linux_dsm_epyc7002/drivers/perf/thunderx2_pmu.c
Mark Salter 688494a407 drivers/perf: thunderx2_pmu: Fix memory resource error handling
In tx2_uncore_pmu_init_dev(), a call to acpi_dev_get_resources() is used
to create a list _CRS resources which is searched for the device base
address. There is an error check following this:

   if (!rentry->res)
           return NULL

In no case, will rentry->res be NULL, so the test is useless. Even
if the test worked, it comes before the resource list memory is
freed. None of this really matters as long as the ACPI table has
the memory resource. Let's clean it up so that it makes sense and
will give a meaningful error should firmware leave out the memory
resource.

Fixes: 69c32972d5 ("drivers/perf: Add Cavium ThunderX2 SoC UNCORE PMU driver")
Signed-off-by: Mark Salter <msalter@redhat.com>
Link: https://lore.kernel.org/r/20200915204110.326138-2-msalter@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-09-18 14:34:51 +01:00

1059 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* CAVIUM THUNDERX2 SoC PMU UNCORE
* Copyright (C) 2018 Cavium Inc.
* Author: Ganapatrao Kulkarni <gkulkarni@cavium.com>
*/
#include <linux/acpi.h>
#include <linux/cpuhotplug.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
/* Each ThunderX2(TX2) Socket has a L3C and DMC UNCORE PMU device.
* Each UNCORE PMU device consists of 4 independent programmable counters.
* Counters are 32 bit and do not support overflow interrupt,
* they need to be sampled before overflow(i.e, at every 2 seconds).
*/
#define TX2_PMU_DMC_L3C_MAX_COUNTERS 4
#define TX2_PMU_CCPI2_MAX_COUNTERS 8
#define TX2_PMU_MAX_COUNTERS TX2_PMU_CCPI2_MAX_COUNTERS
#define TX2_PMU_DMC_CHANNELS 8
#define TX2_PMU_L3_TILES 16
#define TX2_PMU_HRTIMER_INTERVAL (2 * NSEC_PER_SEC)
#define GET_EVENTID(ev, mask) ((ev->hw.config) & mask)
#define GET_COUNTERID(ev, mask) ((ev->hw.idx) & mask)
/* 1 byte per counter(4 counters).
* Event id is encoded in bits [5:1] of a byte,
*/
#define DMC_EVENT_CFG(idx, val) ((val) << (((idx) * 8) + 1))
/* bits[3:0] to select counters, are indexed from 8 to 15. */
#define CCPI2_COUNTER_OFFSET 8
#define L3C_COUNTER_CTL 0xA8
#define L3C_COUNTER_DATA 0xAC
#define DMC_COUNTER_CTL 0x234
#define DMC_COUNTER_DATA 0x240
#define CCPI2_PERF_CTL 0x108
#define CCPI2_COUNTER_CTL 0x10C
#define CCPI2_COUNTER_SEL 0x12c
#define CCPI2_COUNTER_DATA_L 0x130
#define CCPI2_COUNTER_DATA_H 0x134
/* L3C event IDs */
#define L3_EVENT_READ_REQ 0xD
#define L3_EVENT_WRITEBACK_REQ 0xE
#define L3_EVENT_INV_N_WRITE_REQ 0xF
#define L3_EVENT_INV_REQ 0x10
#define L3_EVENT_EVICT_REQ 0x13
#define L3_EVENT_INV_N_WRITE_HIT 0x14
#define L3_EVENT_INV_HIT 0x15
#define L3_EVENT_READ_HIT 0x17
#define L3_EVENT_MAX 0x18
/* DMC event IDs */
#define DMC_EVENT_COUNT_CYCLES 0x1
#define DMC_EVENT_WRITE_TXNS 0xB
#define DMC_EVENT_DATA_TRANSFERS 0xD
#define DMC_EVENT_READ_TXNS 0xF
#define DMC_EVENT_MAX 0x10
#define CCPI2_EVENT_REQ_PKT_SENT 0x3D
#define CCPI2_EVENT_SNOOP_PKT_SENT 0x65
#define CCPI2_EVENT_DATA_PKT_SENT 0x105
#define CCPI2_EVENT_GIC_PKT_SENT 0x12D
#define CCPI2_EVENT_MAX 0x200
#define CCPI2_PERF_CTL_ENABLE BIT(0)
#define CCPI2_PERF_CTL_START BIT(1)
#define CCPI2_PERF_CTL_RESET BIT(4)
#define CCPI2_EVENT_LEVEL_RISING_EDGE BIT(10)
#define CCPI2_EVENT_TYPE_EDGE_SENSITIVE BIT(11)
enum tx2_uncore_type {
PMU_TYPE_L3C,
PMU_TYPE_DMC,
PMU_TYPE_CCPI2,
PMU_TYPE_INVALID,
};
/*
* Each socket has 3 uncore devices associated with a PMU. The DMC and
* L3C have 4 32-bit counters and the CCPI2 has 8 64-bit counters.
*/
struct tx2_uncore_pmu {
struct hlist_node hpnode;
struct list_head entry;
struct pmu pmu;
char *name;
int node;
int cpu;
u32 max_counters;
u32 counters_mask;
u32 prorate_factor;
u32 max_events;
u32 events_mask;
u64 hrtimer_interval;
void __iomem *base;
DECLARE_BITMAP(active_counters, TX2_PMU_MAX_COUNTERS);
struct perf_event *events[TX2_PMU_MAX_COUNTERS];
struct device *dev;
struct hrtimer hrtimer;
const struct attribute_group **attr_groups;
enum tx2_uncore_type type;
enum hrtimer_restart (*hrtimer_callback)(struct hrtimer *cb);
void (*init_cntr_base)(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu);
void (*stop_event)(struct perf_event *event);
void (*start_event)(struct perf_event *event, int flags);
};
static LIST_HEAD(tx2_pmus);
static inline struct tx2_uncore_pmu *pmu_to_tx2_pmu(struct pmu *pmu)
{
return container_of(pmu, struct tx2_uncore_pmu, pmu);
}
#define TX2_PMU_FORMAT_ATTR(_var, _name, _format) \
static ssize_t \
__tx2_pmu_##_var##_show(struct device *dev, \
struct device_attribute *attr, \
char *page) \
{ \
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
return sprintf(page, _format "\n"); \
} \
\
static struct device_attribute format_attr_##_var = \
__ATTR(_name, 0444, __tx2_pmu_##_var##_show, NULL)
TX2_PMU_FORMAT_ATTR(event, event, "config:0-4");
TX2_PMU_FORMAT_ATTR(event_ccpi2, event, "config:0-9");
static struct attribute *l3c_pmu_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute *dmc_pmu_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute *ccpi2_pmu_format_attrs[] = {
&format_attr_event_ccpi2.attr,
NULL,
};
static const struct attribute_group l3c_pmu_format_attr_group = {
.name = "format",
.attrs = l3c_pmu_format_attrs,
};
static const struct attribute_group dmc_pmu_format_attr_group = {
.name = "format",
.attrs = dmc_pmu_format_attrs,
};
static const struct attribute_group ccpi2_pmu_format_attr_group = {
.name = "format",
.attrs = ccpi2_pmu_format_attrs,
};
/*
* sysfs event attributes
*/
static ssize_t tx2_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr;
eattr = container_of(attr, struct dev_ext_attribute, attr);
return sprintf(buf, "event=0x%lx\n", (unsigned long) eattr->var);
}
#define TX2_EVENT_ATTR(name, config) \
PMU_EVENT_ATTR(name, tx2_pmu_event_attr_##name, \
config, tx2_pmu_event_show)
TX2_EVENT_ATTR(read_request, L3_EVENT_READ_REQ);
TX2_EVENT_ATTR(writeback_request, L3_EVENT_WRITEBACK_REQ);
TX2_EVENT_ATTR(inv_nwrite_request, L3_EVENT_INV_N_WRITE_REQ);
TX2_EVENT_ATTR(inv_request, L3_EVENT_INV_REQ);
TX2_EVENT_ATTR(evict_request, L3_EVENT_EVICT_REQ);
TX2_EVENT_ATTR(inv_nwrite_hit, L3_EVENT_INV_N_WRITE_HIT);
TX2_EVENT_ATTR(inv_hit, L3_EVENT_INV_HIT);
TX2_EVENT_ATTR(read_hit, L3_EVENT_READ_HIT);
static struct attribute *l3c_pmu_events_attrs[] = {
&tx2_pmu_event_attr_read_request.attr.attr,
&tx2_pmu_event_attr_writeback_request.attr.attr,
&tx2_pmu_event_attr_inv_nwrite_request.attr.attr,
&tx2_pmu_event_attr_inv_request.attr.attr,
&tx2_pmu_event_attr_evict_request.attr.attr,
&tx2_pmu_event_attr_inv_nwrite_hit.attr.attr,
&tx2_pmu_event_attr_inv_hit.attr.attr,
&tx2_pmu_event_attr_read_hit.attr.attr,
NULL,
};
TX2_EVENT_ATTR(cnt_cycles, DMC_EVENT_COUNT_CYCLES);
TX2_EVENT_ATTR(write_txns, DMC_EVENT_WRITE_TXNS);
TX2_EVENT_ATTR(data_transfers, DMC_EVENT_DATA_TRANSFERS);
TX2_EVENT_ATTR(read_txns, DMC_EVENT_READ_TXNS);
static struct attribute *dmc_pmu_events_attrs[] = {
&tx2_pmu_event_attr_cnt_cycles.attr.attr,
&tx2_pmu_event_attr_write_txns.attr.attr,
&tx2_pmu_event_attr_data_transfers.attr.attr,
&tx2_pmu_event_attr_read_txns.attr.attr,
NULL,
};
TX2_EVENT_ATTR(req_pktsent, CCPI2_EVENT_REQ_PKT_SENT);
TX2_EVENT_ATTR(snoop_pktsent, CCPI2_EVENT_SNOOP_PKT_SENT);
TX2_EVENT_ATTR(data_pktsent, CCPI2_EVENT_DATA_PKT_SENT);
TX2_EVENT_ATTR(gic_pktsent, CCPI2_EVENT_GIC_PKT_SENT);
static struct attribute *ccpi2_pmu_events_attrs[] = {
&tx2_pmu_event_attr_req_pktsent.attr.attr,
&tx2_pmu_event_attr_snoop_pktsent.attr.attr,
&tx2_pmu_event_attr_data_pktsent.attr.attr,
&tx2_pmu_event_attr_gic_pktsent.attr.attr,
NULL,
};
static const struct attribute_group l3c_pmu_events_attr_group = {
.name = "events",
.attrs = l3c_pmu_events_attrs,
};
static const struct attribute_group dmc_pmu_events_attr_group = {
.name = "events",
.attrs = dmc_pmu_events_attrs,
};
static const struct attribute_group ccpi2_pmu_events_attr_group = {
.name = "events",
.attrs = ccpi2_pmu_events_attrs,
};
/*
* sysfs cpumask attributes
*/
static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(dev_get_drvdata(dev));
return cpumap_print_to_pagebuf(true, buf, cpumask_of(tx2_pmu->cpu));
}
static DEVICE_ATTR_RO(cpumask);
static struct attribute *tx2_pmu_cpumask_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static const struct attribute_group pmu_cpumask_attr_group = {
.attrs = tx2_pmu_cpumask_attrs,
};
/*
* Per PMU device attribute groups
*/
static const struct attribute_group *l3c_pmu_attr_groups[] = {
&l3c_pmu_format_attr_group,
&pmu_cpumask_attr_group,
&l3c_pmu_events_attr_group,
NULL
};
static const struct attribute_group *dmc_pmu_attr_groups[] = {
&dmc_pmu_format_attr_group,
&pmu_cpumask_attr_group,
&dmc_pmu_events_attr_group,
NULL
};
static const struct attribute_group *ccpi2_pmu_attr_groups[] = {
&ccpi2_pmu_format_attr_group,
&pmu_cpumask_attr_group,
&ccpi2_pmu_events_attr_group,
NULL
};
static inline u32 reg_readl(unsigned long addr)
{
return readl((void __iomem *)addr);
}
static inline void reg_writel(u32 val, unsigned long addr)
{
writel(val, (void __iomem *)addr);
}
static int alloc_counter(struct tx2_uncore_pmu *tx2_pmu)
{
int counter;
counter = find_first_zero_bit(tx2_pmu->active_counters,
tx2_pmu->max_counters);
if (counter == tx2_pmu->max_counters)
return -ENOSPC;
set_bit(counter, tx2_pmu->active_counters);
return counter;
}
static inline void free_counter(struct tx2_uncore_pmu *tx2_pmu, int counter)
{
clear_bit(counter, tx2_pmu->active_counters);
}
static void init_cntr_base_l3c(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
/* counter ctrl/data reg offset at 8 */
hwc->config_base = (unsigned long)tx2_pmu->base
+ L3C_COUNTER_CTL + (8 * GET_COUNTERID(event, cmask));
hwc->event_base = (unsigned long)tx2_pmu->base
+ L3C_COUNTER_DATA + (8 * GET_COUNTERID(event, cmask));
}
static void init_cntr_base_dmc(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
hwc->config_base = (unsigned long)tx2_pmu->base
+ DMC_COUNTER_CTL;
/* counter data reg offset at 0xc */
hwc->event_base = (unsigned long)tx2_pmu->base
+ DMC_COUNTER_DATA + (0xc * GET_COUNTERID(event, cmask));
}
static void init_cntr_base_ccpi2(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
cmask = tx2_pmu->counters_mask;
hwc->config_base = (unsigned long)tx2_pmu->base
+ CCPI2_COUNTER_CTL + (4 * GET_COUNTERID(event, cmask));
hwc->event_base = (unsigned long)tx2_pmu->base;
}
static void uncore_start_event_l3c(struct perf_event *event, int flags)
{
u32 val, emask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
emask = tx2_pmu->events_mask;
/* event id encoded in bits [07:03] */
val = GET_EVENTID(event, emask) << 3;
reg_writel(val, hwc->config_base);
local64_set(&hwc->prev_count, 0);
reg_writel(0, hwc->event_base);
}
static inline void uncore_stop_event_l3c(struct perf_event *event)
{
reg_writel(0, event->hw.config_base);
}
static void uncore_start_event_dmc(struct perf_event *event, int flags)
{
u32 val, cmask, emask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
int idx, event_id;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
emask = tx2_pmu->events_mask;
idx = GET_COUNTERID(event, cmask);
event_id = GET_EVENTID(event, emask);
/* enable and start counters.
* 8 bits for each counter, bits[05:01] of a counter to set event type.
*/
val = reg_readl(hwc->config_base);
val &= ~DMC_EVENT_CFG(idx, 0x1f);
val |= DMC_EVENT_CFG(idx, event_id);
reg_writel(val, hwc->config_base);
local64_set(&hwc->prev_count, 0);
reg_writel(0, hwc->event_base);
}
static void uncore_stop_event_dmc(struct perf_event *event)
{
u32 val, cmask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
int idx;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
idx = GET_COUNTERID(event, cmask);
/* clear event type(bits[05:01]) to stop counter */
val = reg_readl(hwc->config_base);
val &= ~DMC_EVENT_CFG(idx, 0x1f);
reg_writel(val, hwc->config_base);
}
static void uncore_start_event_ccpi2(struct perf_event *event, int flags)
{
u32 emask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
emask = tx2_pmu->events_mask;
/* Bit [09:00] to set event id.
* Bits [10], set level to rising edge.
* Bits [11], set type to edge sensitive.
*/
reg_writel((CCPI2_EVENT_TYPE_EDGE_SENSITIVE |
CCPI2_EVENT_LEVEL_RISING_EDGE |
GET_EVENTID(event, emask)), hwc->config_base);
/* reset[4], enable[0] and start[1] counters */
reg_writel(CCPI2_PERF_CTL_RESET |
CCPI2_PERF_CTL_START |
CCPI2_PERF_CTL_ENABLE,
hwc->event_base + CCPI2_PERF_CTL);
local64_set(&event->hw.prev_count, 0ULL);
}
static void uncore_stop_event_ccpi2(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* disable and stop counter */
reg_writel(0, hwc->event_base + CCPI2_PERF_CTL);
}
static void tx2_uncore_event_update(struct perf_event *event)
{
u64 prev, delta, new = 0;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
enum tx2_uncore_type type;
u32 prorate_factor;
u32 cmask, emask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
type = tx2_pmu->type;
cmask = tx2_pmu->counters_mask;
emask = tx2_pmu->events_mask;
prorate_factor = tx2_pmu->prorate_factor;
if (type == PMU_TYPE_CCPI2) {
reg_writel(CCPI2_COUNTER_OFFSET +
GET_COUNTERID(event, cmask),
hwc->event_base + CCPI2_COUNTER_SEL);
new = reg_readl(hwc->event_base + CCPI2_COUNTER_DATA_H);
new = (new << 32) +
reg_readl(hwc->event_base + CCPI2_COUNTER_DATA_L);
prev = local64_xchg(&hwc->prev_count, new);
delta = new - prev;
} else {
new = reg_readl(hwc->event_base);
prev = local64_xchg(&hwc->prev_count, new);
/* handles rollover of 32 bit counter */
delta = (u32)(((1UL << 32) - prev) + new);
}
/* DMC event data_transfers granularity is 16 Bytes, convert it to 64 */
if (type == PMU_TYPE_DMC &&
GET_EVENTID(event, emask) == DMC_EVENT_DATA_TRANSFERS)
delta = delta/4;
/* L3C and DMC has 16 and 8 interleave channels respectively.
* The sampled value is for channel 0 and multiplied with
* prorate_factor to get the count for a device.
*/
local64_add(delta * prorate_factor, &event->count);
}
static enum tx2_uncore_type get_tx2_pmu_type(struct acpi_device *adev)
{
int i = 0;
struct acpi_tx2_pmu_device {
__u8 id[ACPI_ID_LEN];
enum tx2_uncore_type type;
} devices[] = {
{"CAV901D", PMU_TYPE_L3C},
{"CAV901F", PMU_TYPE_DMC},
{"CAV901E", PMU_TYPE_CCPI2},
{"", PMU_TYPE_INVALID}
};
while (devices[i].type != PMU_TYPE_INVALID) {
if (!strcmp(acpi_device_hid(adev), devices[i].id))
break;
i++;
}
return devices[i].type;
}
static bool tx2_uncore_validate_event(struct pmu *pmu,
struct perf_event *event, int *counters)
{
if (is_software_event(event))
return true;
/* Reject groups spanning multiple HW PMUs. */
if (event->pmu != pmu)
return false;
*counters = *counters + 1;
return true;
}
/*
* Make sure the group of events can be scheduled at once
* on the PMU.
*/
static bool tx2_uncore_validate_event_group(struct perf_event *event,
int max_counters)
{
struct perf_event *sibling, *leader = event->group_leader;
int counters = 0;
if (event->group_leader == event)
return true;
if (!tx2_uncore_validate_event(event->pmu, leader, &counters))
return false;
for_each_sibling_event(sibling, leader) {
if (!tx2_uncore_validate_event(event->pmu, sibling, &counters))
return false;
}
if (!tx2_uncore_validate_event(event->pmu, event, &counters))
return false;
/*
* If the group requires more counters than the HW has,
* it cannot ever be scheduled.
*/
return counters <= max_counters;
}
static int tx2_uncore_event_init(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
/* Test the event attr type check for PMU enumeration */
if (event->attr.type != event->pmu->type)
return -ENOENT;
/*
* SOC PMU counters are shared across all cores.
* Therefore, it does not support per-process mode.
* Also, it does not support event sampling mode.
*/
if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
return -EINVAL;
if (event->cpu < 0)
return -EINVAL;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
if (tx2_pmu->cpu >= nr_cpu_ids)
return -EINVAL;
event->cpu = tx2_pmu->cpu;
if (event->attr.config >= tx2_pmu->max_events)
return -EINVAL;
/* store event id */
hwc->config = event->attr.config;
/* Validate the group */
if (!tx2_uncore_validate_event_group(event, tx2_pmu->max_counters))
return -EINVAL;
return 0;
}
static void tx2_uncore_event_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
hwc->state = 0;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
tx2_pmu->start_event(event, flags);
perf_event_update_userpage(event);
/* No hrtimer needed for CCPI2, 64-bit counters */
if (!tx2_pmu->hrtimer_callback)
return;
/* Start timer for first event */
if (bitmap_weight(tx2_pmu->active_counters,
tx2_pmu->max_counters) == 1) {
hrtimer_start(&tx2_pmu->hrtimer,
ns_to_ktime(tx2_pmu->hrtimer_interval),
HRTIMER_MODE_REL_PINNED);
}
}
static void tx2_uncore_event_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
if (hwc->state & PERF_HES_UPTODATE)
return;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
tx2_pmu->stop_event(event);
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
hwc->state |= PERF_HES_STOPPED;
if (flags & PERF_EF_UPDATE) {
tx2_uncore_event_update(event);
hwc->state |= PERF_HES_UPTODATE;
}
}
static int tx2_uncore_event_add(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
/* Allocate a free counter */
hwc->idx = alloc_counter(tx2_pmu);
if (hwc->idx < 0)
return -EAGAIN;
tx2_pmu->events[hwc->idx] = event;
/* set counter control and data registers base address */
tx2_pmu->init_cntr_base(event, tx2_pmu);
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (flags & PERF_EF_START)
tx2_uncore_event_start(event, flags);
return 0;
}
static void tx2_uncore_event_del(struct perf_event *event, int flags)
{
struct tx2_uncore_pmu *tx2_pmu = pmu_to_tx2_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
cmask = tx2_pmu->counters_mask;
tx2_uncore_event_stop(event, PERF_EF_UPDATE);
/* clear the assigned counter */
free_counter(tx2_pmu, GET_COUNTERID(event, cmask));
perf_event_update_userpage(event);
tx2_pmu->events[hwc->idx] = NULL;
hwc->idx = -1;
if (!tx2_pmu->hrtimer_callback)
return;
if (bitmap_empty(tx2_pmu->active_counters, tx2_pmu->max_counters))
hrtimer_cancel(&tx2_pmu->hrtimer);
}
static void tx2_uncore_event_read(struct perf_event *event)
{
tx2_uncore_event_update(event);
}
static enum hrtimer_restart tx2_hrtimer_callback(struct hrtimer *timer)
{
struct tx2_uncore_pmu *tx2_pmu;
int max_counters, idx;
tx2_pmu = container_of(timer, struct tx2_uncore_pmu, hrtimer);
max_counters = tx2_pmu->max_counters;
if (bitmap_empty(tx2_pmu->active_counters, max_counters))
return HRTIMER_NORESTART;
for_each_set_bit(idx, tx2_pmu->active_counters, max_counters) {
struct perf_event *event = tx2_pmu->events[idx];
tx2_uncore_event_update(event);
}
hrtimer_forward_now(timer, ns_to_ktime(tx2_pmu->hrtimer_interval));
return HRTIMER_RESTART;
}
static int tx2_uncore_pmu_register(
struct tx2_uncore_pmu *tx2_pmu)
{
struct device *dev = tx2_pmu->dev;
char *name = tx2_pmu->name;
/* Perf event registration */
tx2_pmu->pmu = (struct pmu) {
.module = THIS_MODULE,
.attr_groups = tx2_pmu->attr_groups,
.task_ctx_nr = perf_invalid_context,
.event_init = tx2_uncore_event_init,
.add = tx2_uncore_event_add,
.del = tx2_uncore_event_del,
.start = tx2_uncore_event_start,
.stop = tx2_uncore_event_stop,
.read = tx2_uncore_event_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
};
tx2_pmu->pmu.name = devm_kasprintf(dev, GFP_KERNEL,
"%s", name);
return perf_pmu_register(&tx2_pmu->pmu, tx2_pmu->pmu.name, -1);
}
static int tx2_uncore_pmu_add_dev(struct tx2_uncore_pmu *tx2_pmu)
{
int ret, cpu;
cpu = cpumask_any_and(cpumask_of_node(tx2_pmu->node),
cpu_online_mask);
tx2_pmu->cpu = cpu;
if (tx2_pmu->hrtimer_callback) {
hrtimer_init(&tx2_pmu->hrtimer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx2_pmu->hrtimer.function = tx2_pmu->hrtimer_callback;
}
ret = tx2_uncore_pmu_register(tx2_pmu);
if (ret) {
dev_err(tx2_pmu->dev, "%s PMU: Failed to init driver\n",
tx2_pmu->name);
return -ENODEV;
}
/* register hotplug callback for the pmu */
ret = cpuhp_state_add_instance(
CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE,
&tx2_pmu->hpnode);
if (ret) {
dev_err(tx2_pmu->dev, "Error %d registering hotplug", ret);
return ret;
}
/* Add to list */
list_add(&tx2_pmu->entry, &tx2_pmus);
dev_dbg(tx2_pmu->dev, "%s PMU UNCORE registered\n",
tx2_pmu->pmu.name);
return ret;
}
static struct tx2_uncore_pmu *tx2_uncore_pmu_init_dev(struct device *dev,
acpi_handle handle, struct acpi_device *adev, u32 type)
{
struct tx2_uncore_pmu *tx2_pmu;
void __iomem *base;
struct resource res;
struct resource_entry *rentry;
struct list_head list;
int ret;
INIT_LIST_HEAD(&list);
ret = acpi_dev_get_resources(adev, &list, NULL, NULL);
if (ret <= 0) {
dev_err(dev, "failed to parse _CRS method, error %d\n", ret);
return NULL;
}
list_for_each_entry(rentry, &list, node) {
if (resource_type(rentry->res) == IORESOURCE_MEM) {
res = *rentry->res;
rentry = NULL;
break;
}
}
acpi_dev_free_resource_list(&list);
if (rentry) {
dev_err(dev, "PMU type %d: Fail to find resource\n", type);
return NULL;
}
base = devm_ioremap_resource(dev, &res);
if (IS_ERR(base)) {
dev_err(dev, "PMU type %d: Fail to map resource\n", type);
return NULL;
}
tx2_pmu = devm_kzalloc(dev, sizeof(*tx2_pmu), GFP_KERNEL);
if (!tx2_pmu)
return NULL;
tx2_pmu->dev = dev;
tx2_pmu->type = type;
tx2_pmu->base = base;
tx2_pmu->node = dev_to_node(dev);
INIT_LIST_HEAD(&tx2_pmu->entry);
switch (tx2_pmu->type) {
case PMU_TYPE_L3C:
tx2_pmu->max_counters = TX2_PMU_DMC_L3C_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x3;
tx2_pmu->prorate_factor = TX2_PMU_L3_TILES;
tx2_pmu->max_events = L3_EVENT_MAX;
tx2_pmu->events_mask = 0x1f;
tx2_pmu->hrtimer_interval = TX2_PMU_HRTIMER_INTERVAL;
tx2_pmu->hrtimer_callback = tx2_hrtimer_callback;
tx2_pmu->attr_groups = l3c_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_l3c_%d", tx2_pmu->node);
tx2_pmu->init_cntr_base = init_cntr_base_l3c;
tx2_pmu->start_event = uncore_start_event_l3c;
tx2_pmu->stop_event = uncore_stop_event_l3c;
break;
case PMU_TYPE_DMC:
tx2_pmu->max_counters = TX2_PMU_DMC_L3C_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x3;
tx2_pmu->prorate_factor = TX2_PMU_DMC_CHANNELS;
tx2_pmu->max_events = DMC_EVENT_MAX;
tx2_pmu->events_mask = 0x1f;
tx2_pmu->hrtimer_interval = TX2_PMU_HRTIMER_INTERVAL;
tx2_pmu->hrtimer_callback = tx2_hrtimer_callback;
tx2_pmu->attr_groups = dmc_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_dmc_%d", tx2_pmu->node);
tx2_pmu->init_cntr_base = init_cntr_base_dmc;
tx2_pmu->start_event = uncore_start_event_dmc;
tx2_pmu->stop_event = uncore_stop_event_dmc;
break;
case PMU_TYPE_CCPI2:
/* CCPI2 has 8 counters */
tx2_pmu->max_counters = TX2_PMU_CCPI2_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x7;
tx2_pmu->prorate_factor = 1;
tx2_pmu->max_events = CCPI2_EVENT_MAX;
tx2_pmu->events_mask = 0x1ff;
tx2_pmu->attr_groups = ccpi2_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_ccpi2_%d", tx2_pmu->node);
tx2_pmu->init_cntr_base = init_cntr_base_ccpi2;
tx2_pmu->start_event = uncore_start_event_ccpi2;
tx2_pmu->stop_event = uncore_stop_event_ccpi2;
tx2_pmu->hrtimer_callback = NULL;
break;
case PMU_TYPE_INVALID:
devm_kfree(dev, tx2_pmu);
return NULL;
}
return tx2_pmu;
}
static acpi_status tx2_uncore_pmu_add(acpi_handle handle, u32 level,
void *data, void **return_value)
{
struct tx2_uncore_pmu *tx2_pmu;
struct acpi_device *adev;
enum tx2_uncore_type type;
if (acpi_bus_get_device(handle, &adev))
return AE_OK;
if (acpi_bus_get_status(adev) || !adev->status.present)
return AE_OK;
type = get_tx2_pmu_type(adev);
if (type == PMU_TYPE_INVALID)
return AE_OK;
tx2_pmu = tx2_uncore_pmu_init_dev((struct device *)data,
handle, adev, type);
if (!tx2_pmu)
return AE_ERROR;
if (tx2_uncore_pmu_add_dev(tx2_pmu)) {
/* Can't add the PMU device, abort */
return AE_ERROR;
}
return AE_OK;
}
static int tx2_uncore_pmu_online_cpu(unsigned int cpu,
struct hlist_node *hpnode)
{
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = hlist_entry_safe(hpnode,
struct tx2_uncore_pmu, hpnode);
/* Pick this CPU, If there is no CPU/PMU association and both are
* from same node.
*/
if ((tx2_pmu->cpu >= nr_cpu_ids) &&
(tx2_pmu->node == cpu_to_node(cpu)))
tx2_pmu->cpu = cpu;
return 0;
}
static int tx2_uncore_pmu_offline_cpu(unsigned int cpu,
struct hlist_node *hpnode)
{
int new_cpu;
struct tx2_uncore_pmu *tx2_pmu;
struct cpumask cpu_online_mask_temp;
tx2_pmu = hlist_entry_safe(hpnode,
struct tx2_uncore_pmu, hpnode);
if (cpu != tx2_pmu->cpu)
return 0;
if (tx2_pmu->hrtimer_callback)
hrtimer_cancel(&tx2_pmu->hrtimer);
cpumask_copy(&cpu_online_mask_temp, cpu_online_mask);
cpumask_clear_cpu(cpu, &cpu_online_mask_temp);
new_cpu = cpumask_any_and(
cpumask_of_node(tx2_pmu->node),
&cpu_online_mask_temp);
tx2_pmu->cpu = new_cpu;
if (new_cpu >= nr_cpu_ids)
return 0;
perf_pmu_migrate_context(&tx2_pmu->pmu, cpu, new_cpu);
return 0;
}
static const struct acpi_device_id tx2_uncore_acpi_match[] = {
{"CAV901C", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, tx2_uncore_acpi_match);
static int tx2_uncore_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
acpi_handle handle;
acpi_status status;
set_dev_node(dev, acpi_get_node(ACPI_HANDLE(dev)));
if (!has_acpi_companion(dev))
return -ENODEV;
handle = ACPI_HANDLE(dev);
if (!handle)
return -EINVAL;
/* Walk through the tree for all PMU UNCORE devices */
status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
tx2_uncore_pmu_add,
NULL, dev, NULL);
if (ACPI_FAILURE(status)) {
dev_err(dev, "failed to probe PMU devices\n");
return_ACPI_STATUS(status);
}
dev_info(dev, "node%d: pmu uncore registered\n", dev_to_node(dev));
return 0;
}
static int tx2_uncore_remove(struct platform_device *pdev)
{
struct tx2_uncore_pmu *tx2_pmu, *temp;
struct device *dev = &pdev->dev;
if (!list_empty(&tx2_pmus)) {
list_for_each_entry_safe(tx2_pmu, temp, &tx2_pmus, entry) {
if (tx2_pmu->node == dev_to_node(dev)) {
cpuhp_state_remove_instance_nocalls(
CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE,
&tx2_pmu->hpnode);
perf_pmu_unregister(&tx2_pmu->pmu);
list_del(&tx2_pmu->entry);
}
}
}
return 0;
}
static struct platform_driver tx2_uncore_driver = {
.driver = {
.name = "tx2-uncore-pmu",
.acpi_match_table = ACPI_PTR(tx2_uncore_acpi_match),
.suppress_bind_attrs = true,
},
.probe = tx2_uncore_probe,
.remove = tx2_uncore_remove,
};
static int __init tx2_uncore_driver_init(void)
{
int ret;
ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE,
"perf/tx2/uncore:online",
tx2_uncore_pmu_online_cpu,
tx2_uncore_pmu_offline_cpu);
if (ret) {
pr_err("TX2 PMU: setup hotplug failed(%d)\n", ret);
return ret;
}
ret = platform_driver_register(&tx2_uncore_driver);
if (ret)
cpuhp_remove_multi_state(CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE);
return ret;
}
module_init(tx2_uncore_driver_init);
static void __exit tx2_uncore_driver_exit(void)
{
platform_driver_unregister(&tx2_uncore_driver);
cpuhp_remove_multi_state(CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE);
}
module_exit(tx2_uncore_driver_exit);
MODULE_DESCRIPTION("ThunderX2 UNCORE PMU driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Ganapatrao Kulkarni <gkulkarni@cavium.com>");