/* Framework for configuring and reading PHY devices * Based on code in sungem_phy.c and gianfar_phy.c * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. * Copyright (c) 2006, 2007 Maciej W. Rozycki * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char *phy_speed_to_str(int speed) { switch (speed) { case SPEED_10: return "10Mbps"; case SPEED_100: return "100Mbps"; case SPEED_1000: return "1Gbps"; case SPEED_2500: return "2.5Gbps"; case SPEED_10000: return "10Gbps"; case SPEED_UNKNOWN: return "Unknown"; default: return "Unsupported (update phy.c)"; } } #define PHY_STATE_STR(_state) \ case PHY_##_state: \ return __stringify(_state); \ static const char *phy_state_to_str(enum phy_state st) { switch (st) { PHY_STATE_STR(DOWN) PHY_STATE_STR(STARTING) PHY_STATE_STR(READY) PHY_STATE_STR(PENDING) PHY_STATE_STR(UP) PHY_STATE_STR(AN) PHY_STATE_STR(RUNNING) PHY_STATE_STR(NOLINK) PHY_STATE_STR(FORCING) PHY_STATE_STR(CHANGELINK) PHY_STATE_STR(HALTED) PHY_STATE_STR(RESUMING) } return NULL; } /** * phy_print_status - Convenience function to print out the current phy status * @phydev: the phy_device struct */ void phy_print_status(struct phy_device *phydev) { if (phydev->link) { netdev_info(phydev->attached_dev, "Link is Up - %s/%s - flow control %s\n", phy_speed_to_str(phydev->speed), DUPLEX_FULL == phydev->duplex ? "Full" : "Half", phydev->pause ? "rx/tx" : "off"); } else { netdev_info(phydev->attached_dev, "Link is Down\n"); } } EXPORT_SYMBOL(phy_print_status); /** * phy_clear_interrupt - Ack the phy device's interrupt * @phydev: the phy_device struct * * If the @phydev driver has an ack_interrupt function, call it to * ack and clear the phy device's interrupt. * * Returns 0 on success or < 0 on error. */ static int phy_clear_interrupt(struct phy_device *phydev) { if (phydev->drv->ack_interrupt) return phydev->drv->ack_interrupt(phydev); return 0; } /** * phy_config_interrupt - configure the PHY device for the requested interrupts * @phydev: the phy_device struct * @interrupts: interrupt flags to configure for this @phydev * * Returns 0 on success or < 0 on error. */ static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) { phydev->interrupts = interrupts; if (phydev->drv->config_intr) return phydev->drv->config_intr(phydev); return 0; } /** * phy_aneg_done - return auto-negotiation status * @phydev: target phy_device struct * * Description: Return the auto-negotiation status from this @phydev * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation * is still pending. */ int phy_aneg_done(struct phy_device *phydev) { if (phydev->drv->aneg_done) return phydev->drv->aneg_done(phydev); return genphy_aneg_done(phydev); } EXPORT_SYMBOL(phy_aneg_done); /* A structure for mapping a particular speed and duplex * combination to a particular SUPPORTED and ADVERTISED value */ struct phy_setting { int speed; int duplex; u32 setting; }; /* A mapping of all SUPPORTED settings to speed/duplex */ static const struct phy_setting settings[] = { { .speed = SPEED_10000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10000baseKR_Full, }, { .speed = SPEED_10000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10000baseKX4_Full, }, { .speed = SPEED_10000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10000baseT_Full, }, { .speed = SPEED_2500, .duplex = DUPLEX_FULL, .setting = SUPPORTED_2500baseX_Full, }, { .speed = SPEED_1000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_1000baseKX_Full, }, { .speed = SPEED_1000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_1000baseT_Full, }, { .speed = SPEED_1000, .duplex = DUPLEX_HALF, .setting = SUPPORTED_1000baseT_Half, }, { .speed = SPEED_100, .duplex = DUPLEX_FULL, .setting = SUPPORTED_100baseT_Full, }, { .speed = SPEED_100, .duplex = DUPLEX_HALF, .setting = SUPPORTED_100baseT_Half, }, { .speed = SPEED_10, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10baseT_Full, }, { .speed = SPEED_10, .duplex = DUPLEX_HALF, .setting = SUPPORTED_10baseT_Half, }, }; #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) /** * phy_find_setting - find a PHY settings array entry that matches speed & duplex * @speed: speed to match * @duplex: duplex to match * * Description: Searches the settings array for the setting which * matches the desired speed and duplex, and returns the index * of that setting. Returns the index of the last setting if * none of the others match. */ static inline unsigned int phy_find_setting(int speed, int duplex) { unsigned int idx = 0; while (idx < ARRAY_SIZE(settings) && (settings[idx].speed != speed || settings[idx].duplex != duplex)) idx++; return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; } /** * phy_find_valid - find a PHY setting that matches the requested features mask * @idx: The first index in settings[] to search * @features: A mask of the valid settings * * Description: Returns the index of the first valid setting less * than or equal to the one pointed to by idx, as determined by * the mask in features. Returns the index of the last setting * if nothing else matches. */ static inline unsigned int phy_find_valid(unsigned int idx, u32 features) { while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) idx++; return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; } /** * phy_supported_speeds - return all speeds currently supported by a phy device * @phy: The phy device to return supported speeds of. * @speeds: buffer to store supported speeds in. * @size: size of speeds buffer. * * Description: Returns the number of supported speeds, and fills the speeds * buffer with the supported speeds. If speeds buffer is too small to contain * all currently supported speeds, will return as many speeds as can fit. */ unsigned int phy_supported_speeds(struct phy_device *phy, unsigned int *speeds, unsigned int size) { unsigned int count = 0; unsigned int idx = 0; while (idx < MAX_NUM_SETTINGS && count < size) { idx = phy_find_valid(idx, phy->supported); if (!(settings[idx].setting & phy->supported)) break; /* Assumes settings are grouped by speed */ if ((count == 0) || (speeds[count - 1] != settings[idx].speed)) { speeds[count] = settings[idx].speed; count++; } idx++; } return count; } /** * phy_check_valid - check if there is a valid PHY setting which matches * speed, duplex, and feature mask * @speed: speed to match * @duplex: duplex to match * @features: A mask of the valid settings * * Description: Returns true if there is a valid setting, false otherwise. */ static inline bool phy_check_valid(int speed, int duplex, u32 features) { unsigned int idx; idx = phy_find_valid(phy_find_setting(speed, duplex), features); return settings[idx].speed == speed && settings[idx].duplex == duplex && (settings[idx].setting & features); } /** * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex * @phydev: the target phy_device struct * * Description: Make sure the PHY is set to supported speeds and * duplexes. Drop down by one in this order: 1000/FULL, * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. */ static void phy_sanitize_settings(struct phy_device *phydev) { u32 features = phydev->supported; unsigned int idx; /* Sanitize settings based on PHY capabilities */ if ((features & SUPPORTED_Autoneg) == 0) phydev->autoneg = AUTONEG_DISABLE; idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), features); phydev->speed = settings[idx].speed; phydev->duplex = settings[idx].duplex; } /** * phy_ethtool_sset - generic ethtool sset function, handles all the details * @phydev: target phy_device struct * @cmd: ethtool_cmd * * A few notes about parameter checking: * - We don't set port or transceiver, so we don't care what they * were set to. * - phy_start_aneg() will make sure forced settings are sane, and * choose the next best ones from the ones selected, so we don't * care if ethtool tries to give us bad values. */ int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) { u32 speed = ethtool_cmd_speed(cmd); if (cmd->phy_address != phydev->mdio.addr) return -EINVAL; /* We make sure that we don't pass unsupported values in to the PHY */ cmd->advertising &= phydev->supported; /* Verify the settings we care about. */ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && ((speed != SPEED_1000 && speed != SPEED_100 && speed != SPEED_10) || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL))) return -EINVAL; phydev->autoneg = cmd->autoneg; phydev->speed = speed; phydev->advertising = cmd->advertising; if (AUTONEG_ENABLE == cmd->autoneg) phydev->advertising |= ADVERTISED_Autoneg; else phydev->advertising &= ~ADVERTISED_Autoneg; phydev->duplex = cmd->duplex; phydev->mdix = cmd->eth_tp_mdix_ctrl; /* Restart the PHY */ phy_start_aneg(phydev); return 0; } EXPORT_SYMBOL(phy_ethtool_sset); int phy_ethtool_ksettings_set(struct phy_device *phydev, const struct ethtool_link_ksettings *cmd) { u8 autoneg = cmd->base.autoneg; u8 duplex = cmd->base.duplex; u32 speed = cmd->base.speed; u32 advertising; if (cmd->base.phy_address != phydev->mdio.addr) return -EINVAL; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); /* We make sure that we don't pass unsupported values in to the PHY */ advertising &= phydev->supported; /* Verify the settings we care about. */ if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE) return -EINVAL; if (autoneg == AUTONEG_ENABLE && advertising == 0) return -EINVAL; if (autoneg == AUTONEG_DISABLE && ((speed != SPEED_1000 && speed != SPEED_100 && speed != SPEED_10) || (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL))) return -EINVAL; phydev->autoneg = autoneg; phydev->speed = speed; phydev->advertising = advertising; if (autoneg == AUTONEG_ENABLE) phydev->advertising |= ADVERTISED_Autoneg; else phydev->advertising &= ~ADVERTISED_Autoneg; phydev->duplex = duplex; phydev->mdix = cmd->base.eth_tp_mdix_ctrl; /* Restart the PHY */ phy_start_aneg(phydev); return 0; } EXPORT_SYMBOL(phy_ethtool_ksettings_set); int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) { cmd->supported = phydev->supported; cmd->advertising = phydev->advertising; cmd->lp_advertising = phydev->lp_advertising; ethtool_cmd_speed_set(cmd, phydev->speed); cmd->duplex = phydev->duplex; if (phydev->interface == PHY_INTERFACE_MODE_MOCA) cmd->port = PORT_BNC; else cmd->port = PORT_MII; cmd->phy_address = phydev->mdio.addr; cmd->transceiver = phy_is_internal(phydev) ? XCVR_INTERNAL : XCVR_EXTERNAL; cmd->autoneg = phydev->autoneg; cmd->eth_tp_mdix_ctrl = phydev->mdix; return 0; } EXPORT_SYMBOL(phy_ethtool_gset); int phy_ethtool_ksettings_get(struct phy_device *phydev, struct ethtool_link_ksettings *cmd) { ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, phydev->supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, phydev->advertising); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, phydev->lp_advertising); cmd->base.speed = phydev->speed; cmd->base.duplex = phydev->duplex; if (phydev->interface == PHY_INTERFACE_MODE_MOCA) cmd->base.port = PORT_BNC; else cmd->base.port = PORT_MII; cmd->base.phy_address = phydev->mdio.addr; cmd->base.autoneg = phydev->autoneg; cmd->base.eth_tp_mdix_ctrl = phydev->mdix; return 0; } EXPORT_SYMBOL(phy_ethtool_ksettings_get); /** * phy_mii_ioctl - generic PHY MII ioctl interface * @phydev: the phy_device struct * @ifr: &struct ifreq for socket ioctl's * @cmd: ioctl cmd to execute * * Note that this function is currently incompatible with the * PHYCONTROL layer. It changes registers without regard to * current state. Use at own risk. */ int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *mii_data = if_mii(ifr); u16 val = mii_data->val_in; bool change_autoneg = false; switch (cmd) { case SIOCGMIIPHY: mii_data->phy_id = phydev->mdio.addr; /* fall through */ case SIOCGMIIREG: mii_data->val_out = mdiobus_read(phydev->mdio.bus, mii_data->phy_id, mii_data->reg_num); return 0; case SIOCSMIIREG: if (mii_data->phy_id == phydev->mdio.addr) { switch (mii_data->reg_num) { case MII_BMCR: if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { if (phydev->autoneg == AUTONEG_ENABLE) change_autoneg = true; phydev->autoneg = AUTONEG_DISABLE; if (val & BMCR_FULLDPLX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; if (val & BMCR_SPEED1000) phydev->speed = SPEED_1000; else if (val & BMCR_SPEED100) phydev->speed = SPEED_100; else phydev->speed = SPEED_10; } else { if (phydev->autoneg == AUTONEG_DISABLE) change_autoneg = true; phydev->autoneg = AUTONEG_ENABLE; } break; case MII_ADVERTISE: phydev->advertising = mii_adv_to_ethtool_adv_t(val); change_autoneg = true; break; default: /* do nothing */ break; } } mdiobus_write(phydev->mdio.bus, mii_data->phy_id, mii_data->reg_num, val); if (mii_data->phy_id == phydev->mdio.addr && mii_data->reg_num == MII_BMCR && val & BMCR_RESET) return phy_init_hw(phydev); if (change_autoneg) return phy_start_aneg(phydev); return 0; case SIOCSHWTSTAMP: if (phydev->drv->hwtstamp) return phydev->drv->hwtstamp(phydev, ifr); /* fall through */ default: return -EOPNOTSUPP; } } EXPORT_SYMBOL(phy_mii_ioctl); /** * phy_start_aneg - start auto-negotiation for this PHY device * @phydev: the phy_device struct * * Description: Sanitizes the settings (if we're not autonegotiating * them), and then calls the driver's config_aneg function. * If the PHYCONTROL Layer is operating, we change the state to * reflect the beginning of Auto-negotiation or forcing. */ int phy_start_aneg(struct phy_device *phydev) { int err; mutex_lock(&phydev->lock); if (AUTONEG_DISABLE == phydev->autoneg) phy_sanitize_settings(phydev); /* Invalidate LP advertising flags */ phydev->lp_advertising = 0; err = phydev->drv->config_aneg(phydev); if (err < 0) goto out_unlock; if (phydev->state != PHY_HALTED) { if (AUTONEG_ENABLE == phydev->autoneg) { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; } else { phydev->state = PHY_FORCING; phydev->link_timeout = PHY_FORCE_TIMEOUT; } } out_unlock: mutex_unlock(&phydev->lock); return err; } EXPORT_SYMBOL(phy_start_aneg); /** * phy_start_machine - start PHY state machine tracking * @phydev: the phy_device struct * * Description: The PHY infrastructure can run a state machine * which tracks whether the PHY is starting up, negotiating, * etc. This function starts the timer which tracks the state * of the PHY. If you want to maintain your own state machine, * do not call this function. */ void phy_start_machine(struct phy_device *phydev) { queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); } /** * phy_trigger_machine - trigger the state machine to run * * @phydev: the phy_device struct * * Description: There has been a change in state which requires that the * state machine runs. */ static void phy_trigger_machine(struct phy_device *phydev) { cancel_delayed_work_sync(&phydev->state_queue); queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); } /** * phy_stop_machine - stop the PHY state machine tracking * @phydev: target phy_device struct * * Description: Stops the state machine timer, sets the state to UP * (unless it wasn't up yet). This function must be called BEFORE * phy_detach. */ void phy_stop_machine(struct phy_device *phydev) { cancel_delayed_work_sync(&phydev->state_queue); mutex_lock(&phydev->lock); if (phydev->state > PHY_UP) phydev->state = PHY_UP; mutex_unlock(&phydev->lock); } /** * phy_error - enter HALTED state for this PHY device * @phydev: target phy_device struct * * Moves the PHY to the HALTED state in response to a read * or write error, and tells the controller the link is down. * Must not be called from interrupt context, or while the * phydev->lock is held. */ static void phy_error(struct phy_device *phydev) { mutex_lock(&phydev->lock); phydev->state = PHY_HALTED; mutex_unlock(&phydev->lock); phy_trigger_machine(phydev); } /** * phy_interrupt - PHY interrupt handler * @irq: interrupt line * @phy_dat: phy_device pointer * * Description: When a PHY interrupt occurs, the handler disables * interrupts, and uses phy_change to handle the interrupt. */ static irqreturn_t phy_interrupt(int irq, void *phy_dat) { struct phy_device *phydev = phy_dat; if (PHY_HALTED == phydev->state) return IRQ_NONE; /* It can't be ours. */ disable_irq_nosync(irq); atomic_inc(&phydev->irq_disable); phy_change(phydev); return IRQ_HANDLED; } /** * phy_enable_interrupts - Enable the interrupts from the PHY side * @phydev: target phy_device struct */ static int phy_enable_interrupts(struct phy_device *phydev) { int err = phy_clear_interrupt(phydev); if (err < 0) return err; return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); } /** * phy_disable_interrupts - Disable the PHY interrupts from the PHY side * @phydev: target phy_device struct */ static int phy_disable_interrupts(struct phy_device *phydev) { int err; /* Disable PHY interrupts */ err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); if (err) goto phy_err; /* Clear the interrupt */ err = phy_clear_interrupt(phydev); if (err) goto phy_err; return 0; phy_err: phy_error(phydev); return err; } /** * phy_start_interrupts - request and enable interrupts for a PHY device * @phydev: target phy_device struct * * Description: Request the interrupt for the given PHY. * If this fails, then we set irq to PHY_POLL. * Otherwise, we enable the interrupts in the PHY. * This should only be called with a valid IRQ number. * Returns 0 on success or < 0 on error. */ int phy_start_interrupts(struct phy_device *phydev) { atomic_set(&phydev->irq_disable, 0); if (request_threaded_irq(phydev->irq, NULL, phy_interrupt, IRQF_ONESHOT | IRQF_SHARED, phydev_name(phydev), phydev) < 0) { pr_warn("%s: Can't get IRQ %d (PHY)\n", phydev->mdio.bus->name, phydev->irq); phydev->irq = PHY_POLL; return 0; } return phy_enable_interrupts(phydev); } EXPORT_SYMBOL(phy_start_interrupts); /** * phy_stop_interrupts - disable interrupts from a PHY device * @phydev: target phy_device struct */ int phy_stop_interrupts(struct phy_device *phydev) { int err = phy_disable_interrupts(phydev); if (err) phy_error(phydev); free_irq(phydev->irq, phydev); /* If work indeed has been cancelled, disable_irq() will have * been left unbalanced from phy_interrupt() and enable_irq() * has to be called so that other devices on the line work. */ while (atomic_dec_return(&phydev->irq_disable) >= 0) enable_irq(phydev->irq); return err; } EXPORT_SYMBOL(phy_stop_interrupts); /** * phy_change - Called by the phy_interrupt to handle PHY changes * @phydev: phy_device struct that interrupted */ void phy_change(struct phy_device *phydev) { if (phy_interrupt_is_valid(phydev)) { if (phydev->drv->did_interrupt && !phydev->drv->did_interrupt(phydev)) goto ignore; if (phy_disable_interrupts(phydev)) goto phy_err; } mutex_lock(&phydev->lock); if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) phydev->state = PHY_CHANGELINK; mutex_unlock(&phydev->lock); if (phy_interrupt_is_valid(phydev)) { atomic_dec(&phydev->irq_disable); enable_irq(phydev->irq); /* Reenable interrupts */ if (PHY_HALTED != phydev->state && phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) goto irq_enable_err; } /* reschedule state queue work to run as soon as possible */ phy_trigger_machine(phydev); return; ignore: atomic_dec(&phydev->irq_disable); enable_irq(phydev->irq); return; irq_enable_err: disable_irq(phydev->irq); atomic_inc(&phydev->irq_disable); phy_err: phy_error(phydev); } /** * phy_change_work - Scheduled by the phy_mac_interrupt to handle PHY changes * @work: work_struct that describes the work to be done */ void phy_change_work(struct work_struct *work) { struct phy_device *phydev = container_of(work, struct phy_device, phy_queue); phy_change(phydev); } /** * phy_stop - Bring down the PHY link, and stop checking the status * @phydev: target phy_device struct */ void phy_stop(struct phy_device *phydev) { mutex_lock(&phydev->lock); if (PHY_HALTED == phydev->state) goto out_unlock; if (phy_interrupt_is_valid(phydev)) { /* Disable PHY Interrupts */ phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); /* Clear any pending interrupts */ phy_clear_interrupt(phydev); } phydev->state = PHY_HALTED; out_unlock: mutex_unlock(&phydev->lock); /* Cannot call flush_scheduled_work() here as desired because * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() * will not reenable interrupts. */ } EXPORT_SYMBOL(phy_stop); /** * phy_start - start or restart a PHY device * @phydev: target phy_device struct * * Description: Indicates the attached device's readiness to * handle PHY-related work. Used during startup to start the * PHY, and after a call to phy_stop() to resume operation. * Also used to indicate the MDIO bus has cleared an error * condition. */ void phy_start(struct phy_device *phydev) { bool do_resume = false; int err = 0; mutex_lock(&phydev->lock); switch (phydev->state) { case PHY_STARTING: phydev->state = PHY_PENDING; break; case PHY_READY: phydev->state = PHY_UP; break; case PHY_HALTED: /* make sure interrupts are re-enabled for the PHY */ if (phydev->irq != PHY_POLL) { err = phy_enable_interrupts(phydev); if (err < 0) break; } phydev->state = PHY_RESUMING; do_resume = true; break; default: break; } mutex_unlock(&phydev->lock); /* if phy was suspended, bring the physical link up again */ if (do_resume) phy_resume(phydev); phy_trigger_machine(phydev); } EXPORT_SYMBOL(phy_start); static void phy_adjust_link(struct phy_device *phydev) { phydev->adjust_link(phydev->attached_dev); phy_led_trigger_change_speed(phydev); } /** * phy_state_machine - Handle the state machine * @work: work_struct that describes the work to be done */ void phy_state_machine(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct phy_device *phydev = container_of(dwork, struct phy_device, state_queue); bool needs_aneg = false, do_suspend = false; enum phy_state old_state; int err = 0; int old_link; mutex_lock(&phydev->lock); old_state = phydev->state; if (phydev->drv->link_change_notify) phydev->drv->link_change_notify(phydev); switch (phydev->state) { case PHY_DOWN: case PHY_STARTING: case PHY_READY: case PHY_PENDING: break; case PHY_UP: needs_aneg = true; phydev->link_timeout = PHY_AN_TIMEOUT; break; case PHY_AN: err = phy_read_status(phydev); if (err < 0) break; /* If the link is down, give up on negotiation for now */ if (!phydev->link) { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); phy_adjust_link(phydev); break; } /* Check if negotiation is done. Break if there's an error */ err = phy_aneg_done(phydev); if (err < 0) break; /* If AN is done, we're running */ if (err > 0) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phy_adjust_link(phydev); } else if (0 == phydev->link_timeout--) needs_aneg = true; break; case PHY_NOLINK: if (phy_interrupt_is_valid(phydev)) break; err = phy_read_status(phydev); if (err) break; if (phydev->link) { if (AUTONEG_ENABLE == phydev->autoneg) { err = phy_aneg_done(phydev); if (err < 0) break; if (!err) { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; break; } } phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phy_adjust_link(phydev); } break; case PHY_FORCING: err = genphy_update_link(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { if (0 == phydev->link_timeout--) needs_aneg = true; } phy_adjust_link(phydev); break; case PHY_RUNNING: /* Only register a CHANGE if we are polling and link changed * since latest checking. */ if (phydev->irq == PHY_POLL) { old_link = phydev->link; err = phy_read_status(phydev); if (err) break; if (old_link != phydev->link) phydev->state = PHY_CHANGELINK; } break; case PHY_CHANGELINK: err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); } phy_adjust_link(phydev); if (phy_interrupt_is_valid(phydev)) err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); break; case PHY_HALTED: if (phydev->link) { phydev->link = 0; netif_carrier_off(phydev->attached_dev); phy_adjust_link(phydev); do_suspend = true; } break; case PHY_RESUMING: if (AUTONEG_ENABLE == phydev->autoneg) { err = phy_aneg_done(phydev); if (err < 0) break; /* err > 0 if AN is done. * Otherwise, it's 0, and we're still waiting for AN */ if (err > 0) { err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; } phy_adjust_link(phydev); } else { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; } } else { err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; } phy_adjust_link(phydev); } break; } mutex_unlock(&phydev->lock); if (needs_aneg) err = phy_start_aneg(phydev); else if (do_suspend) phy_suspend(phydev); if (err < 0) phy_error(phydev); phydev_dbg(phydev, "PHY state change %s -> %s\n", phy_state_to_str(old_state), phy_state_to_str(phydev->state)); /* Only re-schedule a PHY state machine change if we are polling the * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving * between states from phy_mac_interrupt() */ if (phydev->irq == PHY_POLL) queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, PHY_STATE_TIME * HZ); } /** * phy_mac_interrupt - MAC says the link has changed * @phydev: phy_device struct with changed link * @new_link: Link is Up/Down. * * Description: The MAC layer is able indicate there has been a change * in the PHY link status. Set the new link status, and trigger the * state machine, work a work queue. */ void phy_mac_interrupt(struct phy_device *phydev, int new_link) { phydev->link = new_link; /* Trigger a state machine change */ queue_work(system_power_efficient_wq, &phydev->phy_queue); } EXPORT_SYMBOL(phy_mac_interrupt); static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, int addr) { /* Write the desired MMD Devad */ bus->write(bus, addr, MII_MMD_CTRL, devad); /* Write the desired MMD register address */ bus->write(bus, addr, MII_MMD_DATA, prtad); /* Select the Function : DATA with no post increment */ bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); } /** * phy_read_mmd_indirect - reads data from the MMD registers * @phydev: The PHY device bus * @prtad: MMD Address * @devad: MMD DEVAD * * Description: it reads data from the MMD registers (clause 22 to access to * clause 45) of the specified phy address. * To read these register we have: * 1) Write reg 13 // DEVAD * 2) Write reg 14 // MMD Address * 3) Write reg 13 // MMD Data Command for MMD DEVAD * 3) Read reg 14 // Read MMD data */ int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad) { struct phy_driver *phydrv = phydev->drv; int addr = phydev->mdio.addr; int value = -1; if (!phydrv->read_mmd_indirect) { struct mii_bus *bus = phydev->mdio.bus; mutex_lock(&bus->mdio_lock); mmd_phy_indirect(bus, prtad, devad, addr); /* Read the content of the MMD's selected register */ value = bus->read(bus, addr, MII_MMD_DATA); mutex_unlock(&bus->mdio_lock); } else { value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); } return value; } EXPORT_SYMBOL(phy_read_mmd_indirect); /** * phy_write_mmd_indirect - writes data to the MMD registers * @phydev: The PHY device * @prtad: MMD Address * @devad: MMD DEVAD * @data: data to write in the MMD register * * Description: Write data from the MMD registers of the specified * phy address. * To write these register we have: * 1) Write reg 13 // DEVAD * 2) Write reg 14 // MMD Address * 3) Write reg 13 // MMD Data Command for MMD DEVAD * 3) Write reg 14 // Write MMD data */ void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, int devad, u32 data) { struct phy_driver *phydrv = phydev->drv; int addr = phydev->mdio.addr; if (!phydrv->write_mmd_indirect) { struct mii_bus *bus = phydev->mdio.bus; mutex_lock(&bus->mdio_lock); mmd_phy_indirect(bus, prtad, devad, addr); /* Write the data into MMD's selected register */ bus->write(bus, addr, MII_MMD_DATA, data); mutex_unlock(&bus->mdio_lock); } else { phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); } } EXPORT_SYMBOL(phy_write_mmd_indirect); /** * phy_init_eee - init and check the EEE feature * @phydev: target phy_device struct * @clk_stop_enable: PHY may stop the clock during LPI * * Description: it checks if the Energy-Efficient Ethernet (EEE) * is supported by looking at the MMD registers 3.20 and 7.60/61 * and it programs the MMD register 3.0 setting the "Clock stop enable" * bit if required. */ int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) { /* According to 802.3az,the EEE is supported only in full duplex-mode. * Also EEE feature is active when core is operating with MII, GMII * or RGMII (all kinds). Internal PHYs are also allowed to proceed and * should return an error if they do not support EEE. */ if ((phydev->duplex == DUPLEX_FULL) && ((phydev->interface == PHY_INTERFACE_MODE_MII) || (phydev->interface == PHY_INTERFACE_MODE_GMII) || phy_interface_is_rgmii(phydev) || phy_is_internal(phydev))) { int eee_lp, eee_cap, eee_adv; u32 lp, cap, adv; int status; /* Read phy status to properly get the right settings */ status = phy_read_status(phydev); if (status) return status; /* First check if the EEE ability is supported */ eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); if (eee_cap <= 0) goto eee_exit_err; cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); if (!cap) goto eee_exit_err; /* Check which link settings negotiated and verify it in * the EEE advertising registers. */ eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); if (eee_lp <= 0) goto eee_exit_err; eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); if (eee_adv <= 0) goto eee_exit_err; adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv)) goto eee_exit_err; if (clk_stop_enable) { /* Configure the PHY to stop receiving xMII * clock while it is signaling LPI. */ int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, MDIO_MMD_PCS); if (val < 0) return val; val |= MDIO_PCS_CTRL1_CLKSTOP_EN; phy_write_mmd_indirect(phydev, MDIO_CTRL1, MDIO_MMD_PCS, val); } return 0; /* EEE supported */ } eee_exit_err: return -EPROTONOSUPPORT; } EXPORT_SYMBOL(phy_init_eee); /** * phy_get_eee_err - report the EEE wake error count * @phydev: target phy_device struct * * Description: it is to report the number of time where the PHY * failed to complete its normal wake sequence. */ int phy_get_eee_err(struct phy_device *phydev) { return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS); } EXPORT_SYMBOL(phy_get_eee_err); /** * phy_ethtool_get_eee - get EEE supported and status * @phydev: target phy_device struct * @data: ethtool_eee data * * Description: it reportes the Supported/Advertisement/LP Advertisement * capabilities. */ int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) { int val; /* Get Supported EEE */ val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); if (val < 0) return val; data->supported = mmd_eee_cap_to_ethtool_sup_t(val); /* Get advertisement EEE */ val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); if (val < 0) return val; data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); /* Get LP advertisement EEE */ val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); if (val < 0) return val; data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); return 0; } EXPORT_SYMBOL(phy_ethtool_get_eee); /** * phy_ethtool_set_eee - set EEE supported and status * @phydev: target phy_device struct * @data: ethtool_eee data * * Description: it is to program the Advertisement EEE register. */ int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) { int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); /* Mask prohibited EEE modes */ val &= ~phydev->eee_broken_modes; phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val); return 0; } EXPORT_SYMBOL(phy_ethtool_set_eee); int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { if (phydev->drv->set_wol) return phydev->drv->set_wol(phydev, wol); return -EOPNOTSUPP; } EXPORT_SYMBOL(phy_ethtool_set_wol); void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { if (phydev->drv->get_wol) phydev->drv->get_wol(phydev, wol); } EXPORT_SYMBOL(phy_ethtool_get_wol); int phy_ethtool_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct phy_device *phydev = ndev->phydev; if (!phydev) return -ENODEV; return phy_ethtool_ksettings_get(phydev, cmd); } EXPORT_SYMBOL(phy_ethtool_get_link_ksettings); int phy_ethtool_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct phy_device *phydev = ndev->phydev; if (!phydev) return -ENODEV; return phy_ethtool_ksettings_set(phydev, cmd); } EXPORT_SYMBOL(phy_ethtool_set_link_ksettings); int phy_ethtool_nway_reset(struct net_device *ndev) { struct phy_device *phydev = ndev->phydev; if (!phydev) return -ENODEV; return genphy_restart_aneg(phydev); } EXPORT_SYMBOL(phy_ethtool_nway_reset);