/* * Copyright (C) 2008 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, yu.liu@freescale.com * * Description: * This file is based on arch/powerpc/kvm/44x_tlb.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "e500_tlb.h" #define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1) static unsigned int tlb1_entry_num; void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct tlbe *tlbe; int i, tlbsel; printk("| %8s | %8s | %8s | %8s | %8s |\n", "nr", "mas1", "mas2", "mas3", "mas7"); for (tlbsel = 0; tlbsel < 2; tlbsel++) { printk("Guest TLB%d:\n", tlbsel); for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++) { tlbe = &vcpu_e500->guest_tlb[tlbsel][i]; if (tlbe->mas1 & MAS1_VALID) printk(" G[%d][%3d] | %08X | %08X | %08X | %08X |\n", tlbsel, i, tlbe->mas1, tlbe->mas2, tlbe->mas3, tlbe->mas7); } } for (tlbsel = 0; tlbsel < 2; tlbsel++) { printk("Shadow TLB%d:\n", tlbsel); for (i = 0; i < vcpu_e500->shadow_tlb_size[tlbsel]; i++) { tlbe = &vcpu_e500->shadow_tlb[tlbsel][i]; if (tlbe->mas1 & MAS1_VALID) printk(" S[%d][%3d] | %08X | %08X | %08X | %08X |\n", tlbsel, i, tlbe->mas1, tlbe->mas2, tlbe->mas3, tlbe->mas7); } } } static inline unsigned int tlb0_get_next_victim( struct kvmppc_vcpu_e500 *vcpu_e500) { unsigned int victim; victim = vcpu_e500->guest_tlb_nv[0]++; if (unlikely(vcpu_e500->guest_tlb_nv[0] >= KVM_E500_TLB0_WAY_NUM)) vcpu_e500->guest_tlb_nv[0] = 0; return victim; } static inline unsigned int tlb1_max_shadow_size(void) { return tlb1_entry_num - tlbcam_index; } static inline int tlbe_is_writable(struct tlbe *tlbe) { return tlbe->mas3 & (MAS3_SW|MAS3_UW); } static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) { /* Mask off reserved bits. */ mas3 &= MAS3_ATTRIB_MASK; if (!usermode) { /* Guest is in supervisor mode, * so we need to translate guest * supervisor permissions into user permissions. */ mas3 &= ~E500_TLB_USER_PERM_MASK; mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; } return mas3 | E500_TLB_SUPER_PERM_MASK; } static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) { return mas2 & MAS2_ATTRIB_MASK; } /* * writing shadow tlb entry to host TLB */ static inline void __write_host_tlbe(struct tlbe *stlbe) { mtspr(SPRN_MAS1, stlbe->mas1); mtspr(SPRN_MAS2, stlbe->mas2); mtspr(SPRN_MAS3, stlbe->mas3); mtspr(SPRN_MAS7, stlbe->mas7); __asm__ __volatile__ ("tlbwe\n" : : ); } static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel]; local_irq_disable(); if (tlbsel == 0) { __write_host_tlbe(stlbe); } else { unsigned register mas0; mas0 = mfspr(SPRN_MAS0); mtspr(SPRN_MAS0, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(esel))); __write_host_tlbe(stlbe); mtspr(SPRN_MAS0, mas0); } local_irq_enable(); } void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int i; unsigned register mas0; /* Load all valid TLB1 entries to reduce guest tlb miss fault */ local_irq_disable(); mas0 = mfspr(SPRN_MAS0); for (i = 0; i < tlb1_max_shadow_size(); i++) { struct tlbe *stlbe = &vcpu_e500->shadow_tlb[1][i]; if (get_tlb_v(stlbe)) { mtspr(SPRN_MAS0, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(i))); __write_host_tlbe(stlbe); } } mtspr(SPRN_MAS0, mas0); local_irq_enable(); } void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu) { _tlbia(); } /* Search the guest TLB for a matching entry. */ static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t eaddr, int tlbsel, unsigned int pid, int as) { int i; /* XXX Replace loop with fancy data structures. */ for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++) { struct tlbe *tlbe = &vcpu_e500->guest_tlb[tlbsel][i]; unsigned int tid; if (eaddr < get_tlb_eaddr(tlbe)) continue; if (eaddr > get_tlb_end(tlbe)) continue; tid = get_tlb_tid(tlbe); if (tid && (tid != pid)) continue; if (!get_tlb_v(tlbe)) continue; if (get_tlb_ts(tlbe) != as && as != -1) continue; return i; } return -1; } static void kvmppc_e500_shadow_release(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel]; struct page *page = vcpu_e500->shadow_pages[tlbsel][esel]; if (page) { vcpu_e500->shadow_pages[tlbsel][esel] = NULL; if (get_tlb_v(stlbe)) { if (tlbe_is_writable(stlbe)) kvm_release_page_dirty(page); else kvm_release_page_clean(page); } } } static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel]; kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel); stlbe->mas1 = 0; KVMTRACE_5D(STLB_INVAL, &vcpu_e500->vcpu, index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, stlbe->mas3, stlbe->mas7, handler); } static void kvmppc_e500_tlb1_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t eaddr, gva_t eend, u32 tid) { unsigned int pid = tid & 0xff; unsigned int i; /* XXX Replace loop with fancy data structures. */ for (i = 0; i < vcpu_e500->guest_tlb_size[1]; i++) { struct tlbe *stlbe = &vcpu_e500->shadow_tlb[1][i]; unsigned int tid; if (!get_tlb_v(stlbe)) continue; if (eend < get_tlb_eaddr(stlbe)) continue; if (eaddr > get_tlb_end(stlbe)) continue; tid = get_tlb_tid(stlbe); if (tid && (tid != pid)) continue; kvmppc_e500_stlbe_invalidate(vcpu_e500, 1, i); write_host_tlbe(vcpu_e500, 1, i); } } static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu, unsigned int eaddr, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int victim, pidsel, tsized; int tlbsel; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (vcpu_e500->mas4 >> 28) & 0x1; victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0; pidsel = (vcpu_e500->mas4 >> 16) & 0xf; tsized = (vcpu_e500->mas4 >> 8) & 0xf; vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]); vcpu_e500->mas1 = MAS1_VALID | (as ? MAS1_TS : 0) | MAS1_TID(vcpu_e500->pid[pidsel]) | MAS1_TSIZE(tsized); vcpu_e500->mas2 = (eaddr & MAS2_EPN) | (vcpu_e500->mas4 & MAS2_ATTRIB_MASK); vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; vcpu_e500->mas6 = (vcpu_e500->mas6 & MAS6_SPID1) | (get_cur_pid(vcpu) << 16) | (as ? MAS6_SAS : 0); vcpu_e500->mas7 = 0; } static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, int tlbsel, int esel) { struct page *new_page; struct tlbe *stlbe; hpa_t hpaddr; stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel]; /* Get reference to new page. */ new_page = gfn_to_page(vcpu_e500->vcpu.kvm, gfn); if (is_error_page(new_page)) { printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn); kvm_release_page_clean(new_page); return; } hpaddr = page_to_phys(new_page); /* Drop reference to old page. */ kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel); vcpu_e500->shadow_pages[tlbsel][esel] = new_page; /* Force TS=1 IPROT=0 TSIZE=4KB for all guest mappings. */ stlbe->mas1 = MAS1_TSIZE(BOOKE_PAGESZ_4K) | MAS1_TID(get_tlb_tid(gtlbe)) | MAS1_TS | MAS1_VALID; stlbe->mas2 = (gvaddr & MAS2_EPN) | e500_shadow_mas2_attrib(gtlbe->mas2, vcpu_e500->vcpu.arch.msr & MSR_PR); stlbe->mas3 = (hpaddr & MAS3_RPN) | e500_shadow_mas3_attrib(gtlbe->mas3, vcpu_e500->vcpu.arch.msr & MSR_PR); stlbe->mas7 = (hpaddr >> 32) & MAS7_RPN; KVMTRACE_5D(STLB_WRITE, &vcpu_e500->vcpu, index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, stlbe->mas3, stlbe->mas7, handler); } /* XXX only map the one-one case, for now use TLB0 */ static int kvmppc_e500_stlbe_map(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct tlbe *gtlbe; gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), get_tlb_raddr(gtlbe) >> PAGE_SHIFT, gtlbe, tlbsel, esel); return esel; } /* Caller must ensure that the specified guest TLB entry is safe to insert into * the shadow TLB. */ /* XXX for both one-one and one-to-many , for now use TLB1 */ static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe) { unsigned int victim; victim = vcpu_e500->guest_tlb_nv[1]++; if (unlikely(vcpu_e500->guest_tlb_nv[1] >= tlb1_max_shadow_size())) vcpu_e500->guest_tlb_nv[1] = 0; kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, victim); return victim; } /* Invalidate all guest kernel mappings when enter usermode, * so that when they fault back in they will get the * proper permission bits. */ void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode) { if (usermode) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int i; /* XXX Replace loop with fancy data structures. */ /* needn't set modified since tlbia will make TLB1 coherent */ for (i = 0; i < tlb1_max_shadow_size(); i++) kvmppc_e500_stlbe_invalidate(vcpu_e500, 1, i); _tlbia(); } } static int kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct tlbe *gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; if (unlikely(get_tlb_iprot(gtlbe))) return -1; if (tlbsel == 1) { kvmppc_e500_tlb1_invalidate(vcpu_e500, get_tlb_eaddr(gtlbe), get_tlb_end(gtlbe), get_tlb_tid(gtlbe)); } else { kvmppc_e500_stlbe_invalidate(vcpu_e500, tlbsel, esel); } gtlbe->mas1 = 0; return 0; } int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int ia; int esel, tlbsel; gva_t ea; ea = ((ra) ? vcpu->arch.gpr[ra] : 0) + vcpu->arch.gpr[rb]; ia = (ea >> 2) & 0x1; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (ea >> 3) & 0x1; if (ia) { /* invalidate all entries */ for (esel = 0; esel < vcpu_e500->guest_tlb_size[tlbsel]; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } else { ea &= 0xfffff000; esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, get_cur_pid(vcpu), -1); if (esel >= 0) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } _tlbia(); return EMULATE_DONE; } int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int tlbsel, esel; struct tlbe *gtlbe; tlbsel = get_tlb_tlbsel(vcpu_e500); esel = get_tlb_esel(vcpu_e500, tlbsel); gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; vcpu_e500->mas0 &= MAS0_NV(0); vcpu_e500->mas0 |= MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]); vcpu_e500->mas1 = gtlbe->mas1; vcpu_e500->mas2 = gtlbe->mas2; vcpu_e500->mas3 = gtlbe->mas3; vcpu_e500->mas7 = gtlbe->mas7; return EMULATE_DONE; } int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int as = !!get_cur_sas(vcpu_e500); unsigned int pid = get_cur_spid(vcpu_e500); int esel, tlbsel; struct tlbe *gtlbe = NULL; gva_t ea; ea = vcpu->arch.gpr[rb]; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as); if (esel >= 0) { gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; break; } } if (gtlbe) { vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]); vcpu_e500->mas1 = gtlbe->mas1; vcpu_e500->mas2 = gtlbe->mas2; vcpu_e500->mas3 = gtlbe->mas3; vcpu_e500->mas7 = gtlbe->mas7; } else { int victim; /* since we only have two TLBs, only lower bit is used. */ tlbsel = vcpu_e500->mas4 >> 28 & 0x1; victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0; vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]); vcpu_e500->mas1 = (vcpu_e500->mas6 & MAS6_SPID0) | (vcpu_e500->mas6 & (MAS6_SAS ? MAS1_TS : 0)) | (vcpu_e500->mas4 & MAS4_TSIZED(~0)); vcpu_e500->mas2 &= MAS2_EPN; vcpu_e500->mas2 |= vcpu_e500->mas4 & MAS2_ATTRIB_MASK; vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; vcpu_e500->mas7 = 0; } return EMULATE_DONE; } int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); u64 eaddr; u64 raddr; u32 tid; struct tlbe *gtlbe; int tlbsel, esel, stlbsel, sesel; tlbsel = get_tlb_tlbsel(vcpu_e500); esel = get_tlb_esel(vcpu_e500, tlbsel); gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; if (get_tlb_v(gtlbe) && tlbsel == 1) { eaddr = get_tlb_eaddr(gtlbe); tid = get_tlb_tid(gtlbe); kvmppc_e500_tlb1_invalidate(vcpu_e500, eaddr, get_tlb_end(gtlbe), tid); } gtlbe->mas1 = vcpu_e500->mas1; gtlbe->mas2 = vcpu_e500->mas2; gtlbe->mas3 = vcpu_e500->mas3; gtlbe->mas7 = vcpu_e500->mas7; KVMTRACE_5D(GTLB_WRITE, vcpu, vcpu_e500->mas0, gtlbe->mas1, gtlbe->mas2, gtlbe->mas3, gtlbe->mas7, handler); /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */ if (tlbe_is_host_safe(vcpu, gtlbe)) { switch (tlbsel) { case 0: /* TLB0 */ gtlbe->mas1 &= ~MAS1_TSIZE(~0); gtlbe->mas1 |= MAS1_TSIZE(BOOKE_PAGESZ_4K); stlbsel = 0; sesel = kvmppc_e500_stlbe_map(vcpu_e500, 0, esel); break; case 1: /* TLB1 */ eaddr = get_tlb_eaddr(gtlbe); raddr = get_tlb_raddr(gtlbe); /* Create a 4KB mapping on the host. * If the guest wanted a large page, * only the first 4KB is mapped here and the rest * are mapped on the fly. */ stlbsel = 1; sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, raddr >> PAGE_SHIFT, gtlbe); break; default: BUG(); } write_host_tlbe(vcpu_e500, stlbsel, sesel); } return EMULATE_DONE; } int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.msr & MSR_IS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.msr & MSR_DS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.msr & MSR_IS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); } void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.msr & MSR_DS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); } gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index, gva_t eaddr) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct tlbe *gtlbe = &vcpu_e500->guest_tlb[tlbsel_of(index)][esel_of(index)]; u64 pgmask = get_tlb_bytes(gtlbe) - 1; return get_tlb_raddr(gtlbe) | (eaddr & pgmask); } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int tlbsel, i; for (tlbsel = 0; tlbsel < 2; tlbsel++) for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++) kvmppc_e500_shadow_release(vcpu_e500, tlbsel, i); /* discard all guest mapping */ _tlbia(); } void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, unsigned int index) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int tlbsel = tlbsel_of(index); int esel = esel_of(index); int stlbsel, sesel; switch (tlbsel) { case 0: stlbsel = 0; sesel = esel; break; case 1: { gfn_t gfn = gpaddr >> PAGE_SHIFT; struct tlbe *gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel]; stlbsel = 1; sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe); break; } default: BUG(); break; } write_host_tlbe(vcpu_e500, stlbsel, sesel); } int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int esel, tlbsel; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as); if (esel >= 0) return index_of(tlbsel, esel); } return -1; } void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) { struct tlbe *tlbe; /* Insert large initial mapping for guest. */ tlbe = &vcpu_e500->guest_tlb[1][0]; tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOKE_PAGESZ_256M); tlbe->mas2 = 0; tlbe->mas3 = E500_TLB_SUPER_PERM_MASK; tlbe->mas7 = 0; /* 4K map for serial output. Used by kernel wrapper. */ tlbe = &vcpu_e500->guest_tlb[1][1]; tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOKE_PAGESZ_4K); tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; tlbe->mas3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; tlbe->mas7 = 0; } int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500) { tlb1_entry_num = mfspr(SPRN_TLB1CFG) & 0xFFF; vcpu_e500->guest_tlb_size[0] = KVM_E500_TLB0_SIZE; vcpu_e500->guest_tlb[0] = kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL); if (vcpu_e500->guest_tlb[0] == NULL) goto err_out; vcpu_e500->shadow_tlb_size[0] = KVM_E500_TLB0_SIZE; vcpu_e500->shadow_tlb[0] = kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL); if (vcpu_e500->shadow_tlb[0] == NULL) goto err_out_guest0; vcpu_e500->guest_tlb_size[1] = KVM_E500_TLB1_SIZE; vcpu_e500->guest_tlb[1] = kzalloc(sizeof(struct tlbe) * KVM_E500_TLB1_SIZE, GFP_KERNEL); if (vcpu_e500->guest_tlb[1] == NULL) goto err_out_shadow0; vcpu_e500->shadow_tlb_size[1] = tlb1_entry_num; vcpu_e500->shadow_tlb[1] = kzalloc(sizeof(struct tlbe) * tlb1_entry_num, GFP_KERNEL); if (vcpu_e500->shadow_tlb[1] == NULL) goto err_out_guest1; vcpu_e500->shadow_pages[0] = (struct page **) kzalloc(sizeof(struct page *) * KVM_E500_TLB0_SIZE, GFP_KERNEL); if (vcpu_e500->shadow_pages[0] == NULL) goto err_out_shadow1; vcpu_e500->shadow_pages[1] = (struct page **) kzalloc(sizeof(struct page *) * tlb1_entry_num, GFP_KERNEL); if (vcpu_e500->shadow_pages[1] == NULL) goto err_out_page0; return 0; err_out_page0: kfree(vcpu_e500->shadow_pages[0]); err_out_shadow1: kfree(vcpu_e500->shadow_tlb[1]); err_out_guest1: kfree(vcpu_e500->guest_tlb[1]); err_out_shadow0: kfree(vcpu_e500->shadow_tlb[0]); err_out_guest0: kfree(vcpu_e500->guest_tlb[0]); err_out: return -1; } void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) { kfree(vcpu_e500->shadow_pages[1]); kfree(vcpu_e500->shadow_pages[0]); kfree(vcpu_e500->shadow_tlb[1]); kfree(vcpu_e500->guest_tlb[1]); kfree(vcpu_e500->shadow_tlb[0]); kfree(vcpu_e500->guest_tlb[0]); }