/* * wm9081.c -- WM9081 ALSA SoC Audio driver * * Author: Mark Brown * * Copyright 2009-12 Wolfson Microelectronics plc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include <sound/wm9081.h> #include "wm9081.h" static struct reg_default wm9081_reg[] = { { 2, 0x00B9 }, /* R2 - Analogue Lineout */ { 3, 0x00B9 }, /* R3 - Analogue Speaker PGA */ { 4, 0x0001 }, /* R4 - VMID Control */ { 5, 0x0068 }, /* R5 - Bias Control 1 */ { 7, 0x0000 }, /* R7 - Analogue Mixer */ { 8, 0x0000 }, /* R8 - Anti Pop Control */ { 9, 0x01DB }, /* R9 - Analogue Speaker 1 */ { 10, 0x0018 }, /* R10 - Analogue Speaker 2 */ { 11, 0x0180 }, /* R11 - Power Management */ { 12, 0x0000 }, /* R12 - Clock Control 1 */ { 13, 0x0038 }, /* R13 - Clock Control 2 */ { 14, 0x4000 }, /* R14 - Clock Control 3 */ { 16, 0x0000 }, /* R16 - FLL Control 1 */ { 17, 0x0200 }, /* R17 - FLL Control 2 */ { 18, 0x0000 }, /* R18 - FLL Control 3 */ { 19, 0x0204 }, /* R19 - FLL Control 4 */ { 20, 0x0000 }, /* R20 - FLL Control 5 */ { 22, 0x0000 }, /* R22 - Audio Interface 1 */ { 23, 0x0002 }, /* R23 - Audio Interface 2 */ { 24, 0x0008 }, /* R24 - Audio Interface 3 */ { 25, 0x0022 }, /* R25 - Audio Interface 4 */ { 27, 0x0006 }, /* R27 - Interrupt Status Mask */ { 28, 0x0000 }, /* R28 - Interrupt Polarity */ { 29, 0x0000 }, /* R29 - Interrupt Control */ { 30, 0x00C0 }, /* R30 - DAC Digital 1 */ { 31, 0x0008 }, /* R31 - DAC Digital 2 */ { 32, 0x09AF }, /* R32 - DRC 1 */ { 33, 0x4201 }, /* R33 - DRC 2 */ { 34, 0x0000 }, /* R34 - DRC 3 */ { 35, 0x0000 }, /* R35 - DRC 4 */ { 38, 0x0000 }, /* R38 - Write Sequencer 1 */ { 39, 0x0000 }, /* R39 - Write Sequencer 2 */ { 40, 0x0002 }, /* R40 - MW Slave 1 */ { 42, 0x0000 }, /* R42 - EQ 1 */ { 43, 0x0000 }, /* R43 - EQ 2 */ { 44, 0x0FCA }, /* R44 - EQ 3 */ { 45, 0x0400 }, /* R45 - EQ 4 */ { 46, 0x00B8 }, /* R46 - EQ 5 */ { 47, 0x1EB5 }, /* R47 - EQ 6 */ { 48, 0xF145 }, /* R48 - EQ 7 */ { 49, 0x0B75 }, /* R49 - EQ 8 */ { 50, 0x01C5 }, /* R50 - EQ 9 */ { 51, 0x169E }, /* R51 - EQ 10 */ { 52, 0xF829 }, /* R52 - EQ 11 */ { 53, 0x07AD }, /* R53 - EQ 12 */ { 54, 0x1103 }, /* R54 - EQ 13 */ { 55, 0x1C58 }, /* R55 - EQ 14 */ { 56, 0xF373 }, /* R56 - EQ 15 */ { 57, 0x0A54 }, /* R57 - EQ 16 */ { 58, 0x0558 }, /* R58 - EQ 17 */ { 59, 0x0564 }, /* R59 - EQ 18 */ { 60, 0x0559 }, /* R60 - EQ 19 */ { 61, 0x4000 }, /* R61 - EQ 20 */ }; static struct { int ratio; int clk_sys_rate; } clk_sys_rates[] = { { 64, 0 }, { 128, 1 }, { 192, 2 }, { 256, 3 }, { 384, 4 }, { 512, 5 }, { 768, 6 }, { 1024, 7 }, { 1408, 8 }, { 1536, 9 }, }; static struct { int rate; int sample_rate; } sample_rates[] = { { 8000, 0 }, { 11025, 1 }, { 12000, 2 }, { 16000, 3 }, { 22050, 4 }, { 24000, 5 }, { 32000, 6 }, { 44100, 7 }, { 48000, 8 }, { 88200, 9 }, { 96000, 10 }, }; static struct { int div; /* *10 due to .5s */ int bclk_div; } bclk_divs[] = { { 10, 0 }, { 15, 1 }, { 20, 2 }, { 30, 3 }, { 40, 4 }, { 50, 5 }, { 55, 6 }, { 60, 7 }, { 80, 8 }, { 100, 9 }, { 110, 10 }, { 120, 11 }, { 160, 12 }, { 200, 13 }, { 220, 14 }, { 240, 15 }, { 250, 16 }, { 300, 17 }, { 320, 18 }, { 440, 19 }, { 480, 20 }, }; struct wm9081_priv { struct regmap *regmap; int sysclk_source; int mclk_rate; int sysclk_rate; int fs; int bclk; int master; int fll_fref; int fll_fout; int tdm_width; struct wm9081_pdata pdata; }; static bool wm9081_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case WM9081_SOFTWARE_RESET: case WM9081_INTERRUPT_STATUS: return true; default: return false; } } static bool wm9081_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case WM9081_SOFTWARE_RESET: case WM9081_ANALOGUE_LINEOUT: case WM9081_ANALOGUE_SPEAKER_PGA: case WM9081_VMID_CONTROL: case WM9081_BIAS_CONTROL_1: case WM9081_ANALOGUE_MIXER: case WM9081_ANTI_POP_CONTROL: case WM9081_ANALOGUE_SPEAKER_1: case WM9081_ANALOGUE_SPEAKER_2: case WM9081_POWER_MANAGEMENT: case WM9081_CLOCK_CONTROL_1: case WM9081_CLOCK_CONTROL_2: case WM9081_CLOCK_CONTROL_3: case WM9081_FLL_CONTROL_1: case WM9081_FLL_CONTROL_2: case WM9081_FLL_CONTROL_3: case WM9081_FLL_CONTROL_4: case WM9081_FLL_CONTROL_5: case WM9081_AUDIO_INTERFACE_1: case WM9081_AUDIO_INTERFACE_2: case WM9081_AUDIO_INTERFACE_3: case WM9081_AUDIO_INTERFACE_4: case WM9081_INTERRUPT_STATUS: case WM9081_INTERRUPT_STATUS_MASK: case WM9081_INTERRUPT_POLARITY: case WM9081_INTERRUPT_CONTROL: case WM9081_DAC_DIGITAL_1: case WM9081_DAC_DIGITAL_2: case WM9081_DRC_1: case WM9081_DRC_2: case WM9081_DRC_3: case WM9081_DRC_4: case WM9081_WRITE_SEQUENCER_1: case WM9081_WRITE_SEQUENCER_2: case WM9081_MW_SLAVE_1: case WM9081_EQ_1: case WM9081_EQ_2: case WM9081_EQ_3: case WM9081_EQ_4: case WM9081_EQ_5: case WM9081_EQ_6: case WM9081_EQ_7: case WM9081_EQ_8: case WM9081_EQ_9: case WM9081_EQ_10: case WM9081_EQ_11: case WM9081_EQ_12: case WM9081_EQ_13: case WM9081_EQ_14: case WM9081_EQ_15: case WM9081_EQ_16: case WM9081_EQ_17: case WM9081_EQ_18: case WM9081_EQ_19: case WM9081_EQ_20: return true; default: return false; } } static int wm9081_reset(struct regmap *map) { return regmap_write(map, WM9081_SOFTWARE_RESET, 0x9081); } static const DECLARE_TLV_DB_SCALE(drc_in_tlv, -4500, 75, 0); static const DECLARE_TLV_DB_SCALE(drc_out_tlv, -2250, 75, 0); static const DECLARE_TLV_DB_SCALE(drc_min_tlv, -1800, 600, 0); static unsigned int drc_max_tlv[] = { TLV_DB_RANGE_HEAD(4), 0, 0, TLV_DB_SCALE_ITEM(1200, 0, 0), 1, 1, TLV_DB_SCALE_ITEM(1800, 0, 0), 2, 2, TLV_DB_SCALE_ITEM(2400, 0, 0), 3, 3, TLV_DB_SCALE_ITEM(3600, 0, 0), }; static const DECLARE_TLV_DB_SCALE(drc_qr_tlv, 1200, 600, 0); static const DECLARE_TLV_DB_SCALE(drc_startup_tlv, -300, 50, 0); static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0); static const DECLARE_TLV_DB_SCALE(in_tlv, -600, 600, 0); static const DECLARE_TLV_DB_SCALE(dac_tlv, -7200, 75, 1); static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0); static const char *drc_high_text[] = { "1", "1/2", "1/4", "1/8", "1/16", "0", }; static const struct soc_enum drc_high = SOC_ENUM_SINGLE(WM9081_DRC_3, 3, 6, drc_high_text); static const char *drc_low_text[] = { "1", "1/2", "1/4", "1/8", "0", }; static const struct soc_enum drc_low = SOC_ENUM_SINGLE(WM9081_DRC_3, 0, 5, drc_low_text); static const char *drc_atk_text[] = { "181us", "181us", "363us", "726us", "1.45ms", "2.9ms", "5.8ms", "11.6ms", "23.2ms", "46.4ms", "92.8ms", "185.6ms", }; static const struct soc_enum drc_atk = SOC_ENUM_SINGLE(WM9081_DRC_2, 12, 12, drc_atk_text); static const char *drc_dcy_text[] = { "186ms", "372ms", "743ms", "1.49s", "2.97s", "5.94s", "11.89s", "23.78s", "47.56s", }; static const struct soc_enum drc_dcy = SOC_ENUM_SINGLE(WM9081_DRC_2, 8, 9, drc_dcy_text); static const char *drc_qr_dcy_text[] = { "0.725ms", "1.45ms", "5.8ms", }; static const struct soc_enum drc_qr_dcy = SOC_ENUM_SINGLE(WM9081_DRC_2, 4, 3, drc_qr_dcy_text); static const char *dac_deemph_text[] = { "None", "32kHz", "44.1kHz", "48kHz", }; static const struct soc_enum dac_deemph = SOC_ENUM_SINGLE(WM9081_DAC_DIGITAL_2, 1, 4, dac_deemph_text); static const char *speaker_mode_text[] = { "Class D", "Class AB", }; static const struct soc_enum speaker_mode = SOC_ENUM_SINGLE(WM9081_ANALOGUE_SPEAKER_2, 6, 2, speaker_mode_text); static int speaker_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); unsigned int reg; reg = snd_soc_read(codec, WM9081_ANALOGUE_SPEAKER_2); if (reg & WM9081_SPK_MODE) ucontrol->value.integer.value[0] = 1; else ucontrol->value.integer.value[0] = 0; return 0; } /* * Stop any attempts to change speaker mode while the speaker is enabled. * * We also have some special anti-pop controls dependent on speaker * mode which must be changed along with the mode. */ static int speaker_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); unsigned int reg_pwr = snd_soc_read(codec, WM9081_POWER_MANAGEMENT); unsigned int reg2 = snd_soc_read(codec, WM9081_ANALOGUE_SPEAKER_2); /* Are we changing anything? */ if (ucontrol->value.integer.value[0] == ((reg2 & WM9081_SPK_MODE) != 0)) return 0; /* Don't try to change modes while enabled */ if (reg_pwr & WM9081_SPK_ENA) return -EINVAL; if (ucontrol->value.integer.value[0]) { /* Class AB */ reg2 &= ~(WM9081_SPK_INV_MUTE | WM9081_OUT_SPK_CTRL); reg2 |= WM9081_SPK_MODE; } else { /* Class D */ reg2 |= WM9081_SPK_INV_MUTE | WM9081_OUT_SPK_CTRL; reg2 &= ~WM9081_SPK_MODE; } snd_soc_write(codec, WM9081_ANALOGUE_SPEAKER_2, reg2); return 0; } static const struct snd_kcontrol_new wm9081_snd_controls[] = { SOC_SINGLE_TLV("IN1 Volume", WM9081_ANALOGUE_MIXER, 1, 1, 1, in_tlv), SOC_SINGLE_TLV("IN2 Volume", WM9081_ANALOGUE_MIXER, 3, 1, 1, in_tlv), SOC_SINGLE_TLV("Playback Volume", WM9081_DAC_DIGITAL_1, 1, 96, 0, dac_tlv), SOC_SINGLE("LINEOUT Switch", WM9081_ANALOGUE_LINEOUT, 7, 1, 1), SOC_SINGLE("LINEOUT ZC Switch", WM9081_ANALOGUE_LINEOUT, 6, 1, 0), SOC_SINGLE_TLV("LINEOUT Volume", WM9081_ANALOGUE_LINEOUT, 0, 63, 0, out_tlv), SOC_SINGLE("DRC Switch", WM9081_DRC_1, 15, 1, 0), SOC_ENUM("DRC High Slope", drc_high), SOC_ENUM("DRC Low Slope", drc_low), SOC_SINGLE_TLV("DRC Input Volume", WM9081_DRC_4, 5, 60, 1, drc_in_tlv), SOC_SINGLE_TLV("DRC Output Volume", WM9081_DRC_4, 0, 30, 1, drc_out_tlv), SOC_SINGLE_TLV("DRC Minimum Volume", WM9081_DRC_2, 2, 3, 1, drc_min_tlv), SOC_SINGLE_TLV("DRC Maximum Volume", WM9081_DRC_2, 0, 3, 0, drc_max_tlv), SOC_ENUM("DRC Attack", drc_atk), SOC_ENUM("DRC Decay", drc_dcy), SOC_SINGLE("DRC Quick Release Switch", WM9081_DRC_1, 2, 1, 0), SOC_SINGLE_TLV("DRC Quick Release Volume", WM9081_DRC_2, 6, 3, 0, drc_qr_tlv), SOC_ENUM("DRC Quick Release Decay", drc_qr_dcy), SOC_SINGLE_TLV("DRC Startup Volume", WM9081_DRC_1, 6, 18, 0, drc_startup_tlv), SOC_SINGLE("EQ Switch", WM9081_EQ_1, 0, 1, 0), SOC_SINGLE("Speaker DC Volume", WM9081_ANALOGUE_SPEAKER_1, 3, 5, 0), SOC_SINGLE("Speaker AC Volume", WM9081_ANALOGUE_SPEAKER_1, 0, 5, 0), SOC_SINGLE("Speaker Switch", WM9081_ANALOGUE_SPEAKER_PGA, 7, 1, 1), SOC_SINGLE("Speaker ZC Switch", WM9081_ANALOGUE_SPEAKER_PGA, 6, 1, 0), SOC_SINGLE_TLV("Speaker Volume", WM9081_ANALOGUE_SPEAKER_PGA, 0, 63, 0, out_tlv), SOC_ENUM("DAC Deemphasis", dac_deemph), SOC_ENUM_EXT("Speaker Mode", speaker_mode, speaker_mode_get, speaker_mode_put), }; static const struct snd_kcontrol_new wm9081_eq_controls[] = { SOC_SINGLE_TLV("EQ1 Volume", WM9081_EQ_1, 11, 24, 0, eq_tlv), SOC_SINGLE_TLV("EQ2 Volume", WM9081_EQ_1, 6, 24, 0, eq_tlv), SOC_SINGLE_TLV("EQ3 Volume", WM9081_EQ_1, 1, 24, 0, eq_tlv), SOC_SINGLE_TLV("EQ4 Volume", WM9081_EQ_2, 11, 24, 0, eq_tlv), SOC_SINGLE_TLV("EQ5 Volume", WM9081_EQ_2, 6, 24, 0, eq_tlv), }; static const struct snd_kcontrol_new mixer[] = { SOC_DAPM_SINGLE("IN1 Switch", WM9081_ANALOGUE_MIXER, 0, 1, 0), SOC_DAPM_SINGLE("IN2 Switch", WM9081_ANALOGUE_MIXER, 2, 1, 0), SOC_DAPM_SINGLE("Playback Switch", WM9081_ANALOGUE_MIXER, 4, 1, 0), }; struct _fll_div { u16 fll_fratio; u16 fll_outdiv; u16 fll_clk_ref_div; u16 n; u16 k; }; /* The size in bits of the FLL divide multiplied by 10 * to allow rounding later */ #define FIXED_FLL_SIZE ((1 << 16) * 10) static struct { unsigned int min; unsigned int max; u16 fll_fratio; int ratio; } fll_fratios[] = { { 0, 64000, 4, 16 }, { 64000, 128000, 3, 8 }, { 128000, 256000, 2, 4 }, { 256000, 1000000, 1, 2 }, { 1000000, 13500000, 0, 1 }, }; static int fll_factors(struct _fll_div *fll_div, unsigned int Fref, unsigned int Fout) { u64 Kpart; unsigned int K, Ndiv, Nmod, target; unsigned int div; int i; /* Fref must be <=13.5MHz */ div = 1; while ((Fref / div) > 13500000) { div *= 2; if (div > 8) { pr_err("Can't scale %dMHz input down to <=13.5MHz\n", Fref); return -EINVAL; } } fll_div->fll_clk_ref_div = div / 2; pr_debug("Fref=%u Fout=%u\n", Fref, Fout); /* Apply the division for our remaining calculations */ Fref /= div; /* Fvco should be 90-100MHz; don't check the upper bound */ div = 0; target = Fout * 2; while (target < 90000000) { div++; target *= 2; if (div > 7) { pr_err("Unable to find FLL_OUTDIV for Fout=%uHz\n", Fout); return -EINVAL; } } fll_div->fll_outdiv = div; pr_debug("Fvco=%dHz\n", target); /* Find an appropriate FLL_FRATIO and factor it out of the target */ for (i = 0; i < ARRAY_SIZE(fll_fratios); i++) { if (fll_fratios[i].min <= Fref && Fref <= fll_fratios[i].max) { fll_div->fll_fratio = fll_fratios[i].fll_fratio; target /= fll_fratios[i].ratio; break; } } if (i == ARRAY_SIZE(fll_fratios)) { pr_err("Unable to find FLL_FRATIO for Fref=%uHz\n", Fref); return -EINVAL; } /* Now, calculate N.K */ Ndiv = target / Fref; fll_div->n = Ndiv; Nmod = target % Fref; pr_debug("Nmod=%d\n", Nmod); /* Calculate fractional part - scale up so we can round. */ Kpart = FIXED_FLL_SIZE * (long long)Nmod; do_div(Kpart, Fref); K = Kpart & 0xFFFFFFFF; if ((K % 10) >= 5) K += 5; /* Move down to proper range now rounding is done */ fll_div->k = K / 10; pr_debug("N=%x K=%x FLL_FRATIO=%x FLL_OUTDIV=%x FLL_CLK_REF_DIV=%x\n", fll_div->n, fll_div->k, fll_div->fll_fratio, fll_div->fll_outdiv, fll_div->fll_clk_ref_div); return 0; } static int wm9081_set_fll(struct snd_soc_codec *codec, int fll_id, unsigned int Fref, unsigned int Fout) { struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); u16 reg1, reg4, reg5; struct _fll_div fll_div; int ret; int clk_sys_reg; /* Any change? */ if (Fref == wm9081->fll_fref && Fout == wm9081->fll_fout) return 0; /* Disable the FLL */ if (Fout == 0) { dev_dbg(codec->dev, "FLL disabled\n"); wm9081->fll_fref = 0; wm9081->fll_fout = 0; return 0; } ret = fll_factors(&fll_div, Fref, Fout); if (ret != 0) return ret; reg5 = snd_soc_read(codec, WM9081_FLL_CONTROL_5); reg5 &= ~WM9081_FLL_CLK_SRC_MASK; switch (fll_id) { case WM9081_SYSCLK_FLL_MCLK: reg5 |= 0x1; break; default: dev_err(codec->dev, "Unknown FLL ID %d\n", fll_id); return -EINVAL; } /* Disable CLK_SYS while we reconfigure */ clk_sys_reg = snd_soc_read(codec, WM9081_CLOCK_CONTROL_3); if (clk_sys_reg & WM9081_CLK_SYS_ENA) snd_soc_write(codec, WM9081_CLOCK_CONTROL_3, clk_sys_reg & ~WM9081_CLK_SYS_ENA); /* Any FLL configuration change requires that the FLL be * disabled first. */ reg1 = snd_soc_read(codec, WM9081_FLL_CONTROL_1); reg1 &= ~WM9081_FLL_ENA; snd_soc_write(codec, WM9081_FLL_CONTROL_1, reg1); /* Apply the configuration */ if (fll_div.k) reg1 |= WM9081_FLL_FRAC_MASK; else reg1 &= ~WM9081_FLL_FRAC_MASK; snd_soc_write(codec, WM9081_FLL_CONTROL_1, reg1); snd_soc_write(codec, WM9081_FLL_CONTROL_2, (fll_div.fll_outdiv << WM9081_FLL_OUTDIV_SHIFT) | (fll_div.fll_fratio << WM9081_FLL_FRATIO_SHIFT)); snd_soc_write(codec, WM9081_FLL_CONTROL_3, fll_div.k); reg4 = snd_soc_read(codec, WM9081_FLL_CONTROL_4); reg4 &= ~WM9081_FLL_N_MASK; reg4 |= fll_div.n << WM9081_FLL_N_SHIFT; snd_soc_write(codec, WM9081_FLL_CONTROL_4, reg4); reg5 &= ~WM9081_FLL_CLK_REF_DIV_MASK; reg5 |= fll_div.fll_clk_ref_div << WM9081_FLL_CLK_REF_DIV_SHIFT; snd_soc_write(codec, WM9081_FLL_CONTROL_5, reg5); /* Set gain to the recommended value */ snd_soc_update_bits(codec, WM9081_FLL_CONTROL_4, WM9081_FLL_GAIN_MASK, 0); /* Enable the FLL */ snd_soc_write(codec, WM9081_FLL_CONTROL_1, reg1 | WM9081_FLL_ENA); /* Then bring CLK_SYS up again if it was disabled */ if (clk_sys_reg & WM9081_CLK_SYS_ENA) snd_soc_write(codec, WM9081_CLOCK_CONTROL_3, clk_sys_reg); dev_dbg(codec->dev, "FLL enabled at %dHz->%dHz\n", Fref, Fout); wm9081->fll_fref = Fref; wm9081->fll_fout = Fout; return 0; } static int configure_clock(struct snd_soc_codec *codec) { struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); int new_sysclk, i, target; unsigned int reg; int ret = 0; int mclkdiv = 0; int fll = 0; switch (wm9081->sysclk_source) { case WM9081_SYSCLK_MCLK: if (wm9081->mclk_rate > 12225000) { mclkdiv = 1; wm9081->sysclk_rate = wm9081->mclk_rate / 2; } else { wm9081->sysclk_rate = wm9081->mclk_rate; } wm9081_set_fll(codec, WM9081_SYSCLK_FLL_MCLK, 0, 0); break; case WM9081_SYSCLK_FLL_MCLK: /* If we have a sample rate calculate a CLK_SYS that * gives us a suitable DAC configuration, plus BCLK. * Ideally we would check to see if we can clock * directly from MCLK and only use the FLL if this is * not the case, though care must be taken with free * running mode. */ if (wm9081->master && wm9081->bclk) { /* Make sure we can generate CLK_SYS and BCLK * and that we've got 3MHz for optimal * performance. */ for (i = 0; i < ARRAY_SIZE(clk_sys_rates); i++) { target = wm9081->fs * clk_sys_rates[i].ratio; new_sysclk = target; if (target >= wm9081->bclk && target > 3000000) break; } if (i == ARRAY_SIZE(clk_sys_rates)) return -EINVAL; } else if (wm9081->fs) { for (i = 0; i < ARRAY_SIZE(clk_sys_rates); i++) { new_sysclk = clk_sys_rates[i].ratio * wm9081->fs; if (new_sysclk > 3000000) break; } if (i == ARRAY_SIZE(clk_sys_rates)) return -EINVAL; } else { new_sysclk = 12288000; } ret = wm9081_set_fll(codec, WM9081_SYSCLK_FLL_MCLK, wm9081->mclk_rate, new_sysclk); if (ret == 0) { wm9081->sysclk_rate = new_sysclk; /* Switch SYSCLK over to FLL */ fll = 1; } else { wm9081->sysclk_rate = wm9081->mclk_rate; } break; default: return -EINVAL; } reg = snd_soc_read(codec, WM9081_CLOCK_CONTROL_1); if (mclkdiv) reg |= WM9081_MCLKDIV2; else reg &= ~WM9081_MCLKDIV2; snd_soc_write(codec, WM9081_CLOCK_CONTROL_1, reg); reg = snd_soc_read(codec, WM9081_CLOCK_CONTROL_3); if (fll) reg |= WM9081_CLK_SRC_SEL; else reg &= ~WM9081_CLK_SRC_SEL; snd_soc_write(codec, WM9081_CLOCK_CONTROL_3, reg); dev_dbg(codec->dev, "CLK_SYS is %dHz\n", wm9081->sysclk_rate); return ret; } static int clk_sys_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); /* This should be done on init() for bypass paths */ switch (wm9081->sysclk_source) { case WM9081_SYSCLK_MCLK: dev_dbg(codec->dev, "Using %dHz MCLK\n", wm9081->mclk_rate); break; case WM9081_SYSCLK_FLL_MCLK: dev_dbg(codec->dev, "Using %dHz MCLK with FLL\n", wm9081->mclk_rate); break; default: dev_err(codec->dev, "System clock not configured\n"); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: configure_clock(codec); break; case SND_SOC_DAPM_POST_PMD: /* Disable the FLL if it's running */ wm9081_set_fll(codec, 0, 0, 0); break; } return 0; } static const struct snd_soc_dapm_widget wm9081_dapm_widgets[] = { SND_SOC_DAPM_INPUT("IN1"), SND_SOC_DAPM_INPUT("IN2"), SND_SOC_DAPM_DAC("DAC", NULL, WM9081_POWER_MANAGEMENT, 0, 0), SND_SOC_DAPM_MIXER_NAMED_CTL("Mixer", SND_SOC_NOPM, 0, 0, mixer, ARRAY_SIZE(mixer)), SND_SOC_DAPM_PGA("LINEOUT PGA", WM9081_POWER_MANAGEMENT, 4, 0, NULL, 0), SND_SOC_DAPM_PGA("Speaker PGA", WM9081_POWER_MANAGEMENT, 2, 0, NULL, 0), SND_SOC_DAPM_OUT_DRV("Speaker", WM9081_POWER_MANAGEMENT, 1, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("LINEOUT"), SND_SOC_DAPM_OUTPUT("SPKN"), SND_SOC_DAPM_OUTPUT("SPKP"), SND_SOC_DAPM_SUPPLY("CLK_SYS", WM9081_CLOCK_CONTROL_3, 0, 0, clk_sys_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("CLK_DSP", WM9081_CLOCK_CONTROL_3, 1, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TOCLK", WM9081_CLOCK_CONTROL_3, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TSENSE", WM9081_POWER_MANAGEMENT, 7, 0, NULL, 0), }; static const struct snd_soc_dapm_route wm9081_audio_paths[] = { { "DAC", NULL, "CLK_SYS" }, { "DAC", NULL, "CLK_DSP" }, { "DAC", NULL, "AIF" }, { "Mixer", "IN1 Switch", "IN1" }, { "Mixer", "IN2 Switch", "IN2" }, { "Mixer", "Playback Switch", "DAC" }, { "LINEOUT PGA", NULL, "Mixer" }, { "LINEOUT PGA", NULL, "TOCLK" }, { "LINEOUT PGA", NULL, "CLK_SYS" }, { "LINEOUT", NULL, "LINEOUT PGA" }, { "Speaker PGA", NULL, "Mixer" }, { "Speaker PGA", NULL, "TOCLK" }, { "Speaker PGA", NULL, "CLK_SYS" }, { "Speaker", NULL, "Speaker PGA" }, { "Speaker", NULL, "TSENSE" }, { "SPKN", NULL, "Speaker" }, { "SPKP", NULL, "Speaker" }, }; static int wm9081_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* VMID=2*40k */ snd_soc_update_bits(codec, WM9081_VMID_CONTROL, WM9081_VMID_SEL_MASK, 0x2); /* Normal bias current */ snd_soc_update_bits(codec, WM9081_BIAS_CONTROL_1, WM9081_STBY_BIAS_ENA, 0); break; case SND_SOC_BIAS_STANDBY: /* Initial cold start */ if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { regcache_cache_only(wm9081->regmap, false); regcache_sync(wm9081->regmap); /* Disable LINEOUT discharge */ snd_soc_update_bits(codec, WM9081_ANTI_POP_CONTROL, WM9081_LINEOUT_DISCH, 0); /* Select startup bias source */ snd_soc_update_bits(codec, WM9081_BIAS_CONTROL_1, WM9081_BIAS_SRC | WM9081_BIAS_ENA, WM9081_BIAS_SRC | WM9081_BIAS_ENA); /* VMID 2*4k; Soft VMID ramp enable */ snd_soc_update_bits(codec, WM9081_VMID_CONTROL, WM9081_VMID_RAMP | WM9081_VMID_SEL_MASK, WM9081_VMID_RAMP | 0x6); mdelay(100); /* Normal bias enable & soft start off */ snd_soc_update_bits(codec, WM9081_VMID_CONTROL, WM9081_VMID_RAMP, 0); /* Standard bias source */ snd_soc_update_bits(codec, WM9081_BIAS_CONTROL_1, WM9081_BIAS_SRC, 0); } /* VMID 2*240k */ snd_soc_update_bits(codec, WM9081_VMID_CONTROL, WM9081_VMID_SEL_MASK, 0x04); /* Standby bias current on */ snd_soc_update_bits(codec, WM9081_BIAS_CONTROL_1, WM9081_STBY_BIAS_ENA, WM9081_STBY_BIAS_ENA); break; case SND_SOC_BIAS_OFF: /* Startup bias source and disable bias */ snd_soc_update_bits(codec, WM9081_BIAS_CONTROL_1, WM9081_BIAS_SRC | WM9081_BIAS_ENA, WM9081_BIAS_SRC); /* Disable VMID with soft ramping */ snd_soc_update_bits(codec, WM9081_VMID_CONTROL, WM9081_VMID_RAMP | WM9081_VMID_SEL_MASK, WM9081_VMID_RAMP); /* Actively discharge LINEOUT */ snd_soc_update_bits(codec, WM9081_ANTI_POP_CONTROL, WM9081_LINEOUT_DISCH, WM9081_LINEOUT_DISCH); regcache_cache_only(wm9081->regmap, true); break; } codec->dapm.bias_level = level; return 0; } static int wm9081_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_codec *codec = dai->codec; struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); unsigned int aif2 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_2); aif2 &= ~(WM9081_AIF_BCLK_INV | WM9081_AIF_LRCLK_INV | WM9081_BCLK_DIR | WM9081_LRCLK_DIR | WM9081_AIF_FMT_MASK); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: wm9081->master = 0; break; case SND_SOC_DAIFMT_CBS_CFM: aif2 |= WM9081_LRCLK_DIR; wm9081->master = 1; break; case SND_SOC_DAIFMT_CBM_CFS: aif2 |= WM9081_BCLK_DIR; wm9081->master = 1; break; case SND_SOC_DAIFMT_CBM_CFM: aif2 |= WM9081_LRCLK_DIR | WM9081_BCLK_DIR; wm9081->master = 1; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_B: aif2 |= WM9081_AIF_LRCLK_INV; case SND_SOC_DAIFMT_DSP_A: aif2 |= 0x3; break; case SND_SOC_DAIFMT_I2S: aif2 |= 0x2; break; case SND_SOC_DAIFMT_RIGHT_J: break; case SND_SOC_DAIFMT_LEFT_J: aif2 |= 0x1; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: /* frame inversion not valid for DSP modes */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: aif2 |= WM9081_AIF_BCLK_INV; break; default: return -EINVAL; } break; case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: aif2 |= WM9081_AIF_BCLK_INV | WM9081_AIF_LRCLK_INV; break; case SND_SOC_DAIFMT_IB_NF: aif2 |= WM9081_AIF_BCLK_INV; break; case SND_SOC_DAIFMT_NB_IF: aif2 |= WM9081_AIF_LRCLK_INV; break; default: return -EINVAL; } break; default: return -EINVAL; } snd_soc_write(codec, WM9081_AUDIO_INTERFACE_2, aif2); return 0; } static int wm9081_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); int ret, i, best, best_val, cur_val; unsigned int clk_ctrl2, aif1, aif2, aif3, aif4; clk_ctrl2 = snd_soc_read(codec, WM9081_CLOCK_CONTROL_2); clk_ctrl2 &= ~(WM9081_CLK_SYS_RATE_MASK | WM9081_SAMPLE_RATE_MASK); aif1 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_1); aif2 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_2); aif2 &= ~WM9081_AIF_WL_MASK; aif3 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_3); aif3 &= ~WM9081_BCLK_DIV_MASK; aif4 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_4); aif4 &= ~WM9081_LRCLK_RATE_MASK; wm9081->fs = params_rate(params); if (wm9081->tdm_width) { /* If TDM is set up then that fixes our BCLK. */ int slots = ((aif1 & WM9081_AIFDAC_TDM_MODE_MASK) >> WM9081_AIFDAC_TDM_MODE_SHIFT) + 1; wm9081->bclk = wm9081->fs * wm9081->tdm_width * slots; } else { /* Otherwise work out a BCLK from the sample size */ wm9081->bclk = 2 * wm9081->fs; switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: wm9081->bclk *= 16; break; case SNDRV_PCM_FORMAT_S20_3LE: wm9081->bclk *= 20; aif2 |= 0x4; break; case SNDRV_PCM_FORMAT_S24_LE: wm9081->bclk *= 24; aif2 |= 0x8; break; case SNDRV_PCM_FORMAT_S32_LE: wm9081->bclk *= 32; aif2 |= 0xc; break; default: return -EINVAL; } } dev_dbg(codec->dev, "Target BCLK is %dHz\n", wm9081->bclk); ret = configure_clock(codec); if (ret != 0) return ret; /* Select nearest CLK_SYS_RATE */ best = 0; best_val = abs((wm9081->sysclk_rate / clk_sys_rates[0].ratio) - wm9081->fs); for (i = 1; i < ARRAY_SIZE(clk_sys_rates); i++) { cur_val = abs((wm9081->sysclk_rate / clk_sys_rates[i].ratio) - wm9081->fs); if (cur_val < best_val) { best = i; best_val = cur_val; } } dev_dbg(codec->dev, "Selected CLK_SYS_RATIO of %d\n", clk_sys_rates[best].ratio); clk_ctrl2 |= (clk_sys_rates[best].clk_sys_rate << WM9081_CLK_SYS_RATE_SHIFT); /* SAMPLE_RATE */ best = 0; best_val = abs(wm9081->fs - sample_rates[0].rate); for (i = 1; i < ARRAY_SIZE(sample_rates); i++) { /* Closest match */ cur_val = abs(wm9081->fs - sample_rates[i].rate); if (cur_val < best_val) { best = i; best_val = cur_val; } } dev_dbg(codec->dev, "Selected SAMPLE_RATE of %dHz\n", sample_rates[best].rate); clk_ctrl2 |= (sample_rates[best].sample_rate << WM9081_SAMPLE_RATE_SHIFT); /* BCLK_DIV */ best = 0; best_val = INT_MAX; for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) { cur_val = ((wm9081->sysclk_rate * 10) / bclk_divs[i].div) - wm9081->bclk; if (cur_val < 0) /* Table is sorted */ break; if (cur_val < best_val) { best = i; best_val = cur_val; } } wm9081->bclk = (wm9081->sysclk_rate * 10) / bclk_divs[best].div; dev_dbg(codec->dev, "Selected BCLK_DIV of %d for %dHz BCLK\n", bclk_divs[best].div, wm9081->bclk); aif3 |= bclk_divs[best].bclk_div; /* LRCLK is a simple fraction of BCLK */ dev_dbg(codec->dev, "LRCLK_RATE is %d\n", wm9081->bclk / wm9081->fs); aif4 |= wm9081->bclk / wm9081->fs; /* Apply a ReTune Mobile configuration if it's in use */ if (wm9081->pdata.num_retune_configs) { struct wm9081_pdata *pdata = &wm9081->pdata; struct wm9081_retune_mobile_setting *s; int eq1; best = 0; best_val = abs(pdata->retune_configs[0].rate - wm9081->fs); for (i = 0; i < pdata->num_retune_configs; i++) { cur_val = abs(pdata->retune_configs[i].rate - wm9081->fs); if (cur_val < best_val) { best_val = cur_val; best = i; } } s = &pdata->retune_configs[best]; dev_dbg(codec->dev, "ReTune Mobile %s tuned for %dHz\n", s->name, s->rate); /* If the EQ is enabled then disable it while we write out */ eq1 = snd_soc_read(codec, WM9081_EQ_1) & WM9081_EQ_ENA; if (eq1 & WM9081_EQ_ENA) snd_soc_write(codec, WM9081_EQ_1, 0); /* Write out the other values */ for (i = 1; i < ARRAY_SIZE(s->config); i++) snd_soc_write(codec, WM9081_EQ_1 + i, s->config[i]); eq1 |= (s->config[0] & ~WM9081_EQ_ENA); snd_soc_write(codec, WM9081_EQ_1, eq1); } snd_soc_write(codec, WM9081_CLOCK_CONTROL_2, clk_ctrl2); snd_soc_write(codec, WM9081_AUDIO_INTERFACE_2, aif2); snd_soc_write(codec, WM9081_AUDIO_INTERFACE_3, aif3); snd_soc_write(codec, WM9081_AUDIO_INTERFACE_4, aif4); return 0; } static int wm9081_digital_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_codec *codec = codec_dai->codec; unsigned int reg; reg = snd_soc_read(codec, WM9081_DAC_DIGITAL_2); if (mute) reg |= WM9081_DAC_MUTE; else reg &= ~WM9081_DAC_MUTE; snd_soc_write(codec, WM9081_DAC_DIGITAL_2, reg); return 0; } static int wm9081_set_sysclk(struct snd_soc_codec *codec, int clk_id, int source, unsigned int freq, int dir) { struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); switch (clk_id) { case WM9081_SYSCLK_MCLK: case WM9081_SYSCLK_FLL_MCLK: wm9081->sysclk_source = clk_id; wm9081->mclk_rate = freq; break; default: return -EINVAL; } return 0; } static int wm9081_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_codec *codec = dai->codec; struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); unsigned int aif1 = snd_soc_read(codec, WM9081_AUDIO_INTERFACE_1); aif1 &= ~(WM9081_AIFDAC_TDM_SLOT_MASK | WM9081_AIFDAC_TDM_MODE_MASK); if (slots < 0 || slots > 4) return -EINVAL; wm9081->tdm_width = slot_width; if (slots == 0) slots = 1; aif1 |= (slots - 1) << WM9081_AIFDAC_TDM_MODE_SHIFT; switch (rx_mask) { case 1: break; case 2: aif1 |= 0x10; break; case 4: aif1 |= 0x20; break; case 8: aif1 |= 0x30; break; default: return -EINVAL; } snd_soc_write(codec, WM9081_AUDIO_INTERFACE_1, aif1); return 0; } #define WM9081_RATES SNDRV_PCM_RATE_8000_96000 #define WM9081_FORMATS \ (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops wm9081_dai_ops = { .hw_params = wm9081_hw_params, .set_fmt = wm9081_set_dai_fmt, .digital_mute = wm9081_digital_mute, .set_tdm_slot = wm9081_set_tdm_slot, }; /* We report two channels because the CODEC processes a stereo signal, even * though it is only capable of handling a mono output. */ static struct snd_soc_dai_driver wm9081_dai = { .name = "wm9081-hifi", .playback = { .stream_name = "AIF", .channels_min = 1, .channels_max = 2, .rates = WM9081_RATES, .formats = WM9081_FORMATS, }, .ops = &wm9081_dai_ops, }; static int wm9081_probe(struct snd_soc_codec *codec) { struct wm9081_priv *wm9081 = snd_soc_codec_get_drvdata(codec); int ret; codec->control_data = wm9081->regmap; ret = snd_soc_codec_set_cache_io(codec, 8, 16, SND_SOC_REGMAP); if (ret != 0) { dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret); return ret; } /* Enable zero cross by default */ snd_soc_update_bits(codec, WM9081_ANALOGUE_LINEOUT, WM9081_LINEOUTZC, WM9081_LINEOUTZC); snd_soc_update_bits(codec, WM9081_ANALOGUE_SPEAKER_PGA, WM9081_SPKPGAZC, WM9081_SPKPGAZC); if (!wm9081->pdata.num_retune_configs) { dev_dbg(codec->dev, "No ReTune Mobile data, using normal EQ\n"); snd_soc_add_codec_controls(codec, wm9081_eq_controls, ARRAY_SIZE(wm9081_eq_controls)); } return ret; } static int wm9081_remove(struct snd_soc_codec *codec) { wm9081_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static struct snd_soc_codec_driver soc_codec_dev_wm9081 = { .probe = wm9081_probe, .remove = wm9081_remove, .set_sysclk = wm9081_set_sysclk, .set_bias_level = wm9081_set_bias_level, .idle_bias_off = true, .controls = wm9081_snd_controls, .num_controls = ARRAY_SIZE(wm9081_snd_controls), .dapm_widgets = wm9081_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(wm9081_dapm_widgets), .dapm_routes = wm9081_audio_paths, .num_dapm_routes = ARRAY_SIZE(wm9081_audio_paths), }; static const struct regmap_config wm9081_regmap = { .reg_bits = 8, .val_bits = 16, .max_register = WM9081_MAX_REGISTER, .reg_defaults = wm9081_reg, .num_reg_defaults = ARRAY_SIZE(wm9081_reg), .volatile_reg = wm9081_volatile_register, .readable_reg = wm9081_readable_register, .cache_type = REGCACHE_RBTREE, }; #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE) static __devinit int wm9081_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct wm9081_priv *wm9081; unsigned int reg; int ret; wm9081 = devm_kzalloc(&i2c->dev, sizeof(struct wm9081_priv), GFP_KERNEL); if (wm9081 == NULL) return -ENOMEM; i2c_set_clientdata(i2c, wm9081); wm9081->regmap = regmap_init_i2c(i2c, &wm9081_regmap); if (IS_ERR(wm9081->regmap)) { ret = PTR_ERR(wm9081->regmap); dev_err(&i2c->dev, "regmap_init() failed: %d\n", ret); goto err; } ret = regmap_read(wm9081->regmap, WM9081_SOFTWARE_RESET, ®); if (ret != 0) { dev_err(&i2c->dev, "Failed to read chip ID: %d\n", ret); goto err_regmap; } if (reg != 0x9081) { dev_err(&i2c->dev, "Device is not a WM9081: ID=0x%x\n", reg); ret = -EINVAL; goto err_regmap; } ret = wm9081_reset(wm9081->regmap); if (ret < 0) { dev_err(&i2c->dev, "Failed to issue reset\n"); goto err_regmap; } if (dev_get_platdata(&i2c->dev)) memcpy(&wm9081->pdata, dev_get_platdata(&i2c->dev), sizeof(wm9081->pdata)); reg = 0; if (wm9081->pdata.irq_high) reg |= WM9081_IRQ_POL; if (!wm9081->pdata.irq_cmos) reg |= WM9081_IRQ_OP_CTRL; regmap_update_bits(wm9081->regmap, WM9081_INTERRUPT_CONTROL, WM9081_IRQ_POL | WM9081_IRQ_OP_CTRL, reg); regcache_cache_only(wm9081->regmap, true); ret = snd_soc_register_codec(&i2c->dev, &soc_codec_dev_wm9081, &wm9081_dai, 1); if (ret < 0) goto err_regmap; return 0; err_regmap: regmap_exit(wm9081->regmap); err: return ret; } static __devexit int wm9081_i2c_remove(struct i2c_client *client) { struct wm9081_priv *wm9081 = i2c_get_clientdata(client); snd_soc_unregister_codec(&client->dev); regmap_exit(wm9081->regmap); return 0; } static const struct i2c_device_id wm9081_i2c_id[] = { { "wm9081", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, wm9081_i2c_id); static struct i2c_driver wm9081_i2c_driver = { .driver = { .name = "wm9081", .owner = THIS_MODULE, }, .probe = wm9081_i2c_probe, .remove = __devexit_p(wm9081_i2c_remove), .id_table = wm9081_i2c_id, }; #endif module_i2c_driver(wm9081_i2c_driver); MODULE_DESCRIPTION("ASoC WM9081 driver"); MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>"); MODULE_LICENSE("GPL");