ABC_HERE */
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
#ifdef MY_ABC_HERE
|
|
return -EOPNOTSUPP;
|
|
#else
|
|
struct btrfs_ioctl_quota_rescan_args *qsa;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
|
|
if (!qsa)
|
|
return -ENOMEM;
|
|
|
|
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
|
|
qsa->flags = 1;
|
|
qsa->progress = fs_info->qgroup_rescan_progress.objectid;
|
|
}
|
|
|
|
if (copy_to_user(arg, qsa, sizeof(*qsa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(qsa);
|
|
return ret;
|
|
#endif /* MY_ABC_HERE */
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_qgroup_wait_for_completion(fs_info, true);
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static long btrfs_ioctl_usrquota_ctl(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_usrquota_ctl_args *ctl_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctl_args = memdup_user(arg, sizeof(*ctl_args));
|
|
if (IS_ERR(ctl_args)) {
|
|
ret = PTR_ERR(ctl_args);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (ctl_args->cmd == BTRFS_USRQUOTA_CTL_DUMPTREE) {
|
|
ret = -EOPNOTSUPP;
|
|
goto free_ctl_args;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
switch (ctl_args->cmd) {
|
|
case BTRFS_USRQUOTA_CTL_ENABLE:
|
|
case BTRFS_USRQUOTA_V1_CTL_ENABLE:
|
|
case BTRFS_USRQUOTA_V2_CTL_ENABLE:
|
|
ret = btrfs_usrquota_enable(fs_info, ctl_args->cmd);
|
|
break;
|
|
case BTRFS_USRQUOTA_CTL_DISABLE:
|
|
ret = btrfs_usrquota_disable(fs_info);
|
|
break;
|
|
case BTRFS_USRQUOTA_CTL_UNLOAD:
|
|
ret = btrfs_usrquota_unload(fs_info);
|
|
break;
|
|
case BTRFS_USRQUOTA_CTL_REMOVE_V1:
|
|
ret = btrfs_usrquota_remove_v1(fs_info);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
up_write(&fs_info->subvol_sem);
|
|
free_ctl_args:
|
|
kfree(ctl_args);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_usrquota_limit(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_ioctl_usrquota_limit_args *limit_args;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
u64 rootid;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
#ifdef MY_ABC_HERE
|
|
if (root->invalid_quota)
|
|
return -ESRCH;
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
limit_args = memdup_user(arg, sizeof(*limit_args));
|
|
if (IS_ERR(limit_args)) {
|
|
ret = PTR_ERR(limit_args);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
rootid = root->root_key.objectid;
|
|
ret = btrfs_usrquota_limit(trans, rootid,
|
|
limit_args->uid, limit_args->rfer_soft,
|
|
limit_args->rfer_hard);
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(limit_args);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_usrquota_rescan(struct file *file)
|
|
{
|
|
// Please use qgroup rescan.
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static long btrfs_ioctl_usrquota_rescan_status(struct file *file, void __user *arg)
|
|
{
|
|
// Please use qgroup rescan.
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static inline long btrfs_ioctl_usrquota_rescan_wait(struct file *file)
|
|
{
|
|
// Please use qgroup rescan.
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static long btrfs_ioctl_usrquota_query(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_ioctl_usrquota_query_args uqa;
|
|
int ret = 0;
|
|
|
|
if (copy_from_user(&uqa, arg, sizeof(uqa))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_usrquota_query(root, &uqa);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (copy_to_user(arg, &uqa, sizeof(uqa)))
|
|
ret = -EFAULT;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_usrquota_clean(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret, err;
|
|
u64 uid;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_from_user(&uid, arg, sizeof(uid))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_usrquota_clean(trans, uid);
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_syno_quota_rescan(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_syno_quota_rescan_args *qsa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!test_bit(BTRFS_FS_SYNO_QUOTA_V2_ENABLED, &fs_info->flags))
|
|
return -ESRCH;
|
|
|
|
qsa = memdup_user(arg, sizeof(*qsa));
|
|
if (IS_ERR(qsa)) {
|
|
ret = PTR_ERR(qsa);
|
|
return ret;
|
|
}
|
|
|
|
switch (qsa->flags) {
|
|
case BTRFS_SYNO_QUOTA_RESCAN:
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btrfs_syno_quota_rescan(root);
|
|
|
|
mnt_drop_write_file(file);
|
|
break;
|
|
case BTRFS_SYNO_QUOTA_RESCAN_PAUSE:
|
|
if (!fs_info->qgroup_rescan_running) {
|
|
btrfs_info(fs_info, "Syno quota rescan is not running.");
|
|
ret = -ENOENT;
|
|
} else {
|
|
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_PAUSE;
|
|
btrfs_info(fs_info, "Sending pause to syno quota rescan worker.");
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case BTRFS_SYNO_QUOTA_RESCAN_RESUME:
|
|
if (fs_info->qgroup_rescan_running) {
|
|
btrfs_info(fs_info, "Syno quota rescan is already running.");
|
|
ret = -EEXIST;
|
|
} else if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN)) {
|
|
btrfs_info(fs_info, "No quota rescan work to resume.");
|
|
ret = -ENOENT;
|
|
} else {
|
|
btrfs_qgroup_rescan_resume(fs_info);
|
|
btrfs_info(fs_info, "Syno quota rescan has been resumed.");
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case BTRFS_SYNO_QUOTA_RESCAN_SET_VOL_V2:
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
break;
|
|
|
|
trans = btrfs_start_transaction(fs_info->fs_root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
mnt_drop_write_file(file);
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
err = btrfs_reset_qgroup_status(trans);
|
|
if (err) {
|
|
btrfs_err(fs_info, "Failed to set qgroup status to v2.");
|
|
ret = err;
|
|
}
|
|
|
|
err = btrfs_reset_usrquota_status(trans);
|
|
if (err) {
|
|
btrfs_err(fs_info, "Failed to set usrquota status to v2.");
|
|
ret = err;
|
|
}
|
|
|
|
err = btrfs_commit_transaction(trans);
|
|
if (err)
|
|
ret = err;
|
|
mnt_drop_write_file(file);
|
|
break;
|
|
case BTRFS_SYNO_QUOTA_RESCAN_TRANSFER_LIMIT:
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = 0;
|
|
err = btrfs_syno_qgroup_transfer_limit(root);
|
|
if (err)
|
|
ret = err;
|
|
|
|
err = btrfs_syno_usrquota_transfer_limit(root);
|
|
if (err)
|
|
ret = err;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
err = btrfs_commit_transaction(trans);
|
|
if (err)
|
|
ret = err;
|
|
mnt_drop_write_file(file);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
kfree(qsa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_syno_quota_status(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_ioctl_syno_quota_status_args sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&sa, arg, sizeof(sa)))
|
|
return -EFAULT;
|
|
|
|
ret = btrfs_syno_quota_status(root, &sa);
|
|
|
|
if (ret == 0 && copy_to_user(arg, &sa, sizeof(sa)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
static long _btrfs_ioctl_set_received_subvol(struct file *file,
|
|
struct btrfs_ioctl_received_subvol_args *sa)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct btrfs_trans_handle *trans;
|
|
struct timespec64 ct = current_time(inode);
|
|
int ret = 0;
|
|
int received_uuid_changed;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 1 - root item
|
|
* 2 - uuid items (received uuid + subvol uuid)
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
sa->rtransid = trans->transid;
|
|
sa->rtime.sec = ct.tv_sec;
|
|
sa->rtime.nsec = ct.tv_nsec;
|
|
|
|
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (received_uuid_changed &&
|
|
!btrfs_is_empty_uuid(root_item->received_uuid)) {
|
|
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_root_stransid(root_item, sa->stransid);
|
|
btrfs_set_root_rtransid(root_item, sa->rtransid);
|
|
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
|
|
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
|
|
#ifdef MY_ABC_HERE
|
|
btrfs_set_stack_timespec_sec(&root_item->otime, sa->otime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->otime, sa->otime.nsec);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, sa->uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret < 0 && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_commit_transaction(trans);
|
|
out:
|
|
up_write(&fs_info->subvol_sem);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
|
|
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
|
|
int ret = 0;
|
|
|
|
args32 = memdup_user(arg, sizeof(*args32));
|
|
if (IS_ERR(args32))
|
|
return PTR_ERR(args32);
|
|
|
|
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
|
|
if (!args64) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
|
|
args64->stransid = args32->stransid;
|
|
args64->rtransid = args32->rtransid;
|
|
args64->stime.sec = args32->stime.sec;
|
|
args64->stime.nsec = args32->stime.nsec;
|
|
args64->rtime.sec = args32->rtime.sec;
|
|
args64->rtime.nsec = args32->rtime.nsec;
|
|
#ifdef MY_ABC_HERE
|
|
args64->otime.sec = args32->otime.sec;
|
|
args64->otime.nsec = args32->otime.nsec;
|
|
#endif /* MY_ABC_HERE */
|
|
args64->flags = args32->flags;
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, args64);
|
|
if (ret)
|
|
goto out;
|
|
|
|
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
|
|
args32->stransid = args64->stransid;
|
|
args32->rtransid = args64->rtransid;
|
|
args32->stime.sec = args64->stime.sec;
|
|
args32->stime.nsec = args64->stime.nsec;
|
|
args32->rtime.sec = args64->rtime.sec;
|
|
args32->rtime.nsec = args64->rtime.nsec;
|
|
#ifdef MY_ABC_HERE
|
|
args32->otime.sec = args64->otime.sec;
|
|
args32->otime.nsec = args64->otime.nsec;
|
|
#endif /* MY_ABC_HERE */
|
|
args32->flags = args64->flags;
|
|
|
|
ret = copy_to_user(arg, args32, sizeof(*args32));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(args32);
|
|
kfree(args64);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static long btrfs_ioctl_set_received_subvol(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args *sa = NULL;
|
|
int ret = 0;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, sa);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = copy_to_user(arg, sa, sizeof(*sa));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
size_t len;
|
|
int ret;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
len = strnlen(label, BTRFS_LABEL_SIZE);
|
|
|
|
if (len == BTRFS_LABEL_SIZE) {
|
|
btrfs_warn(fs_info,
|
|
"label is too long, return the first %zu bytes",
|
|
--len);
|
|
}
|
|
|
|
ret = copy_to_user(arg, label, len);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_trans_handle *trans;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(label, arg, sizeof(label)))
|
|
return -EFAULT;
|
|
|
|
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
|
|
btrfs_err(fs_info,
|
|
"unable to set label with more than %d bytes",
|
|
BTRFS_LABEL_SIZE - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
strcpy(super_block->label, label);
|
|
spin_unlock(&fs_info->super_lock);
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_unlock:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#define INIT_FEATURE_FLAGS(suffix) \
|
|
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
|
|
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
|
|
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
|
|
|
|
int btrfs_ioctl_get_supported_features(void __user *arg)
|
|
{
|
|
static const struct btrfs_ioctl_feature_flags features[3] = {
|
|
INIT_FEATURE_FLAGS(SUPP),
|
|
INIT_FEATURE_FLAGS(SAFE_SET),
|
|
INIT_FEATURE_FLAGS(SAFE_CLEAR)
|
|
};
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags features;
|
|
|
|
features.compat_flags = btrfs_super_compat_flags(super_block);
|
|
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
|
|
features.incompat_flags = btrfs_super_incompat_flags(super_block);
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_feature_bits(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_feature_set set,
|
|
u64 change_mask, u64 flags, u64 supported_flags,
|
|
u64 safe_set, u64 safe_clear)
|
|
{
|
|
const char *type = btrfs_feature_set_name(set);
|
|
char *names;
|
|
u64 disallowed, unsupported;
|
|
u64 set_mask = flags & change_mask;
|
|
u64 clear_mask = ~flags & change_mask;
|
|
|
|
unsupported = set_mask & ~supported_flags;
|
|
if (unsupported) {
|
|
names = btrfs_printable_features(set, unsupported);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support the %s feature bit%s",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support %s bits 0x%llx",
|
|
type, unsupported);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
disallowed = set_mask & ~safe_set;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't set the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't set %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
disallowed = clear_mask & ~safe_clear;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't clear the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't clear %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define check_feature(fs_info, change_mask, flags, mask_base) \
|
|
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
|
|
|
|
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags flags[2];
|
|
struct btrfs_trans_handle *trans;
|
|
u64 newflags;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(flags, arg, sizeof(flags)))
|
|
return -EFAULT;
|
|
|
|
/* Nothing to do */
|
|
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
|
|
!flags[0].incompat_flags)
|
|
return 0;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_flags,
|
|
flags[1].compat_flags, COMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_ro_flags,
|
|
flags[1].compat_ro_flags, COMPAT_RO);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].incompat_flags,
|
|
flags[1].incompat_flags, INCOMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
newflags = btrfs_super_compat_flags(super_block);
|
|
newflags |= flags[0].compat_flags & flags[1].compat_flags;
|
|
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
|
|
btrfs_set_super_compat_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_compat_ro_flags(super_block);
|
|
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
|
|
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
|
|
btrfs_set_super_compat_ro_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_incompat_flags(super_block);
|
|
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
|
|
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
|
|
btrfs_set_super_incompat_flags(super_block, newflags);
|
|
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
/*
|
|
* For backward compatiblity, we should not put capability flags into
|
|
* `struct btrfs_ioctl_feature_flags`.
|
|
*/
|
|
static int btrfs_ioctl_get_syno_flags(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_super_block *super_block = root->fs_info->super_copy;
|
|
struct btrfs_ioctl_syno_flags flags;
|
|
|
|
flags.syno_capability_flags = btrfs_super_syno_capability_flags(super_block);
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_set_syno_flags(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_super_block *super_block = root->fs_info->super_copy;
|
|
struct btrfs_ioctl_syno_flags flags[2];
|
|
struct btrfs_trans_handle *trans;
|
|
u64 newflags;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(flags, arg, sizeof(flags)))
|
|
return -EFAULT;
|
|
|
|
/* Nothing to do */
|
|
if (!flags[0].syno_capability_flags)
|
|
return 0;
|
|
|
|
ret = check_feature(fs_info, flags[0].syno_capability_flags,
|
|
flags[1].syno_capability_flags, SYNO_CAPABILITY);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
|
|
newflags = btrfs_super_syno_capability_flags(super_block);
|
|
newflags |= flags[0].syno_capability_flags & flags[1].syno_capability_flags;
|
|
newflags &= ~(flags[0].syno_capability_flags & ~flags[1].syno_capability_flags);
|
|
btrfs_set_super_syno_capability_flags(super_block, newflags);
|
|
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
|
|
{
|
|
struct btrfs_ioctl_send_args *arg;
|
|
int ret;
|
|
|
|
if (compat) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 args32;
|
|
|
|
ret = copy_from_user(&args32, argp, sizeof(args32));
|
|
if (ret)
|
|
return -EFAULT;
|
|
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
|
|
if (!arg)
|
|
return -ENOMEM;
|
|
arg->send_fd = args32.send_fd;
|
|
arg->clone_sources_count = args32.clone_sources_count;
|
|
arg->clone_sources = compat_ptr(args32.clone_sources);
|
|
arg->parent_root = args32.parent_root;
|
|
arg->flags = args32.flags;
|
|
memcpy(arg->reserved, args32.reserved,
|
|
sizeof(args32.reserved));
|
|
#else
|
|
return -ENOTTY;
|
|
#endif
|
|
} else {
|
|
arg = memdup_user(argp, sizeof(*arg));
|
|
if (IS_ERR(arg))
|
|
return PTR_ERR(arg);
|
|
}
|
|
ret = btrfs_ioctl_send(file, arg);
|
|
#ifdef MY_ABC_HERE
|
|
if (copy_to_user(argp, arg, sizeof(*arg))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
#endif /* MY_ABC_HERE */
|
|
kfree(arg);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static long btrfs_ioctl_qgroup_query(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_ioctl_qgroup_query_args qqa;
|
|
int ret = 0;
|
|
|
|
memset(&qqa, 0, sizeof(qqa));
|
|
|
|
// use subvol id as qgroup id
|
|
ret = btrfs_qgroup_query(root, &qqa);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (copy_to_user(arg, &qqa, sizeof(qqa)))
|
|
ret = -EFAULT;
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_syno_reserve_log_tree_bg(struct file *file,
|
|
struct btrfs_ioctl_log_tree_reserve_bg_args __user *argp)
|
|
{
|
|
struct btrfs_ioctl_log_tree_reserve_bg_args rsv_args;
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_bio *multi = NULL;
|
|
u64 rsv_start = 0;
|
|
u64 rsv_size = 0;
|
|
u64 length = fs_info->nodesize;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (copy_from_user(&rsv_args, argp, sizeof(rsv_args)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&fs_info->log_tree_rsv_alloc);
|
|
|
|
switch(rsv_args.flags) {
|
|
case BTRFS_LOG_TREE_BG_RSV_REMOVE:
|
|
fs_info->log_tree_rsv_start = 0;
|
|
fs_info->log_tree_rsv_size = 0;
|
|
goto out;
|
|
case BTRFS_LOG_TREE_BG_RSV_ADD:
|
|
if (fs_info->log_tree_rsv_start) {
|
|
rsv_start = fs_info->log_tree_rsv_start;
|
|
rsv_size = fs_info->log_tree_rsv_size;
|
|
goto map_logical;
|
|
}
|
|
ret = btrfs_reserve_log_tree_bg(root, &rsv_start, &rsv_size);
|
|
if (ret)
|
|
goto out;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
map_logical:
|
|
ret = btrfs_map_block(fs_info, READ, rsv_start, &length, &multi, 1);
|
|
out:
|
|
if (!ret && rsv_start) {
|
|
if (put_user(rsv_start, &argp->start) ||
|
|
put_user(rsv_size, &argp->size) ||
|
|
put_user(multi->stripes[0].physical, &argp->map_start))
|
|
ret = -EINVAL;
|
|
}
|
|
kfree(multi);
|
|
mutex_unlock(&fs_info->log_tree_rsv_alloc);
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_free_space_analyze(struct file *file, struct btrfs_ioctl_free_space_analyze_args __user *argp)
|
|
{
|
|
int ret = 0;
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_free_space_analyze_args args;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&args, argp, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
if (!mutex_trylock(&fs_info->free_space_analyze_ioctl_lock))
|
|
return -EBUSY;
|
|
|
|
if (args.flags & BTRFS_FREE_SPACE_ANALYZE_FLAG_FULL)
|
|
ret = btrfs_free_space_analyze_full(fs_info, &args);
|
|
else
|
|
ret = btrfs_free_space_analyze(fs_info, &args);
|
|
|
|
mutex_unlock(&fs_info->free_space_analyze_ioctl_lock);
|
|
|
|
if (copy_to_user(argp, &args, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_syno_find_next_chunk_info(struct file *file,
|
|
struct btrfs_ioctl_find_next_chunk_info_args __user *argp)
|
|
{
|
|
int ret = -1;
|
|
struct btrfs_ioctl_find_next_chunk_info_args args;
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_group *block_group = NULL;
|
|
u64 profile;
|
|
u64 length;
|
|
struct btrfs_bio *bbio = NULL;
|
|
int i;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&args, argp, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
block_group = btrfs_lookup_first_block_group(fs_info, args.start);
|
|
while (block_group) {
|
|
if (block_group->flags & args.flags)
|
|
break;
|
|
block_group = btrfs_next_block_group(block_group);
|
|
}
|
|
|
|
args.stripe_count = 0;
|
|
|
|
if (block_group) {
|
|
profile = block_group->flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
if ((profile & BTRFS_BLOCK_GROUP_DUP) || !profile) {
|
|
length = block_group->length;
|
|
ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
|
|
block_group->start, &length,
|
|
&bbio, 0);
|
|
if (ret || !bbio) {
|
|
if (!ret)
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
args.start = block_group->start;
|
|
args.size = block_group->length;
|
|
args.stripe_count = bbio->num_stripes > 2 ? 2 : bbio->num_stripes;
|
|
|
|
for (i = 0; i < args.stripe_count; i++)
|
|
args.stripe_offset[i] = bbio->stripes[i].physical;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(argp, &args, sizeof(args))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
if (block_group)
|
|
btrfs_put_block_group(block_group);
|
|
btrfs_put_bbio(bbio);
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
#define LOOKUP_COMPR_FILE_READA_THR ((20 * SZ_1M))
|
|
|
|
static long btrfs_ioctl_compr_ctl(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
|
|
struct btrfs_ioctl_compr_ctl_args compr_args;
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
struct btrfs_path *path = NULL;
|
|
struct ulist *disko_ulist = NULL;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key found_key;
|
|
int ret = 0;
|
|
int extent_type;
|
|
int slot;
|
|
u64 ino = btrfs_ino(btrfs_inode);
|
|
u64 disko;
|
|
u64 len;
|
|
u64 compressed_size = 0;
|
|
u64 size = 0;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
return -EISDIR;
|
|
|
|
if (copy_from_user(&compr_args, arg, sizeof(compr_args)))
|
|
return -EFAULT;
|
|
|
|
if (compr_args.flags & BTRFS_COMPR_CTL_SET)
|
|
return -EOPNOTSUPP;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
disko_ulist = ulist_alloc(GFP_NOFS);
|
|
if (!disko_ulist) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
|
|
/*
|
|
* do any pending delalloc/csum calc on inode, one way or
|
|
* another, and lock file content
|
|
*/
|
|
btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
len = i_size_read(inode);
|
|
lock_extent(&btrfs_inode->io_tree, 0, len);
|
|
|
|
if (len > LOOKUP_COMPR_FILE_READA_THR) // May be many file extent items, do readahead.
|
|
path->reada = READA_FORWARD;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, ino, 0, 0);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
else if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
else if (ret > 0)
|
|
goto done;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
if (found_key.objectid != ino ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
|
|
disko = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (disko &&
|
|
ulist_add_lru_adjust(disko_ulist, disko, 0, GFP_NOFS)) {
|
|
compressed_size += btrfs_file_extent_disk_num_bytes(
|
|
leaf, fi);
|
|
size += btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (disko_ulist->nnodes > ULIST_NODES_MAX)
|
|
ulist_remove_first(disko_ulist);
|
|
}
|
|
} else {
|
|
compressed_size += btrfs_file_extent_inline_item_len(
|
|
leaf, btrfs_item_nr(slot));
|
|
size += btrfs_file_extent_ram_bytes(leaf, fi);
|
|
}
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
if (ret > 0)
|
|
break;
|
|
}
|
|
done:
|
|
ret = 0;
|
|
|
|
compr_args.size = size;
|
|
compr_args.compressed_size = compressed_size;
|
|
if (btrfs_inode->prop_compress != BTRFS_COMPRESS_NONE)
|
|
compr_args.flags |= BTRFS_COMPR_CTL_COMPR_FL;
|
|
|
|
if (copy_to_user(arg, &compr_args, sizeof(compr_args)))
|
|
ret = -EFAULT;
|
|
|
|
out_unlock:
|
|
unlock_extent(&btrfs_inode->io_tree, 0, len);
|
|
inode_unlock(inode);
|
|
|
|
out_free:
|
|
ulist_free(disko_ulist);
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_snapshot_size_query(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_snapshot_size_query_args snap_args;
|
|
struct btrfs_ioctl_snapshot_size_id_size_map *user_id_maps;
|
|
size_t id_maps_size;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&snap_args, argp, sizeof(snap_args)))
|
|
return -EFAULT;
|
|
|
|
if (!snap_args.snap_count || 0 > snap_args.fd)
|
|
return -EINVAL;
|
|
|
|
id_maps_size = sizeof(struct btrfs_ioctl_snapshot_size_id_size_map) *
|
|
snap_args.snap_count;
|
|
user_id_maps = snap_args.id_maps;
|
|
|
|
if (!access_ok(snap_args.id_maps, id_maps_size))
|
|
return -EFAULT;
|
|
|
|
snap_args.id_maps = memdup_user(snap_args.id_maps, id_maps_size);
|
|
if (IS_ERR(snap_args.id_maps))
|
|
return PTR_ERR(snap_args.id_maps);
|
|
|
|
ret = btrfs_snapshot_size_query(file, &snap_args);
|
|
|
|
if (copy_to_user(argp + offsetof(
|
|
struct btrfs_ioctl_snapshot_size_query_args,
|
|
calc_size), &snap_args.calc_size,
|
|
sizeof(snap_args.calc_size))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(argp + offsetof(
|
|
struct btrfs_ioctl_snapshot_size_query_args,
|
|
processed_size), &snap_args.processed_size,
|
|
sizeof(snap_args.processed_size))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(user_id_maps, snap_args.id_maps, id_maps_size)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = 0;
|
|
out:
|
|
kfree(snap_args.id_maps);
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static void __btrfs_syno_usage_rescan_progress_accounting(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 root_new_total_size;
|
|
if (!(root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING)) {
|
|
root_new_total_size = btrfs_root_used(&root->root_item);
|
|
if (root_new_total_size > root->syno_usage_root_status.total_full_rescan_size)
|
|
root->syno_usage_root_status.total_full_rescan_size = root_new_total_size;
|
|
root->syno_usage_root_status.flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING;
|
|
spin_lock(&fs_info->syno_usage_lock);
|
|
fs_info->syno_usage_status.total_full_rescan_size += (root->syno_usage_root_status.total_full_rescan_size -
|
|
root->syno_usage_root_status.cur_full_rescan_size);
|
|
spin_unlock(&fs_info->syno_usage_lock);
|
|
}
|
|
}
|
|
|
|
static int btrfs_ioctl_syno_usage_subvol_type_set(struct file *file,
|
|
struct btrfs_ioctl_syno_usage_ctl_args *syno_usage_ctl_args,
|
|
struct btrfs_ioctl_syno_usage_ctl_args __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_syno_usage_root_status *usage_root_status;
|
|
int ret = 0;
|
|
bool resume = false;
|
|
struct btrfs_key first_key, last_key;
|
|
|
|
first_key.objectid = 0;
|
|
first_key.type = 0;
|
|
first_key.offset = 0;
|
|
last_key.objectid = -1;
|
|
last_key.type = -1;
|
|
last_key.offset = -1;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (syno_usage_ctl_args->type >= SYNO_USAGE_TYPE_MAX ||
|
|
syno_usage_ctl_args->type == SYNO_USAGE_TYPE_NONE) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
|
|
goto out;
|
|
|
|
btrfs_syno_usage_root_initialize(root);
|
|
if (!test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state) ||
|
|
root->syno_usage_root_status.new_type == syno_usage_ctl_args->type)
|
|
goto out;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
goto out;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&root->syno_usage_lock);
|
|
usage_root_status = &root->syno_usage_root_status;
|
|
if (usage_root_status->new_type == syno_usage_ctl_args->type) {
|
|
spin_unlock(&root->syno_usage_lock);
|
|
goto out;
|
|
}
|
|
|
|
if (test_bit(SYNO_USAGE_ROOT_RUNTIME_FLAG_RESCAN, &root->syno_usage_runtime_flags)) {
|
|
ret = -EBUSY;
|
|
spin_unlock(&root->syno_usage_lock);
|
|
goto out;
|
|
}
|
|
|
|
if (usage_root_status->state == SYNO_USAGE_ROOT_STATE_NORMAL ||
|
|
usage_root_status->num_bytes == 0 ||
|
|
btrfs_comp_cpu_keys(&first_key, &usage_root_status->fast_rescan_progress) == 0 ||
|
|
btrfs_comp_cpu_keys(&last_key, &usage_root_status->fast_rescan_progress) == 0) {
|
|
|
|
usage_root_status->new_type = syno_usage_ctl_args->type;
|
|
|
|
usage_root_status->fast_rescan_progress.objectid = 0;
|
|
usage_root_status->fast_rescan_progress.type = 0;
|
|
usage_root_status->fast_rescan_progress.offset = 0;
|
|
usage_root_status->state = SYNO_USAGE_ROOT_STATE_RESCAN;
|
|
usage_root_status->flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
|
|
|
|
if (usage_root_status->new_type == SYNO_USAGE_TYPE_RO_SNAPSHOT)
|
|
usage_root_status->flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_FORCE_EXTENT;
|
|
|
|
if (usage_root_status->new_type == SYNO_USAGE_TYPE_RO_SNAPSHOT &&
|
|
usage_root_status->type == SYNO_USAGE_TYPE_NONE) {
|
|
usage_root_status->fast_rescan_progress.objectid = -1;
|
|
usage_root_status->fast_rescan_progress.type = -1;
|
|
usage_root_status->fast_rescan_progress.offset = -1;
|
|
usage_root_status->flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
|
|
}
|
|
if (usage_root_status->num_bytes == 0) {
|
|
usage_root_status->fast_rescan_progress.objectid = -1;
|
|
usage_root_status->fast_rescan_progress.type = -1;
|
|
usage_root_status->fast_rescan_progress.offset = -1;
|
|
usage_root_status->flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
|
|
}
|
|
if (btrfs_comp_cpu_keys(&last_key, &usage_root_status->fast_rescan_progress) == 0 &&
|
|
btrfs_comp_cpu_keys(&last_key, &usage_root_status->full_rescan_progress) == 0) {
|
|
if (usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING) {
|
|
spin_lock(&fs_info->syno_usage_lock);
|
|
fs_info->syno_usage_status.cur_full_rescan_size += usage_root_status->total_full_rescan_size - usage_root_status->cur_full_rescan_size;
|
|
usage_root_status->cur_full_rescan_size = 0;
|
|
usage_root_status->total_full_rescan_size = 0;
|
|
spin_unlock(&fs_info->syno_usage_lock);
|
|
}
|
|
usage_root_status->type = usage_root_status->new_type;
|
|
usage_root_status->state = SYNO_USAGE_ROOT_STATE_NORMAL;
|
|
usage_root_status->flags &= ~(BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_MASK);
|
|
}
|
|
if (usage_root_status->state == SYNO_USAGE_ROOT_STATE_RESCAN &&
|
|
usage_root_status->new_type != SYNO_USAGE_TYPE_RO_SNAPSHOT) {
|
|
if (fs_info->syno_usage_status.state >= SYNO_USAGE_STATE_INITIAL &&
|
|
fs_info->syno_usage_status.state <= SYNO_USAGE_STATE_RESCAN_PAUSE &&
|
|
usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_FULL_RESCAN)
|
|
__btrfs_syno_usage_rescan_progress_accounting(root);
|
|
spin_lock(&fs_info->syno_usage_full_rescan_lock);
|
|
spin_lock(&fs_info->syno_usage_fast_rescan_lock);
|
|
if ((fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_ENABLE) &&
|
|
!test_bit(SYNO_USAGE_ROOT_RUNTIME_FLAG_RESCAN, &root->syno_usage_runtime_flags) &&
|
|
list_empty(&root->syno_usage_rescan_list)) {
|
|
btrfs_grab_root(root);
|
|
if (usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_FULL_RESCAN) {
|
|
list_move_tail(&root->syno_usage_rescan_list, &fs_info->syno_usage_pending_full_rescan_roots);
|
|
atomic_inc(&fs_info->syno_usage_pending_full_rescan_count);
|
|
} else {
|
|
list_move_tail(&root->syno_usage_rescan_list, &fs_info->syno_usage_pending_fast_rescan_roots);
|
|
atomic_inc(&fs_info->syno_usage_pending_fast_rescan_count);
|
|
}
|
|
resume = true;
|
|
}
|
|
spin_unlock(&fs_info->syno_usage_fast_rescan_lock);
|
|
spin_unlock(&fs_info->syno_usage_full_rescan_lock);
|
|
}
|
|
} else {
|
|
ret = -EBUSY;
|
|
spin_unlock(&root->syno_usage_lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&root->syno_usage_lock);
|
|
|
|
btrfs_record_root_in_trans(trans, root);
|
|
if (resume)
|
|
btrfs_syno_usage_rescan_resume(fs_info);
|
|
ret = 0;
|
|
out:
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_syno_usage_get_by_type(struct file *file,
|
|
struct btrfs_ioctl_syno_usage_ctl_args *syno_usage_ctl_args,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret = 0;
|
|
|
|
if (syno_usage_ctl_args->type >= SYNO_USAGE_TYPE_MAX ||
|
|
syno_usage_ctl_args->type == SYNO_USAGE_TYPE_NONE) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
|
|
goto out;
|
|
|
|
spin_lock(&fs_info->syno_usage_lock);
|
|
syno_usage_ctl_args->num_bytes = fs_info->syno_usage_status.syno_usage_type_num_bytes[syno_usage_ctl_args->type];
|
|
spin_unlock(&fs_info->syno_usage_lock);
|
|
|
|
if (copy_to_user(argp, syno_usage_ctl_args, sizeof(*syno_usage_ctl_args))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_syno_usage_ctl(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_syno_usage_ctl_args syno_usage_ctl_args;
|
|
int ret = 0;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&syno_usage_ctl_args, argp, sizeof(syno_usage_ctl_args)))
|
|
return -EFAULT;
|
|
|
|
switch (syno_usage_ctl_args.cmd) {
|
|
case BTRFS_SYNO_USAGE_CTL_ENABLE:
|
|
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
ret = btrfs_syno_usage_enable(fs_info);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_DISABLE:
|
|
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
ret = btrfs_syno_usage_disable(fs_info);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_STATUS:
|
|
syno_usage_ctl_args.state = fs_info->syno_usage_status.state;
|
|
syno_usage_ctl_args.flags = fs_info->syno_usage_status.flags;
|
|
syno_usage_ctl_args.pending_fast_rescan_count = atomic_read(&fs_info->syno_usage_pending_fast_rescan_count);
|
|
syno_usage_ctl_args.pending_full_rescan_count = atomic_read(&fs_info->syno_usage_pending_full_rescan_count);
|
|
syno_usage_ctl_args.fast_rescan_pid = fs_info->syno_usage_fast_rescan_pid;
|
|
syno_usage_ctl_args.full_rescan_pid = fs_info->syno_usage_full_rescan_pid;
|
|
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_INITIAL ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_PAUSE ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_DISABLE) {
|
|
syno_usage_ctl_args.cur_rescan_size = fs_info->syno_usage_status.cur_full_rescan_size;
|
|
syno_usage_ctl_args.total_rescan_size = fs_info->syno_usage_status.total_full_rescan_size;
|
|
}
|
|
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR)
|
|
syno_usage_ctl_args.error_code = fs_info->syno_usage_status.error_code;
|
|
if (copy_to_user(argp, &syno_usage_ctl_args, sizeof(syno_usage_ctl_args))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_RESCAN:
|
|
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
|
|
goto out;
|
|
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_INITIAL ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR ||
|
|
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_PAUSE) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
goto out;
|
|
}
|
|
fs_info->syno_usage_status.state = SYNO_USAGE_STATE_RESCAN;
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
btrfs_syno_usage_rescan_resume(fs_info);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_RESCAN_PAUSE:
|
|
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) ||
|
|
fs_info->syno_usage_status.state != SYNO_USAGE_STATE_RESCAN)
|
|
goto out;
|
|
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
goto out;
|
|
}
|
|
fs_info->syno_usage_status.state = SYNO_USAGE_STATE_RESCAN_PAUSE;
|
|
clear_bit(BTRFS_FS_SYNO_SPACE_USAGE_RESCAN_CHECK_ALL, &fs_info->flags);
|
|
btrfs_end_transaction(trans);
|
|
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_SUBVOL_TYPE_SET:
|
|
ret = btrfs_ioctl_syno_usage_subvol_type_set(file, &syno_usage_ctl_args, argp);
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_SUBVOL_TYPE_GET:
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
|
|
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state))
|
|
syno_usage_ctl_args.type = root->syno_usage_root_status.new_type;
|
|
else
|
|
syno_usage_ctl_args.type = SYNO_USAGE_TYPE_NONE;
|
|
if (copy_to_user(argp, &syno_usage_ctl_args, sizeof(syno_usage_ctl_args))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
break;
|
|
case BTRFS_SYNO_USAGE_CTL_USAGE_GET_BY_TYPE:
|
|
ret = btrfs_ioctl_syno_usage_get_by_type(file, &syno_usage_ctl_args, argp);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_cksumfailed_files_get(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(file_inode(file))->root->fs_info;
|
|
struct cksumfailed_file_rec rec;
|
|
struct btrfs_ioctl_cksumfailed_files_args cksumfailed_files;
|
|
unsigned int len;
|
|
|
|
spin_lock(&fs_info->cksumfailed_files_write_lock);
|
|
len = kfifo_out(&fs_info->cksumfailed_files, &rec,
|
|
sizeof(struct cksumfailed_file_rec));
|
|
spin_unlock(&fs_info->cksumfailed_files_write_lock);
|
|
if (len == sizeof(struct cksumfailed_file_rec)) {
|
|
cksumfailed_files.sub_vol = rec.sub_vol;
|
|
cksumfailed_files.ino = rec.ino;
|
|
} else if (0 == len) {
|
|
return -ENOENT;
|
|
} else {
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (copy_to_user(arg, &cksumfailed_files,
|
|
sizeof(struct btrfs_ioctl_cksumfailed_files_args)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_dedupe_set_inode_no_dedupe(struct inode *inode, bool on_off)
|
|
{
|
|
int ret = -1;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
|
|
inode_lock(inode);
|
|
if (on_off) {
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODEDUPE)
|
|
goto out;
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODEDUPE;
|
|
} else {
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODEDUPE))
|
|
goto out;
|
|
BTRFS_I(inode)->flags &= ~BTRFS_INODE_NODEDUPE;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
ret = btrfs_end_transaction(trans);
|
|
|
|
out:
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static long _btrfs_ioctl_syno_dedupe_cmd_file(struct file *file,
|
|
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args)
|
|
{
|
|
int ret = -1;
|
|
u64 objectid = dedupe_cmd_args->objectid;
|
|
struct inode *inode = NULL;
|
|
bool get_inode = false;
|
|
|
|
if (!objectid) {
|
|
inode = file_inode(file);
|
|
} else {
|
|
inode = btrfs_get_regular_file_inode(file_inode(file)->i_sb,
|
|
dedupe_cmd_args->rootid,
|
|
objectid);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto out;
|
|
}
|
|
get_inode = true;
|
|
}
|
|
|
|
if (!inode_owner_or_capable(inode)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
switch(dedupe_cmd_args->action) {
|
|
case DEDUPE_CMD_SET:
|
|
ret = btrfs_file_extent_deduped_set_range(inode,
|
|
dedupe_cmd_args->offset, dedupe_cmd_args->len, true);
|
|
break;
|
|
case DEDUPE_CMD_CLEAR:
|
|
ret = btrfs_file_extent_deduped_set_range(inode,
|
|
dedupe_cmd_args->offset, dedupe_cmd_args->len, false);
|
|
break;
|
|
case DEDUPE_CMD_SET_NODEDUPE:
|
|
ret = btrfs_dedupe_set_inode_no_dedupe(inode, true);
|
|
break;
|
|
case DEDUPE_CMD_CLEAR_NODEDUPE:
|
|
ret = btrfs_dedupe_set_inode_no_dedupe(inode, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (get_inode)
|
|
iput(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long _btrfs_ioctl_syno_dedupe_cmd_root(struct file *file,
|
|
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args)
|
|
{
|
|
int ret = -1;
|
|
u64 objectid = dedupe_cmd_args->objectid;
|
|
u64 len = dedupe_cmd_args->len;
|
|
struct btrfs_root *root = NULL;
|
|
bool hold_root = false;
|
|
|
|
if (!objectid) {
|
|
root = BTRFS_I(file_inode(file))->root;
|
|
} else {
|
|
if (objectid < BTRFS_FIRST_FREE_OBJECTID || objectid > BTRFS_LAST_FREE_OBJECTID)
|
|
return -ESTALE;
|
|
|
|
root = btrfs_get_fs_root(btrfs_sb(file_inode(file)->i_sb), objectid, true);
|
|
if (IS_ERR(root))
|
|
return PTR_ERR(root);
|
|
|
|
hold_root = true;
|
|
}
|
|
|
|
switch(dedupe_cmd_args->action) {
|
|
case DEDUPE_CMD_SET_SMALL_EXTENT_SIZE:
|
|
if ((len % PAGE_SIZE) || len < SZ_128K) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
root->small_extent_size = len;
|
|
break;
|
|
case DEDUPE_CMD_SET_INLINE_DEDUPE:
|
|
root->inline_dedupe = true;
|
|
break;
|
|
case DEDUPE_CMD_CLEAR_INLINE_DEDUPE:
|
|
root->inline_dedupe = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
if (hold_root)
|
|
btrfs_put_root(root);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_syno_dedupe_cmd(struct file *file,
|
|
struct btrfs_ioctl_syno_dedupe_cmd_args __user *argp)
|
|
{
|
|
int ret = -1;
|
|
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args = NULL;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dedupe_cmd_args = memdup_user(argp, sizeof(struct btrfs_ioctl_syno_dedupe_cmd_args));
|
|
if (!dedupe_cmd_args) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
switch(dedupe_cmd_args->action) {
|
|
case DEDUPE_CMD_SET:
|
|
case DEDUPE_CMD_CLEAR:
|
|
case DEDUPE_CMD_SET_NODEDUPE:
|
|
case DEDUPE_CMD_CLEAR_NODEDUPE:
|
|
ret = _btrfs_ioctl_syno_dedupe_cmd_file(file, dedupe_cmd_args);
|
|
break;
|
|
case DEDUPE_CMD_SET_SMALL_EXTENT_SIZE:
|
|
case DEDUPE_CMD_SET_INLINE_DEDUPE:
|
|
case DEDUPE_CMD_CLEAR_INLINE_DEDUPE:
|
|
ret = _btrfs_ioctl_syno_dedupe_cmd_root(file, dedupe_cmd_args);
|
|
break;
|
|
default:
|
|
printk("unknown dedupe cmd:%d\n", dedupe_cmd_args->action);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
kfree(dedupe_cmd_args);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
static int btrfs_ioctl_syno_feat_tree_ctl(struct file *file, struct btrfs_ioctl_syno_feat_tree_ctl_args __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_syno_feat_tree_ctl_args syno_feat_ctl_args;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&syno_feat_ctl_args, argp, sizeof(syno_feat_ctl_args)))
|
|
return -EFAULT;
|
|
|
|
switch (syno_feat_ctl_args.cmd) {
|
|
|
|
case BTRFS_SYNO_FEAT_TREE_CTL_ENABLE:
|
|
if(!mutex_trylock(&fs_info->syno_feat_tree_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
ret = btrfs_syno_feat_tree_enable(fs_info);
|
|
if (!ret)
|
|
btrfs_info(root->fs_info, "syno feature tree is enabled");
|
|
mutex_unlock(&fs_info->syno_feat_tree_ioctl_lock);
|
|
break;
|
|
case BTRFS_SYNO_FEAT_TREE_CTL_DISABLE:
|
|
#ifdef MY_ABC_HERE
|
|
/* feature-tree isn't able to be disabled */
|
|
ret = -EPERM;
|
|
break;
|
|
#else
|
|
if(!mutex_trylock(&fs_info->syno_feat_tree_ioctl_lock)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
ret = btrfs_syno_feat_tree_disable(fs_info);
|
|
mutex_unlock(&fs_info->syno_feat_tree_ioctl_lock);
|
|
break;
|
|
#endif /* MY_ABC_HERE */
|
|
case BTRFS_SYNO_FEAT_TREE_CTL_STATUS:
|
|
syno_feat_ctl_args.status = fs_info->syno_feat_tree_status.status;
|
|
|
|
if (copy_to_user(argp, &syno_feat_ctl_args, sizeof(syno_feat_ctl_args))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
long btrfs_ioctl(struct file *file, unsigned int
|
|
cmd, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case FS_IOC_GETFLAGS:
|
|
return btrfs_ioctl_getflags(file, argp);
|
|
case FS_IOC_SETFLAGS:
|
|
return btrfs_ioctl_setflags(file, argp);
|
|
case FS_IOC_GETVERSION:
|
|
return btrfs_ioctl_getversion(file, argp);
|
|
case FS_IOC_GETFSLABEL:
|
|
return btrfs_ioctl_get_fslabel(fs_info, argp);
|
|
case FS_IOC_SETFSLABEL:
|
|
return btrfs_ioctl_set_fslabel(file, argp);
|
|
case FITRIM:
|
|
return btrfs_ioctl_fitrim(fs_info, argp);
|
|
#ifdef MY_ABC_HERE
|
|
case FIHINTUNUSED:
|
|
return btrfs_ioctl_hint_unused(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
case BTRFS_IOC_SNAP_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 0);
|
|
case BTRFS_IOC_SNAP_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 0);
|
|
case BTRFS_IOC_SUBVOL_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 1);
|
|
case BTRFS_IOC_SUBVOL_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 1);
|
|
case BTRFS_IOC_SNAP_DESTROY:
|
|
return btrfs_ioctl_snap_destroy(file, argp, false);
|
|
case BTRFS_IOC_SNAP_DESTROY_V2:
|
|
return btrfs_ioctl_snap_destroy(file, argp, true);
|
|
case BTRFS_IOC_SUBVOL_GETFLAGS:
|
|
return btrfs_ioctl_subvol_getflags(file, argp);
|
|
case BTRFS_IOC_SUBVOL_SETFLAGS:
|
|
return btrfs_ioctl_subvol_setflags(file, argp);
|
|
case BTRFS_IOC_DEFAULT_SUBVOL:
|
|
return btrfs_ioctl_default_subvol(file, argp);
|
|
case BTRFS_IOC_DEFRAG:
|
|
return btrfs_ioctl_defrag(file, NULL);
|
|
case BTRFS_IOC_DEFRAG_RANGE:
|
|
return btrfs_ioctl_defrag(file, argp);
|
|
case BTRFS_IOC_RESIZE:
|
|
return btrfs_ioctl_resize(file, argp);
|
|
case BTRFS_IOC_ADD_DEV:
|
|
return btrfs_ioctl_add_dev(fs_info, argp);
|
|
case BTRFS_IOC_RM_DEV:
|
|
return btrfs_ioctl_rm_dev(file, argp);
|
|
case BTRFS_IOC_RM_DEV_V2:
|
|
return btrfs_ioctl_rm_dev_v2(file, argp);
|
|
case BTRFS_IOC_FS_INFO:
|
|
return btrfs_ioctl_fs_info(fs_info, argp);
|
|
case BTRFS_IOC_DEV_INFO:
|
|
return btrfs_ioctl_dev_info(fs_info, argp);
|
|
case BTRFS_IOC_BALANCE:
|
|
return btrfs_ioctl_balance(file, NULL);
|
|
case BTRFS_IOC_TREE_SEARCH:
|
|
return btrfs_ioctl_tree_search(file, argp);
|
|
case BTRFS_IOC_TREE_SEARCH_V2:
|
|
return btrfs_ioctl_tree_search_v2(file, argp);
|
|
case BTRFS_IOC_INO_LOOKUP:
|
|
return btrfs_ioctl_ino_lookup(file, argp);
|
|
case BTRFS_IOC_INO_PATHS:
|
|
return btrfs_ioctl_ino_to_path(root, argp);
|
|
case BTRFS_IOC_LOGICAL_INO:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
|
|
case BTRFS_IOC_LOGICAL_INO_V2:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
|
|
case BTRFS_IOC_SPACE_INFO:
|
|
return btrfs_ioctl_space_info(fs_info, argp);
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNC_SYNO: {
|
|
int ret;
|
|
|
|
ret = btrfs_ioctl_trigger_transcation(inode->i_sb);
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
return ret;
|
|
}
|
|
#endif /* MY_ABC_HERE */
|
|
case BTRFS_IOC_SYNC: {
|
|
int ret;
|
|
|
|
ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_sync_fs(inode->i_sb, 1);
|
|
/*
|
|
* The transaction thread may want to do more work,
|
|
* namely it pokes the cleaner kthread that will start
|
|
* processing uncleaned subvols.
|
|
*/
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
return ret;
|
|
}
|
|
case BTRFS_IOC_START_SYNC:
|
|
return btrfs_ioctl_start_sync(root, argp);
|
|
case BTRFS_IOC_WAIT_SYNC:
|
|
return btrfs_ioctl_wait_sync(fs_info, argp);
|
|
case BTRFS_IOC_SCRUB:
|
|
return btrfs_ioctl_scrub(file, argp);
|
|
case BTRFS_IOC_SCRUB_CANCEL:
|
|
return btrfs_ioctl_scrub_cancel(fs_info);
|
|
case BTRFS_IOC_SCRUB_PROGRESS:
|
|
return btrfs_ioctl_scrub_progress(fs_info, argp);
|
|
case BTRFS_IOC_BALANCE_V2:
|
|
return btrfs_ioctl_balance(file, argp);
|
|
case BTRFS_IOC_BALANCE_CTL:
|
|
return btrfs_ioctl_balance_ctl(fs_info, arg);
|
|
case BTRFS_IOC_BALANCE_PROGRESS:
|
|
return btrfs_ioctl_balance_progress(fs_info, argp);
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
|
|
return btrfs_ioctl_set_received_subvol(file, argp);
|
|
#ifdef CONFIG_64BIT
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
|
|
return btrfs_ioctl_set_received_subvol_32(file, argp);
|
|
#endif
|
|
case BTRFS_IOC_SEND:
|
|
return _btrfs_ioctl_send(file, argp, false);
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
case BTRFS_IOC_SEND_32:
|
|
return _btrfs_ioctl_send(file, argp, true);
|
|
#endif
|
|
case BTRFS_IOC_GET_DEV_STATS:
|
|
return btrfs_ioctl_get_dev_stats(fs_info, argp);
|
|
case BTRFS_IOC_QUOTA_CTL:
|
|
return btrfs_ioctl_quota_ctl(file, argp);
|
|
case BTRFS_IOC_QGROUP_ASSIGN:
|
|
return btrfs_ioctl_qgroup_assign(file, argp);
|
|
case BTRFS_IOC_QGROUP_CREATE:
|
|
return btrfs_ioctl_qgroup_create(file, argp);
|
|
case BTRFS_IOC_QGROUP_LIMIT:
|
|
return btrfs_ioctl_qgroup_limit(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN:
|
|
return btrfs_ioctl_quota_rescan(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
|
|
return btrfs_ioctl_quota_rescan_status(fs_info, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
|
|
return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_USRQUOTA_CTL:
|
|
return btrfs_ioctl_usrquota_ctl(file, argp);
|
|
case BTRFS_IOC_USRQUOTA_LIMIT:
|
|
return btrfs_ioctl_usrquota_limit(file, argp);
|
|
case BTRFS_IOC_USRQUOTA_RESCAN:
|
|
return btrfs_ioctl_usrquota_rescan(file);
|
|
case BTRFS_IOC_USRQUOTA_RESCAN_STATUS:
|
|
return btrfs_ioctl_usrquota_rescan_status(file, argp);
|
|
case BTRFS_IOC_USRQUOTA_RESCAN_WAIT:
|
|
return btrfs_ioctl_usrquota_rescan_wait(file);
|
|
case BTRFS_IOC_USRQUOTA_QUERY:
|
|
return btrfs_ioctl_usrquota_query(file, argp);
|
|
case BTRFS_IOC_USRQUOTA_CLEAN:
|
|
return btrfs_ioctl_usrquota_clean(file, argp);
|
|
case BTRFS_IOC_SYNO_QUOTA_RESCAN:
|
|
return btrfs_ioctl_syno_quota_rescan(file, argp);
|
|
case BTRFS_IOC_SYNO_QUOTA_STATUS:
|
|
return btrfs_ioctl_syno_quota_status(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
case BTRFS_IOC_DEV_REPLACE:
|
|
return btrfs_ioctl_dev_replace(fs_info, argp);
|
|
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
|
|
return btrfs_ioctl_get_supported_features(argp);
|
|
case BTRFS_IOC_GET_FEATURES:
|
|
return btrfs_ioctl_get_features(fs_info, argp);
|
|
case BTRFS_IOC_SET_FEATURES:
|
|
return btrfs_ioctl_set_features(file, argp);
|
|
case FS_IOC_FSGETXATTR:
|
|
return btrfs_ioctl_fsgetxattr(file, argp);
|
|
case FS_IOC_FSSETXATTR:
|
|
return btrfs_ioctl_fssetxattr(file, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_INFO:
|
|
return btrfs_ioctl_get_subvol_info(file, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
|
|
return btrfs_ioctl_get_subvol_rootref(file, argp);
|
|
case BTRFS_IOC_INO_LOOKUP_USER:
|
|
return btrfs_ioctl_ino_lookup_user(file, argp);
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_FIND_NEXT_CHUNK_INFO:
|
|
return btrfs_ioctl_syno_find_next_chunk_info(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_RESERVE_LOG_TREE_BLOCK_GROUP:
|
|
return btrfs_ioctl_syno_reserve_log_tree_bg(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_QGROUP_QUERY:
|
|
return btrfs_ioctl_qgroup_query(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_CLONE_RANGE_V2:
|
|
return btrfs_ioctl_syno_clone_range_v2(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_FREE_SPACE_ANALYZE:
|
|
return btrfs_ioctl_free_space_analyze(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_COMPR_CTL:
|
|
return btrfs_ioctl_compr_ctl(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SNAPSHOT_SIZE_QUERY:
|
|
return btrfs_ioctl_snapshot_size_query(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_USAGE_CTL:
|
|
return btrfs_ioctl_syno_usage_ctl(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_CKSUMFAILED_FILES_GET:
|
|
return btrfs_ioctl_cksumfailed_files_get(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_SET_DEDUPE_FLAG:
|
|
return btrfs_ioctl_syno_dedupe_cmd(file, argp);
|
|
case BTRFS_IOC_SYNO_EXTENT_SAME:
|
|
return btrfs_ioctl_syno_extent_same(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_FEAT_TREE_CTL:
|
|
return btrfs_ioctl_syno_feat_tree_ctl(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_SYNO_LOCKER_GET:
|
|
return btrfs_ioctl_syno_locker_get(file, argp);
|
|
case BTRFS_IOC_SYNO_LOCKER_SET:
|
|
return btrfs_ioctl_syno_locker_set(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
#ifdef MY_ABC_HERE
|
|
case BTRFS_IOC_GET_SYNO_FLAGS:
|
|
return btrfs_ioctl_get_syno_flags(file, argp);
|
|
case BTRFS_IOC_SET_SYNO_FLAGS:
|
|
return btrfs_ioctl_set_syno_flags(file, argp);
|
|
#endif /* MY_ABC_HERE */
|
|
}
|
|
|
|
return -ENOTTY;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
/*
|
|
* These all access 32-bit values anyway so no further
|
|
* handling is necessary.
|
|
*/
|
|
switch (cmd) {
|
|
case FS_IOC32_GETFLAGS:
|
|
cmd = FS_IOC_GETFLAGS;
|
|
break;
|
|
case FS_IOC32_SETFLAGS:
|
|
cmd = FS_IOC_SETFLAGS;
|
|
break;
|
|
case FS_IOC32_GETVERSION:
|
|
cmd = FS_IOC_GETVERSION;
|
|
break;
|
|
}
|
|
|
|
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
|
|
}
|
|
#endif
|