/****************************************************************************** * * Driver for Option High Speed Mobile Devices. * * Copyright (C) 2008 Option International * Filip Aben <f.aben@option.com> * Denis Joseph Barrow <d.barow@option.com> * Jan Dumon <j.dumon@option.com> * Copyright (C) 2007 Andrew Bird (Sphere Systems Ltd) * <ajb@spheresystems.co.uk> * Copyright (C) 2008 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (C) 2008 Novell, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA * * *****************************************************************************/ /****************************************************************************** * * Description of the device: * * Interface 0: Contains the IP network interface on the bulk end points. * The multiplexed serial ports are using the interrupt and * control endpoints. * Interrupt contains a bitmap telling which multiplexed * serialport needs servicing. * * Interface 1: Diagnostics port, uses bulk only, do not submit urbs until the * port is opened, as this have a huge impact on the network port * throughput. * * Interface 2: Standard modem interface - circuit switched interface, this * can be used to make a standard ppp connection however it * should not be used in conjunction with the IP network interface * enabled for USB performance reasons i.e. if using this set * ideally disable_net=1. * *****************************************************************************/ #include <linux/sched.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/module.h> #include <linux/ethtool.h> #include <linux/usb.h> #include <linux/timer.h> #include <linux/tty.h> #include <linux/tty_driver.h> #include <linux/tty_flip.h> #include <linux/kmod.h> #include <linux/rfkill.h> #include <linux/ip.h> #include <linux/uaccess.h> #include <linux/usb/cdc.h> #include <net/arp.h> #include <asm/byteorder.h> #include <linux/serial_core.h> #include <linux/serial.h> #define MOD_AUTHOR "Option Wireless" #define MOD_DESCRIPTION "USB High Speed Option driver" #define MOD_LICENSE "GPL" #define HSO_MAX_NET_DEVICES 10 #define HSO__MAX_MTU 2048 #define DEFAULT_MTU 1500 #define DEFAULT_MRU 1500 #define CTRL_URB_RX_SIZE 1024 #define CTRL_URB_TX_SIZE 64 #define BULK_URB_RX_SIZE 4096 #define BULK_URB_TX_SIZE 8192 #define MUX_BULK_RX_BUF_SIZE HSO__MAX_MTU #define MUX_BULK_TX_BUF_SIZE HSO__MAX_MTU #define MUX_BULK_RX_BUF_COUNT 4 #define USB_TYPE_OPTION_VENDOR 0x20 /* These definitions are used with the struct hso_net flags element */ /* - use *_bit operations on it. (bit indices not values.) */ #define HSO_NET_RUNNING 0 #define HSO_NET_TX_TIMEOUT (HZ*10) #define HSO_SERIAL_MAGIC 0x48534f31 /* Number of ttys to handle */ #define HSO_SERIAL_TTY_MINORS 256 #define MAX_RX_URBS 2 /*****************************************************************************/ /* Debugging functions */ /*****************************************************************************/ #define D__(lvl_, fmt, arg...) \ do { \ printk(lvl_ "[%d:%s]: " fmt "\n", \ __LINE__, __func__, ## arg); \ } while (0) #define D_(lvl, args...) \ do { \ if (lvl & debug) \ D__(KERN_INFO, args); \ } while (0) #define D1(args...) D_(0x01, ##args) #define D2(args...) D_(0x02, ##args) #define D3(args...) D_(0x04, ##args) #define D4(args...) D_(0x08, ##args) #define D5(args...) D_(0x10, ##args) /*****************************************************************************/ /* Enumerators */ /*****************************************************************************/ enum pkt_parse_state { WAIT_IP, WAIT_DATA, WAIT_SYNC }; /*****************************************************************************/ /* Structs */ /*****************************************************************************/ struct hso_shared_int { struct usb_endpoint_descriptor *intr_endp; void *shared_intr_buf; struct urb *shared_intr_urb; struct usb_device *usb; int use_count; int ref_count; struct mutex shared_int_lock; }; struct hso_net { struct hso_device *parent; struct net_device *net; struct rfkill *rfkill; struct usb_endpoint_descriptor *in_endp; struct usb_endpoint_descriptor *out_endp; struct urb *mux_bulk_rx_urb_pool[MUX_BULK_RX_BUF_COUNT]; struct urb *mux_bulk_tx_urb; void *mux_bulk_rx_buf_pool[MUX_BULK_RX_BUF_COUNT]; void *mux_bulk_tx_buf; struct sk_buff *skb_rx_buf; struct sk_buff *skb_tx_buf; enum pkt_parse_state rx_parse_state; spinlock_t net_lock; unsigned short rx_buf_size; unsigned short rx_buf_missing; struct iphdr rx_ip_hdr; unsigned long flags; }; enum rx_ctrl_state{ RX_IDLE, RX_SENT, RX_PENDING }; #define BM_REQUEST_TYPE (0xa1) #define B_NOTIFICATION (0x20) #define W_VALUE (0x0) #define W_INDEX (0x2) #define W_LENGTH (0x2) #define B_OVERRUN (0x1<<6) #define B_PARITY (0x1<<5) #define B_FRAMING (0x1<<4) #define B_RING_SIGNAL (0x1<<3) #define B_BREAK (0x1<<2) #define B_TX_CARRIER (0x1<<1) #define B_RX_CARRIER (0x1<<0) struct hso_serial_state_notification { u8 bmRequestType; u8 bNotification; u16 wValue; u16 wIndex; u16 wLength; u16 UART_state_bitmap; } __packed; struct hso_tiocmget { struct mutex mutex; wait_queue_head_t waitq; int intr_completed; struct usb_endpoint_descriptor *endp; struct urb *urb; struct hso_serial_state_notification serial_state_notification; u16 prev_UART_state_bitmap; struct uart_icount icount; }; struct hso_serial { struct hso_device *parent; int magic; u8 minor; struct hso_shared_int *shared_int; /* rx/tx urb could be either a bulk urb or a control urb depending on which serial port it is used on. */ struct urb *rx_urb[MAX_RX_URBS]; u8 num_rx_urbs; u8 *rx_data[MAX_RX_URBS]; u16 rx_data_length; /* should contain allocated length */ struct urb *tx_urb; u8 *tx_data; u8 *tx_buffer; u16 tx_data_length; /* should contain allocated length */ u16 tx_data_count; u16 tx_buffer_count; struct usb_ctrlrequest ctrl_req_tx; struct usb_ctrlrequest ctrl_req_rx; struct usb_endpoint_descriptor *in_endp; struct usb_endpoint_descriptor *out_endp; enum rx_ctrl_state rx_state; u8 rts_state; u8 dtr_state; unsigned tx_urb_used:1; struct tty_port port; /* from usb_serial_port */ spinlock_t serial_lock; int (*write_data) (struct hso_serial *serial); struct hso_tiocmget *tiocmget; /* Hacks required to get flow control * working on the serial receive buffers * so as not to drop characters on the floor. */ int curr_rx_urb_idx; u16 curr_rx_urb_offset; u8 rx_urb_filled[MAX_RX_URBS]; struct tasklet_struct unthrottle_tasklet; struct work_struct retry_unthrottle_workqueue; }; struct hso_device { union { struct hso_serial *dev_serial; struct hso_net *dev_net; } port_data; u32 port_spec; u8 is_active; u8 usb_gone; struct work_struct async_get_intf; struct work_struct async_put_intf; struct work_struct reset_device; struct usb_device *usb; struct usb_interface *interface; struct device *dev; struct kref ref; struct mutex mutex; }; /* Type of interface */ #define HSO_INTF_MASK 0xFF00 #define HSO_INTF_MUX 0x0100 #define HSO_INTF_BULK 0x0200 /* Type of port */ #define HSO_PORT_MASK 0xFF #define HSO_PORT_NO_PORT 0x0 #define HSO_PORT_CONTROL 0x1 #define HSO_PORT_APP 0x2 #define HSO_PORT_GPS 0x3 #define HSO_PORT_PCSC 0x4 #define HSO_PORT_APP2 0x5 #define HSO_PORT_GPS_CONTROL 0x6 #define HSO_PORT_MSD 0x7 #define HSO_PORT_VOICE 0x8 #define HSO_PORT_DIAG2 0x9 #define HSO_PORT_DIAG 0x10 #define HSO_PORT_MODEM 0x11 #define HSO_PORT_NETWORK 0x12 /* Additional device info */ #define HSO_INFO_MASK 0xFF000000 #define HSO_INFO_CRC_BUG 0x01000000 /*****************************************************************************/ /* Prototypes */ /*****************************************************************************/ /* Serial driver functions */ static int hso_serial_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear); static void ctrl_callback(struct urb *urb); static int put_rxbuf_data(struct urb *urb, struct hso_serial *serial); static void hso_kick_transmit(struct hso_serial *serial); /* Helper functions */ static int hso_mux_submit_intr_urb(struct hso_shared_int *mux_int, struct usb_device *usb, gfp_t gfp); static void handle_usb_error(int status, const char *function, struct hso_device *hso_dev); static struct usb_endpoint_descriptor *hso_get_ep(struct usb_interface *intf, int type, int dir); static int hso_get_mux_ports(struct usb_interface *intf, unsigned char *ports); static void hso_free_interface(struct usb_interface *intf); static int hso_start_serial_device(struct hso_device *hso_dev, gfp_t flags); static int hso_stop_serial_device(struct hso_device *hso_dev); static int hso_start_net_device(struct hso_device *hso_dev); static void hso_free_shared_int(struct hso_shared_int *shared_int); static int hso_stop_net_device(struct hso_device *hso_dev); static void hso_serial_ref_free(struct kref *ref); static void hso_std_serial_read_bulk_callback(struct urb *urb); static int hso_mux_serial_read(struct hso_serial *serial); static void async_get_intf(struct work_struct *data); static void async_put_intf(struct work_struct *data); static int hso_put_activity(struct hso_device *hso_dev); static int hso_get_activity(struct hso_device *hso_dev); static void tiocmget_intr_callback(struct urb *urb); static void reset_device(struct work_struct *data); /*****************************************************************************/ /* Helping functions */ /*****************************************************************************/ /* #define DEBUG */ static inline struct hso_net *dev2net(struct hso_device *hso_dev) { return hso_dev->port_data.dev_net; } static inline struct hso_serial *dev2ser(struct hso_device *hso_dev) { return hso_dev->port_data.dev_serial; } /* Debugging functions */ #ifdef DEBUG static void dbg_dump(int line_count, const char *func_name, unsigned char *buf, unsigned int len) { static char name[255]; sprintf(name, "hso[%d:%s]", line_count, func_name); print_hex_dump_bytes(name, DUMP_PREFIX_NONE, buf, len); } #define DUMP(buf_, len_) \ dbg_dump(__LINE__, __func__, (unsigned char *)buf_, len_) #define DUMP1(buf_, len_) \ do { \ if (0x01 & debug) \ DUMP(buf_, len_); \ } while (0) #else #define DUMP(buf_, len_) #define DUMP1(buf_, len_) #endif /* module parameters */ static int debug; static int tty_major; static int disable_net; /* driver info */ static const char driver_name[] = "hso"; static const char tty_filename[] = "ttyHS"; static const char *version = __FILE__ ": " MOD_AUTHOR; /* the usb driver itself (registered in hso_init) */ static struct usb_driver hso_driver; /* serial structures */ static struct tty_driver *tty_drv; static struct hso_device *serial_table[HSO_SERIAL_TTY_MINORS]; static struct hso_device *network_table[HSO_MAX_NET_DEVICES]; static spinlock_t serial_table_lock; static const s32 default_port_spec[] = { HSO_INTF_MUX | HSO_PORT_NETWORK, HSO_INTF_BULK | HSO_PORT_DIAG, HSO_INTF_BULK | HSO_PORT_MODEM, 0 }; static const s32 icon321_port_spec[] = { HSO_INTF_MUX | HSO_PORT_NETWORK, HSO_INTF_BULK | HSO_PORT_DIAG2, HSO_INTF_BULK | HSO_PORT_MODEM, HSO_INTF_BULK | HSO_PORT_DIAG, 0 }; #define default_port_device(vendor, product) \ USB_DEVICE(vendor, product), \ .driver_info = (kernel_ulong_t)default_port_spec #define icon321_port_device(vendor, product) \ USB_DEVICE(vendor, product), \ .driver_info = (kernel_ulong_t)icon321_port_spec /* list of devices we support */ static const struct usb_device_id hso_ids[] = { {default_port_device(0x0af0, 0x6711)}, {default_port_device(0x0af0, 0x6731)}, {default_port_device(0x0af0, 0x6751)}, {default_port_device(0x0af0, 0x6771)}, {default_port_device(0x0af0, 0x6791)}, {default_port_device(0x0af0, 0x6811)}, {default_port_device(0x0af0, 0x6911)}, {default_port_device(0x0af0, 0x6951)}, {default_port_device(0x0af0, 0x6971)}, {default_port_device(0x0af0, 0x7011)}, {default_port_device(0x0af0, 0x7031)}, {default_port_device(0x0af0, 0x7051)}, {default_port_device(0x0af0, 0x7071)}, {default_port_device(0x0af0, 0x7111)}, {default_port_device(0x0af0, 0x7211)}, {default_port_device(0x0af0, 0x7251)}, {default_port_device(0x0af0, 0x7271)}, {default_port_device(0x0af0, 0x7311)}, {default_port_device(0x0af0, 0xc031)}, /* Icon-Edge */ {icon321_port_device(0x0af0, 0xd013)}, /* Module HSxPA */ {icon321_port_device(0x0af0, 0xd031)}, /* Icon-321 */ {icon321_port_device(0x0af0, 0xd033)}, /* Icon-322 */ {USB_DEVICE(0x0af0, 0x7301)}, /* GE40x */ {USB_DEVICE(0x0af0, 0x7361)}, /* GE40x */ {USB_DEVICE(0x0af0, 0x7381)}, /* GE40x */ {USB_DEVICE(0x0af0, 0x7401)}, /* GI 0401 */ {USB_DEVICE(0x0af0, 0x7501)}, /* GTM 382 */ {USB_DEVICE(0x0af0, 0x7601)}, /* GE40x */ {USB_DEVICE(0x0af0, 0x7701)}, {USB_DEVICE(0x0af0, 0x7706)}, {USB_DEVICE(0x0af0, 0x7801)}, {USB_DEVICE(0x0af0, 0x7901)}, {USB_DEVICE(0x0af0, 0x7A01)}, {USB_DEVICE(0x0af0, 0x7A05)}, {USB_DEVICE(0x0af0, 0x8200)}, {USB_DEVICE(0x0af0, 0x8201)}, {USB_DEVICE(0x0af0, 0x8300)}, {USB_DEVICE(0x0af0, 0x8302)}, {USB_DEVICE(0x0af0, 0x8304)}, {USB_DEVICE(0x0af0, 0x8400)}, {USB_DEVICE(0x0af0, 0x8600)}, {USB_DEVICE(0x0af0, 0x8800)}, {USB_DEVICE(0x0af0, 0x8900)}, {USB_DEVICE(0x0af0, 0x9000)}, {USB_DEVICE(0x0af0, 0xd035)}, {USB_DEVICE(0x0af0, 0xd055)}, {USB_DEVICE(0x0af0, 0xd155)}, {USB_DEVICE(0x0af0, 0xd255)}, {USB_DEVICE(0x0af0, 0xd057)}, {USB_DEVICE(0x0af0, 0xd157)}, {USB_DEVICE(0x0af0, 0xd257)}, {USB_DEVICE(0x0af0, 0xd357)}, {USB_DEVICE(0x0af0, 0xd058)}, {USB_DEVICE(0x0af0, 0xc100)}, {} }; MODULE_DEVICE_TABLE(usb, hso_ids); /* Sysfs attribute */ static ssize_t hso_sysfs_show_porttype(struct device *dev, struct device_attribute *attr, char *buf) { struct hso_device *hso_dev = dev_get_drvdata(dev); char *port_name; if (!hso_dev) return 0; switch (hso_dev->port_spec & HSO_PORT_MASK) { case HSO_PORT_CONTROL: port_name = "Control"; break; case HSO_PORT_APP: port_name = "Application"; break; case HSO_PORT_APP2: port_name = "Application2"; break; case HSO_PORT_GPS: port_name = "GPS"; break; case HSO_PORT_GPS_CONTROL: port_name = "GPS Control"; break; case HSO_PORT_PCSC: port_name = "PCSC"; break; case HSO_PORT_DIAG: port_name = "Diagnostic"; break; case HSO_PORT_DIAG2: port_name = "Diagnostic2"; break; case HSO_PORT_MODEM: port_name = "Modem"; break; case HSO_PORT_NETWORK: port_name = "Network"; break; default: port_name = "Unknown"; break; } return sprintf(buf, "%s\n", port_name); } static DEVICE_ATTR(hsotype, S_IRUGO, hso_sysfs_show_porttype, NULL); static int hso_urb_to_index(struct hso_serial *serial, struct urb *urb) { int idx; for (idx = 0; idx < serial->num_rx_urbs; idx++) if (serial->rx_urb[idx] == urb) return idx; dev_err(serial->parent->dev, "hso_urb_to_index failed\n"); return -1; } /* converts mux value to a port spec value */ static u32 hso_mux_to_port(int mux) { u32 result; switch (mux) { case 0x1: result = HSO_PORT_CONTROL; break; case 0x2: result = HSO_PORT_APP; break; case 0x4: result = HSO_PORT_PCSC; break; case 0x8: result = HSO_PORT_GPS; break; case 0x10: result = HSO_PORT_APP2; break; default: result = HSO_PORT_NO_PORT; } return result; } /* converts port spec value to a mux value */ static u32 hso_port_to_mux(int port) { u32 result; switch (port & HSO_PORT_MASK) { case HSO_PORT_CONTROL: result = 0x0; break; case HSO_PORT_APP: result = 0x1; break; case HSO_PORT_PCSC: result = 0x2; break; case HSO_PORT_GPS: result = 0x3; break; case HSO_PORT_APP2: result = 0x4; break; default: result = 0x0; } return result; } static struct hso_serial *get_serial_by_shared_int_and_type( struct hso_shared_int *shared_int, int mux) { int i, port; port = hso_mux_to_port(mux); for (i = 0; i < HSO_SERIAL_TTY_MINORS; i++) { if (serial_table[i] && (dev2ser(serial_table[i])->shared_int == shared_int) && ((serial_table[i]->port_spec & HSO_PORT_MASK) == port)) { return dev2ser(serial_table[i]); } } return NULL; } static struct hso_serial *get_serial_by_index(unsigned index) { struct hso_serial *serial = NULL; unsigned long flags; spin_lock_irqsave(&serial_table_lock, flags); if (serial_table[index]) serial = dev2ser(serial_table[index]); spin_unlock_irqrestore(&serial_table_lock, flags); return serial; } static int get_free_serial_index(void) { int index; unsigned long flags; spin_lock_irqsave(&serial_table_lock, flags); for (index = 0; index < HSO_SERIAL_TTY_MINORS; index++) { if (serial_table[index] == NULL) { spin_unlock_irqrestore(&serial_table_lock, flags); return index; } } spin_unlock_irqrestore(&serial_table_lock, flags); printk(KERN_ERR "%s: no free serial devices in table\n", __func__); return -1; } static void set_serial_by_index(unsigned index, struct hso_serial *serial) { unsigned long flags; spin_lock_irqsave(&serial_table_lock, flags); if (serial) serial_table[index] = serial->parent; else serial_table[index] = NULL; spin_unlock_irqrestore(&serial_table_lock, flags); } static void handle_usb_error(int status, const char *function, struct hso_device *hso_dev) { char *explanation; switch (status) { case -ENODEV: explanation = "no device"; break; case -ENOENT: explanation = "endpoint not enabled"; break; case -EPIPE: explanation = "endpoint stalled"; break; case -ENOSPC: explanation = "not enough bandwidth"; break; case -ESHUTDOWN: explanation = "device disabled"; break; case -EHOSTUNREACH: explanation = "device suspended"; break; case -EINVAL: case -EAGAIN: case -EFBIG: case -EMSGSIZE: explanation = "internal error"; break; case -EILSEQ: case -EPROTO: case -ETIME: case -ETIMEDOUT: explanation = "protocol error"; if (hso_dev) schedule_work(&hso_dev->reset_device); break; default: explanation = "unknown status"; break; } /* log a meaningful explanation of an USB status */ D1("%s: received USB status - %s (%d)", function, explanation, status); } /* Network interface functions */ /* called when net interface is brought up by ifconfig */ static int hso_net_open(struct net_device *net) { struct hso_net *odev = netdev_priv(net); unsigned long flags = 0; if (!odev) { dev_err(&net->dev, "No net device !\n"); return -ENODEV; } odev->skb_tx_buf = NULL; /* setup environment */ spin_lock_irqsave(&odev->net_lock, flags); odev->rx_parse_state = WAIT_IP; odev->rx_buf_size = 0; odev->rx_buf_missing = sizeof(struct iphdr); spin_unlock_irqrestore(&odev->net_lock, flags); /* We are up and running. */ set_bit(HSO_NET_RUNNING, &odev->flags); hso_start_net_device(odev->parent); /* Tell the kernel we are ready to start receiving from it */ netif_start_queue(net); return 0; } /* called when interface is brought down by ifconfig */ static int hso_net_close(struct net_device *net) { struct hso_net *odev = netdev_priv(net); /* we don't need the queue anymore */ netif_stop_queue(net); /* no longer running */ clear_bit(HSO_NET_RUNNING, &odev->flags); hso_stop_net_device(odev->parent); /* done */ return 0; } /* USB tells is xmit done, we should start the netqueue again */ static void write_bulk_callback(struct urb *urb) { struct hso_net *odev = urb->context; int status = urb->status; /* Sanity check */ if (!odev || !test_bit(HSO_NET_RUNNING, &odev->flags)) { dev_err(&urb->dev->dev, "%s: device not running\n", __func__); return; } /* Do we still have a valid kernel network device? */ if (!netif_device_present(odev->net)) { dev_err(&urb->dev->dev, "%s: net device not present\n", __func__); return; } /* log status, but don't act on it, we don't need to resubmit anything * anyhow */ if (status) handle_usb_error(status, __func__, odev->parent); hso_put_activity(odev->parent); /* Tell the network interface we are ready for another frame */ netif_wake_queue(odev->net); } /* called by kernel when we need to transmit a packet */ static netdev_tx_t hso_net_start_xmit(struct sk_buff *skb, struct net_device *net) { struct hso_net *odev = netdev_priv(net); int result; /* Tell the kernel, "No more frames 'til we are done with this one." */ netif_stop_queue(net); if (hso_get_activity(odev->parent) == -EAGAIN) { odev->skb_tx_buf = skb; return NETDEV_TX_OK; } /* log if asked */ DUMP1(skb->data, skb->len); /* Copy it from kernel memory to OUR memory */ memcpy(odev->mux_bulk_tx_buf, skb->data, skb->len); D1("len: %d/%d", skb->len, MUX_BULK_TX_BUF_SIZE); /* Fill in the URB for shipping it out. */ usb_fill_bulk_urb(odev->mux_bulk_tx_urb, odev->parent->usb, usb_sndbulkpipe(odev->parent->usb, odev->out_endp-> bEndpointAddress & 0x7F), odev->mux_bulk_tx_buf, skb->len, write_bulk_callback, odev); /* Deal with the Zero Length packet problem, I hope */ odev->mux_bulk_tx_urb->transfer_flags |= URB_ZERO_PACKET; /* Send the URB on its merry way. */ result = usb_submit_urb(odev->mux_bulk_tx_urb, GFP_ATOMIC); if (result) { dev_warn(&odev->parent->interface->dev, "failed mux_bulk_tx_urb %d\n", result); net->stats.tx_errors++; netif_start_queue(net); } else { net->stats.tx_packets++; net->stats.tx_bytes += skb->len; } dev_kfree_skb(skb); /* we're done */ return NETDEV_TX_OK; } static const struct ethtool_ops ops = { .get_link = ethtool_op_get_link }; /* called when a packet did not ack after watchdogtimeout */ static void hso_net_tx_timeout(struct net_device *net) { struct hso_net *odev = netdev_priv(net); if (!odev) return; /* Tell syslog we are hosed. */ dev_warn(&net->dev, "Tx timed out.\n"); /* Tear the waiting frame off the list */ if (odev->mux_bulk_tx_urb && (odev->mux_bulk_tx_urb->status == -EINPROGRESS)) usb_unlink_urb(odev->mux_bulk_tx_urb); /* Update statistics */ net->stats.tx_errors++; } /* make a real packet from the received USB buffer */ static void packetizeRx(struct hso_net *odev, unsigned char *ip_pkt, unsigned int count, unsigned char is_eop) { unsigned short temp_bytes; unsigned short buffer_offset = 0; unsigned short frame_len; unsigned char *tmp_rx_buf; /* log if needed */ D1("Rx %d bytes", count); DUMP(ip_pkt, min(128, (int)count)); while (count) { switch (odev->rx_parse_state) { case WAIT_IP: /* waiting for IP header. */ /* wanted bytes - size of ip header */ temp_bytes = (count < odev->rx_buf_missing) ? count : odev-> rx_buf_missing; memcpy(((unsigned char *)(&odev->rx_ip_hdr)) + odev->rx_buf_size, ip_pkt + buffer_offset, temp_bytes); odev->rx_buf_size += temp_bytes; buffer_offset += temp_bytes; odev->rx_buf_missing -= temp_bytes; count -= temp_bytes; if (!odev->rx_buf_missing) { /* header is complete allocate an sk_buffer and * continue to WAIT_DATA */ frame_len = ntohs(odev->rx_ip_hdr.tot_len); if ((frame_len > DEFAULT_MRU) || (frame_len < sizeof(struct iphdr))) { dev_err(&odev->net->dev, "Invalid frame (%d) length\n", frame_len); odev->rx_parse_state = WAIT_SYNC; continue; } /* Allocate an sk_buff */ odev->skb_rx_buf = netdev_alloc_skb(odev->net, frame_len); if (!odev->skb_rx_buf) { /* We got no receive buffer. */ D1("could not allocate memory"); odev->rx_parse_state = WAIT_SYNC; return; } /* Copy what we got so far. make room for iphdr * after tail. */ tmp_rx_buf = skb_put(odev->skb_rx_buf, sizeof(struct iphdr)); memcpy(tmp_rx_buf, (char *)&(odev->rx_ip_hdr), sizeof(struct iphdr)); /* ETH_HLEN */ odev->rx_buf_size = sizeof(struct iphdr); /* Filip actually use .tot_len */ odev->rx_buf_missing = frame_len - sizeof(struct iphdr); odev->rx_parse_state = WAIT_DATA; } break; case WAIT_DATA: temp_bytes = (count < odev->rx_buf_missing) ? count : odev->rx_buf_missing; /* Copy the rest of the bytes that are left in the * buffer into the waiting sk_buf. */ /* Make room for temp_bytes after tail. */ tmp_rx_buf = skb_put(odev->skb_rx_buf, temp_bytes); memcpy(tmp_rx_buf, ip_pkt + buffer_offset, temp_bytes); odev->rx_buf_missing -= temp_bytes; count -= temp_bytes; buffer_offset += temp_bytes; odev->rx_buf_size += temp_bytes; if (!odev->rx_buf_missing) { /* Packet is complete. Inject into stack. */ /* We have IP packet here */ odev->skb_rx_buf->protocol = cpu_to_be16(ETH_P_IP); skb_reset_mac_header(odev->skb_rx_buf); /* Ship it off to the kernel */ netif_rx(odev->skb_rx_buf); /* No longer our buffer. */ odev->skb_rx_buf = NULL; /* update out statistics */ odev->net->stats.rx_packets++; odev->net->stats.rx_bytes += odev->rx_buf_size; odev->rx_buf_size = 0; odev->rx_buf_missing = sizeof(struct iphdr); odev->rx_parse_state = WAIT_IP; } break; case WAIT_SYNC: D1(" W_S"); count = 0; break; default: D1(" "); count--; break; } } /* Recovery mechanism for WAIT_SYNC state. */ if (is_eop) { if (odev->rx_parse_state == WAIT_SYNC) { odev->rx_parse_state = WAIT_IP; odev->rx_buf_size = 0; odev->rx_buf_missing = sizeof(struct iphdr); } } } static void fix_crc_bug(struct urb *urb, __le16 max_packet_size) { static const u8 crc_check[4] = { 0xDE, 0xAD, 0xBE, 0xEF }; u32 rest = urb->actual_length % le16_to_cpu(max_packet_size); if (((rest == 5) || (rest == 6)) && !memcmp(((u8 *)urb->transfer_buffer) + urb->actual_length - 4, crc_check, 4)) { urb->actual_length -= 4; } } /* Moving data from usb to kernel (in interrupt state) */ static void read_bulk_callback(struct urb *urb) { struct hso_net *odev = urb->context; struct net_device *net; int result; int status = urb->status; /* is al ok? (Filip: Who's Al ?) */ if (status) { handle_usb_error(status, __func__, odev->parent); return; } /* Sanity check */ if (!odev || !test_bit(HSO_NET_RUNNING, &odev->flags)) { D1("BULK IN callback but driver is not active!"); return; } usb_mark_last_busy(urb->dev); net = odev->net; if (!netif_device_present(net)) { /* Somebody killed our network interface... */ return; } if (odev->parent->port_spec & HSO_INFO_CRC_BUG) fix_crc_bug(urb, odev->in_endp->wMaxPacketSize); /* do we even have a packet? */ if (urb->actual_length) { /* Handle the IP stream, add header and push it onto network * stack if the packet is complete. */ spin_lock(&odev->net_lock); packetizeRx(odev, urb->transfer_buffer, urb->actual_length, (urb->transfer_buffer_length > urb->actual_length) ? 1 : 0); spin_unlock(&odev->net_lock); } /* We are done with this URB, resubmit it. Prep the USB to wait for * another frame. Reuse same as received. */ usb_fill_bulk_urb(urb, odev->parent->usb, usb_rcvbulkpipe(odev->parent->usb, odev->in_endp-> bEndpointAddress & 0x7F), urb->transfer_buffer, MUX_BULK_RX_BUF_SIZE, read_bulk_callback, odev); /* Give this to the USB subsystem so it can tell us when more data * arrives. */ result = usb_submit_urb(urb, GFP_ATOMIC); if (result) dev_warn(&odev->parent->interface->dev, "%s failed submit mux_bulk_rx_urb %d\n", __func__, result); } /* Serial driver functions */ static void hso_init_termios(struct ktermios *termios) { /* * The default requirements for this device are: */ termios->c_iflag &= ~(IGNBRK /* disable ignore break */ | BRKINT /* disable break causes interrupt */ | PARMRK /* disable mark parity errors */ | ISTRIP /* disable clear high bit of input characters */ | INLCR /* disable translate NL to CR */ | IGNCR /* disable ignore CR */ | ICRNL /* disable translate CR to NL */ | IXON); /* disable enable XON/XOFF flow control */ /* disable postprocess output characters */ termios->c_oflag &= ~OPOST; termios->c_lflag &= ~(ECHO /* disable echo input characters */ | ECHONL /* disable echo new line */ | ICANON /* disable erase, kill, werase, and rprnt special characters */ | ISIG /* disable interrupt, quit, and suspend special characters */ | IEXTEN); /* disable non-POSIX special characters */ termios->c_cflag &= ~(CSIZE /* no size */ | PARENB /* disable parity bit */ | CBAUD /* clear current baud rate */ | CBAUDEX); /* clear current buad rate */ termios->c_cflag |= CS8; /* character size 8 bits */ /* baud rate 115200 */ tty_termios_encode_baud_rate(termios, 115200, 115200); } static void _hso_serial_set_termios(struct tty_struct *tty, struct ktermios *old) { struct hso_serial *serial = tty->driver_data; if (!serial) { printk(KERN_ERR "%s: no tty structures", __func__); return; } D4("port %d", serial->minor); /* * Fix up unsupported bits */ tty->termios.c_iflag &= ~IXON; /* disable enable XON/XOFF flow control */ tty->termios.c_cflag &= ~(CSIZE /* no size */ | PARENB /* disable parity bit */ | CBAUD /* clear current baud rate */ | CBAUDEX); /* clear current buad rate */ tty->termios.c_cflag |= CS8; /* character size 8 bits */ /* baud rate 115200 */ tty_encode_baud_rate(tty, 115200, 115200); } static void hso_resubmit_rx_bulk_urb(struct hso_serial *serial, struct urb *urb) { int result; /* We are done with this URB, resubmit it. Prep the USB to wait for * another frame */ usb_fill_bulk_urb(urb, serial->parent->usb, usb_rcvbulkpipe(serial->parent->usb, serial->in_endp-> bEndpointAddress & 0x7F), urb->transfer_buffer, serial->rx_data_length, hso_std_serial_read_bulk_callback, serial); /* Give this to the USB subsystem so it can tell us when more data * arrives. */ result = usb_submit_urb(urb, GFP_ATOMIC); if (result) { dev_err(&urb->dev->dev, "%s failed submit serial rx_urb %d\n", __func__, result); } } static void put_rxbuf_data_and_resubmit_bulk_urb(struct hso_serial *serial) { int count; struct urb *curr_urb; while (serial->rx_urb_filled[serial->curr_rx_urb_idx]) { curr_urb = serial->rx_urb[serial->curr_rx_urb_idx]; count = put_rxbuf_data(curr_urb, serial); if (count == -1) return; if (count == 0) { serial->curr_rx_urb_idx++; if (serial->curr_rx_urb_idx >= serial->num_rx_urbs) serial->curr_rx_urb_idx = 0; hso_resubmit_rx_bulk_urb(serial, curr_urb); } } } static void put_rxbuf_data_and_resubmit_ctrl_urb(struct hso_serial *serial) { int count = 0; struct urb *urb; urb = serial->rx_urb[0]; if (serial->port.count > 0) { count = put_rxbuf_data(urb, serial); if (count == -1) return; } /* Re issue a read as long as we receive data. */ if (count == 0 && ((urb->actual_length != 0) || (serial->rx_state == RX_PENDING))) { serial->rx_state = RX_SENT; hso_mux_serial_read(serial); } else serial->rx_state = RX_IDLE; } /* read callback for Diag and CS port */ static void hso_std_serial_read_bulk_callback(struct urb *urb) { struct hso_serial *serial = urb->context; int status = urb->status; /* sanity check */ if (!serial) { D1("serial == NULL"); return; } else if (status) { handle_usb_error(status, __func__, serial->parent); return; } D4("\n--- Got serial_read_bulk callback %02x ---", status); D1("Actual length = %d\n", urb->actual_length); DUMP1(urb->transfer_buffer, urb->actual_length); /* Anyone listening? */ if (serial->port.count == 0) return; if (status == 0) { if (serial->parent->port_spec & HSO_INFO_CRC_BUG) fix_crc_bug(urb, serial->in_endp->wMaxPacketSize); /* Valid data, handle RX data */ spin_lock(&serial->serial_lock); serial->rx_urb_filled[hso_urb_to_index(serial, urb)] = 1; put_rxbuf_data_and_resubmit_bulk_urb(serial); spin_unlock(&serial->serial_lock); } else if (status == -ENOENT || status == -ECONNRESET) { /* Unlinked - check for throttled port. */ D2("Port %d, successfully unlinked urb", serial->minor); spin_lock(&serial->serial_lock); serial->rx_urb_filled[hso_urb_to_index(serial, urb)] = 0; hso_resubmit_rx_bulk_urb(serial, urb); spin_unlock(&serial->serial_lock); } else { D2("Port %d, status = %d for read urb", serial->minor, status); return; } } /* * This needs to be a tasklet otherwise we will * end up recursively calling this function. */ static void hso_unthrottle_tasklet(struct hso_serial *serial) { unsigned long flags; spin_lock_irqsave(&serial->serial_lock, flags); if ((serial->parent->port_spec & HSO_INTF_MUX)) put_rxbuf_data_and_resubmit_ctrl_urb(serial); else put_rxbuf_data_and_resubmit_bulk_urb(serial); spin_unlock_irqrestore(&serial->serial_lock, flags); } static void hso_unthrottle(struct tty_struct *tty) { struct hso_serial *serial = tty->driver_data; tasklet_hi_schedule(&serial->unthrottle_tasklet); } static void hso_unthrottle_workfunc(struct work_struct *work) { struct hso_serial *serial = container_of(work, struct hso_serial, retry_unthrottle_workqueue); hso_unthrottle_tasklet(serial); } /* open the requested serial port */ static int hso_serial_open(struct tty_struct *tty, struct file *filp) { struct hso_serial *serial = get_serial_by_index(tty->index); int result; /* sanity check */ if (serial == NULL || serial->magic != HSO_SERIAL_MAGIC) { WARN_ON(1); tty->driver_data = NULL; D1("Failed to open port"); return -ENODEV; } mutex_lock(&serial->parent->mutex); result = usb_autopm_get_interface(serial->parent->interface); if (result < 0) goto err_out; D1("Opening %d", serial->minor); kref_get(&serial->parent->ref); /* setup */ tty->driver_data = serial; tty_port_tty_set(&serial->port, tty); /* check for port already opened, if not set the termios */ serial->port.count++; if (serial->port.count == 1) { serial->rx_state = RX_IDLE; /* Force default termio settings */ _hso_serial_set_termios(tty, NULL); tasklet_init(&serial->unthrottle_tasklet, (void (*)(unsigned long))hso_unthrottle_tasklet, (unsigned long)serial); INIT_WORK(&serial->retry_unthrottle_workqueue, hso_unthrottle_workfunc); result = hso_start_serial_device(serial->parent, GFP_KERNEL); if (result) { hso_stop_serial_device(serial->parent); serial->port.count--; kref_put(&serial->parent->ref, hso_serial_ref_free); } } else { D1("Port was already open"); } usb_autopm_put_interface(serial->parent->interface); /* done */ if (result) hso_serial_tiocmset(tty, TIOCM_RTS | TIOCM_DTR, 0); err_out: mutex_unlock(&serial->parent->mutex); return result; } /* close the requested serial port */ static void hso_serial_close(struct tty_struct *tty, struct file *filp) { struct hso_serial *serial = tty->driver_data; u8 usb_gone; D1("Closing serial port"); /* Open failed, no close cleanup required */ if (serial == NULL) return; mutex_lock(&serial->parent->mutex); usb_gone = serial->parent->usb_gone; if (!usb_gone) usb_autopm_get_interface(serial->parent->interface); /* reset the rts and dtr */ /* do the actual close */ serial->port.count--; if (serial->port.count <= 0) { serial->port.count = 0; tty_port_tty_set(&serial->port, NULL); if (!usb_gone) hso_stop_serial_device(serial->parent); tasklet_kill(&serial->unthrottle_tasklet); cancel_work_sync(&serial->retry_unthrottle_workqueue); } if (!usb_gone) usb_autopm_put_interface(serial->parent->interface); mutex_unlock(&serial->parent->mutex); kref_put(&serial->parent->ref, hso_serial_ref_free); } /* close the requested serial port */ static int hso_serial_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct hso_serial *serial = tty->driver_data; int space, tx_bytes; unsigned long flags; /* sanity check */ if (serial == NULL) { printk(KERN_ERR "%s: serial is NULL\n", __func__); return -ENODEV; } spin_lock_irqsave(&serial->serial_lock, flags); space = serial->tx_data_length - serial->tx_buffer_count; tx_bytes = (count < space) ? count : space; if (!tx_bytes) goto out; memcpy(serial->tx_buffer + serial->tx_buffer_count, buf, tx_bytes); serial->tx_buffer_count += tx_bytes; out: spin_unlock_irqrestore(&serial->serial_lock, flags); hso_kick_transmit(serial); /* done */ return tx_bytes; } /* how much room is there for writing */ static int hso_serial_write_room(struct tty_struct *tty) { struct hso_serial *serial = tty->driver_data; int room; unsigned long flags; spin_lock_irqsave(&serial->serial_lock, flags); room = serial->tx_data_length - serial->tx_buffer_count; spin_unlock_irqrestore(&serial->serial_lock, flags); /* return free room */ return room; } /* setup the term */ static void hso_serial_set_termios(struct tty_struct *tty, struct ktermios *old) { struct hso_serial *serial = tty->driver_data; unsigned long flags; if (old) D5("Termios called with: cflags new[%d] - old[%d]", tty->termios.c_cflag, old->c_cflag); /* the actual setup */ spin_lock_irqsave(&serial->serial_lock, flags); if (serial->port.count) _hso_serial_set_termios(tty, old); else tty->termios = *old; spin_unlock_irqrestore(&serial->serial_lock, flags); /* done */ } /* how many characters in the buffer */ static int hso_serial_chars_in_buffer(struct tty_struct *tty) { struct hso_serial *serial = tty->driver_data; int chars; unsigned long flags; /* sanity check */ if (serial == NULL) return 0; spin_lock_irqsave(&serial->serial_lock, flags); chars = serial->tx_buffer_count; spin_unlock_irqrestore(&serial->serial_lock, flags); return chars; } static int tiocmget_submit_urb(struct hso_serial *serial, struct hso_tiocmget *tiocmget, struct usb_device *usb) { int result; if (serial->parent->usb_gone) return -ENODEV; usb_fill_int_urb(tiocmget->urb, usb, usb_rcvintpipe(usb, tiocmget->endp-> bEndpointAddress & 0x7F), &tiocmget->serial_state_notification, sizeof(struct hso_serial_state_notification), tiocmget_intr_callback, serial, tiocmget->endp->bInterval); result = usb_submit_urb(tiocmget->urb, GFP_ATOMIC); if (result) { dev_warn(&usb->dev, "%s usb_submit_urb failed %d\n", __func__, result); } return result; } static void tiocmget_intr_callback(struct urb *urb) { struct hso_serial *serial = urb->context; struct hso_tiocmget *tiocmget; int status = urb->status; u16 UART_state_bitmap, prev_UART_state_bitmap; struct uart_icount *icount; struct hso_serial_state_notification *serial_state_notification; struct usb_device *usb; /* Sanity checks */ if (!serial) return; if (status) { handle_usb_error(status, __func__, serial->parent); return; } tiocmget = serial->tiocmget; if (!tiocmget) return; usb = serial->parent->usb; serial_state_notification = &tiocmget->serial_state_notification; if (serial_state_notification->bmRequestType != BM_REQUEST_TYPE || serial_state_notification->bNotification != B_NOTIFICATION || le16_to_cpu(serial_state_notification->wValue) != W_VALUE || le16_to_cpu(serial_state_notification->wIndex) != W_INDEX || le16_to_cpu(serial_state_notification->wLength) != W_LENGTH) { dev_warn(&usb->dev, "hso received invalid serial state notification\n"); DUMP(serial_state_notification, sizeof(struct hso_serial_state_notification)); } else { UART_state_bitmap = le16_to_cpu(serial_state_notification-> UART_state_bitmap); prev_UART_state_bitmap = tiocmget->prev_UART_state_bitmap; icount = &tiocmget->icount; spin_lock(&serial->serial_lock); if ((UART_state_bitmap & B_OVERRUN) != (prev_UART_state_bitmap & B_OVERRUN)) icount->parity++; if ((UART_state_bitmap & B_PARITY) != (prev_UART_state_bitmap & B_PARITY)) icount->parity++; if ((UART_state_bitmap & B_FRAMING) != (prev_UART_state_bitmap & B_FRAMING)) icount->frame++; if ((UART_state_bitmap & B_RING_SIGNAL) && !(prev_UART_state_bitmap & B_RING_SIGNAL)) icount->rng++; if ((UART_state_bitmap & B_BREAK) != (prev_UART_state_bitmap & B_BREAK)) icount->brk++; if ((UART_state_bitmap & B_TX_CARRIER) != (prev_UART_state_bitmap & B_TX_CARRIER)) icount->dsr++; if ((UART_state_bitmap & B_RX_CARRIER) != (prev_UART_state_bitmap & B_RX_CARRIER)) icount->dcd++; tiocmget->prev_UART_state_bitmap = UART_state_bitmap; spin_unlock(&serial->serial_lock); tiocmget->intr_completed = 1; wake_up_interruptible(&tiocmget->waitq); } memset(serial_state_notification, 0, sizeof(struct hso_serial_state_notification)); tiocmget_submit_urb(serial, tiocmget, serial->parent->usb); } /* * next few functions largely stolen from drivers/serial/serial_core.c */ /* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ static int hso_wait_modem_status(struct hso_serial *serial, unsigned long arg) { DECLARE_WAITQUEUE(wait, current); struct uart_icount cprev, cnow; struct hso_tiocmget *tiocmget; int ret; tiocmget = serial->tiocmget; if (!tiocmget) return -ENOENT; /* * note the counters on entry */ spin_lock_irq(&serial->serial_lock); memcpy(&cprev, &tiocmget->icount, sizeof(struct uart_icount)); spin_unlock_irq(&serial->serial_lock); add_wait_queue(&tiocmget->waitq, &wait); for (;;) { spin_lock_irq(&serial->serial_lock); memcpy(&cnow, &tiocmget->icount, sizeof(struct uart_icount)); spin_unlock_irq(&serial->serial_lock); set_current_state(TASK_INTERRUPTIBLE); if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd))) { ret = 0; break; } schedule(); /* see if a signal did it */ if (signal_pending(current)) { ret = -ERESTARTSYS; break; } cprev = cnow; } current->state = TASK_RUNNING; remove_wait_queue(&tiocmget->waitq, &wait); return ret; } /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ static int hso_get_count(struct tty_struct *tty, struct serial_icounter_struct *icount) { struct uart_icount cnow; struct hso_serial *serial = tty->driver_data; struct hso_tiocmget *tiocmget = serial->tiocmget; memset(icount, 0, sizeof(struct serial_icounter_struct)); if (!tiocmget) return -ENOENT; spin_lock_irq(&serial->serial_lock); memcpy(&cnow, &tiocmget->icount, sizeof(struct uart_icount)); spin_unlock_irq(&serial->serial_lock); icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } static int hso_serial_tiocmget(struct tty_struct *tty) { int retval; struct hso_serial *serial = tty->driver_data; struct hso_tiocmget *tiocmget; u16 UART_state_bitmap; /* sanity check */ if (!serial) { D1("no tty structures"); return -EINVAL; } spin_lock_irq(&serial->serial_lock); retval = ((serial->rts_state) ? TIOCM_RTS : 0) | ((serial->dtr_state) ? TIOCM_DTR : 0); tiocmget = serial->tiocmget; if (tiocmget) { UART_state_bitmap = le16_to_cpu( tiocmget->prev_UART_state_bitmap); if (UART_state_bitmap & B_RING_SIGNAL) retval |= TIOCM_RNG; if (UART_state_bitmap & B_RX_CARRIER) retval |= TIOCM_CD; if (UART_state_bitmap & B_TX_CARRIER) retval |= TIOCM_DSR; } spin_unlock_irq(&serial->serial_lock); return retval; } static int hso_serial_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { int val = 0; unsigned long flags; int if_num; struct hso_serial *serial = tty->driver_data; /* sanity check */ if (!serial) { D1("no tty structures"); return -EINVAL; } if ((serial->parent->port_spec & HSO_PORT_MASK) != HSO_PORT_MODEM) return -EINVAL; if_num = serial->parent->interface->altsetting->desc.bInterfaceNumber; spin_lock_irqsave(&serial->serial_lock, flags); if (set & TIOCM_RTS) serial->rts_state = 1; if (set & TIOCM_DTR) serial->dtr_state = 1; if (clear & TIOCM_RTS) serial->rts_state = 0; if (clear & TIOCM_DTR) serial->dtr_state = 0; if (serial->dtr_state) val |= 0x01; if (serial->rts_state) val |= 0x02; spin_unlock_irqrestore(&serial->serial_lock, flags); return usb_control_msg(serial->parent->usb, usb_rcvctrlpipe(serial->parent->usb, 0), 0x22, 0x21, val, if_num, NULL, 0, USB_CTRL_SET_TIMEOUT); } static int hso_serial_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct hso_serial *serial = tty->driver_data; int ret = 0; D4("IOCTL cmd: %d, arg: %ld", cmd, arg); if (!serial) return -ENODEV; switch (cmd) { case TIOCMIWAIT: ret = hso_wait_modem_status(serial, arg); break; default: ret = -ENOIOCTLCMD; break; } return ret; } /* starts a transmit */ static void hso_kick_transmit(struct hso_serial *serial) { u8 *temp; unsigned long flags; int res; spin_lock_irqsave(&serial->serial_lock, flags); if (!serial->tx_buffer_count) goto out; if (serial->tx_urb_used) goto out; /* Wakeup USB interface if necessary */ if (hso_get_activity(serial->parent) == -EAGAIN) goto out; /* Switch pointers around to avoid memcpy */ temp = serial->tx_buffer; serial->tx_buffer = serial->tx_data; serial->tx_data = temp; serial->tx_data_count = serial->tx_buffer_count; serial->tx_buffer_count = 0; /* If temp is set, it means we switched buffers */ if (temp && serial->write_data) { res = serial->write_data(serial); if (res >= 0) serial->tx_urb_used = 1; } out: spin_unlock_irqrestore(&serial->serial_lock, flags); } /* make a request (for reading and writing data to muxed serial port) */ static int mux_device_request(struct hso_serial *serial, u8 type, u16 port, struct urb *ctrl_urb, struct usb_ctrlrequest *ctrl_req, u8 *ctrl_urb_data, u32 size) { int result; int pipe; /* Sanity check */ if (!serial || !ctrl_urb || !ctrl_req) { printk(KERN_ERR "%s: Wrong arguments\n", __func__); return -EINVAL; } /* initialize */ ctrl_req->wValue = 0; ctrl_req->wIndex = cpu_to_le16(hso_port_to_mux(port)); ctrl_req->wLength = cpu_to_le16(size); if (type == USB_CDC_GET_ENCAPSULATED_RESPONSE) { /* Reading command */ ctrl_req->bRequestType = USB_DIR_IN | USB_TYPE_OPTION_VENDOR | USB_RECIP_INTERFACE; ctrl_req->bRequest = USB_CDC_GET_ENCAPSULATED_RESPONSE; pipe = usb_rcvctrlpipe(serial->parent->usb, 0); } else { /* Writing command */ ctrl_req->bRequestType = USB_DIR_OUT | USB_TYPE_OPTION_VENDOR | USB_RECIP_INTERFACE; ctrl_req->bRequest = USB_CDC_SEND_ENCAPSULATED_COMMAND; pipe = usb_sndctrlpipe(serial->parent->usb, 0); } /* syslog */ D2("%s command (%02x) len: %d, port: %d", type == USB_CDC_GET_ENCAPSULATED_RESPONSE ? "Read" : "Write", ctrl_req->bRequestType, ctrl_req->wLength, port); /* Load ctrl urb */ ctrl_urb->transfer_flags = 0; usb_fill_control_urb(ctrl_urb, serial->parent->usb, pipe, (u8 *) ctrl_req, ctrl_urb_data, size, ctrl_callback, serial); /* Send it on merry way */ result = usb_submit_urb(ctrl_urb, GFP_ATOMIC); if (result) { dev_err(&ctrl_urb->dev->dev, "%s failed submit ctrl_urb %d type %d\n", __func__, result, type); return result; } /* done */ return size; } /* called by intr_callback when read occurs */ static int hso_mux_serial_read(struct hso_serial *serial) { if (!serial) return -EINVAL; /* clean data */ memset(serial->rx_data[0], 0, CTRL_URB_RX_SIZE); /* make the request */ if (serial->num_rx_urbs != 1) { dev_err(&serial->parent->interface->dev, "ERROR: mux'd reads with multiple buffers " "not possible\n"); return 0; } return mux_device_request(serial, USB_CDC_GET_ENCAPSULATED_RESPONSE, serial->parent->port_spec & HSO_PORT_MASK, serial->rx_urb[0], &serial->ctrl_req_rx, serial->rx_data[0], serial->rx_data_length); } /* used for muxed serial port callback (muxed serial read) */ static void intr_callback(struct urb *urb) { struct hso_shared_int *shared_int = urb->context; struct hso_serial *serial; unsigned char *port_req; int status = urb->status; int i; usb_mark_last_busy(urb->dev); /* sanity check */ if (!shared_int) return; /* status check */ if (status) { handle_usb_error(status, __func__, NULL); return; } D4("\n--- Got intr callback 0x%02X ---", status); /* what request? */ port_req = urb->transfer_buffer; D4(" port_req = 0x%.2X\n", *port_req); /* loop over all muxed ports to find the one sending this */ for (i = 0; i < 8; i++) { /* max 8 channels on MUX */ if (*port_req & (1 << i)) { serial = get_serial_by_shared_int_and_type(shared_int, (1 << i)); if (serial != NULL) { D1("Pending read interrupt on port %d\n", i); spin_lock(&serial->serial_lock); if (serial->rx_state == RX_IDLE && serial->port.count > 0) { /* Setup and send a ctrl req read on * port i */ if (!serial->rx_urb_filled[0]) { serial->rx_state = RX_SENT; hso_mux_serial_read(serial); } else serial->rx_state = RX_PENDING; } else { D1("Already a read pending on " "port %d or port not open\n", i); } spin_unlock(&serial->serial_lock); } } } /* Resubmit interrupt urb */ hso_mux_submit_intr_urb(shared_int, urb->dev, GFP_ATOMIC); } /* called for writing to muxed serial port */ static int hso_mux_serial_write_data(struct hso_serial *serial) { if (NULL == serial) return -EINVAL; return mux_device_request(serial, USB_CDC_SEND_ENCAPSULATED_COMMAND, serial->parent->port_spec & HSO_PORT_MASK, serial->tx_urb, &serial->ctrl_req_tx, serial->tx_data, serial->tx_data_count); } /* write callback for Diag and CS port */ static void hso_std_serial_write_bulk_callback(struct urb *urb) { struct hso_serial *serial = urb->context; int status = urb->status; /* sanity check */ if (!serial) { D1("serial == NULL"); return; } spin_lock(&serial->serial_lock); serial->tx_urb_used = 0; spin_unlock(&serial->serial_lock); if (status) { handle_usb_error(status, __func__, serial->parent); return; } hso_put_activity(serial->parent); tty_port_tty_wakeup(&serial->port); hso_kick_transmit(serial); D1(" "); } /* called for writing diag or CS serial port */ static int hso_std_serial_write_data(struct hso_serial *serial) { int count = serial->tx_data_count; int result; usb_fill_bulk_urb(serial->tx_urb, serial->parent->usb, usb_sndbulkpipe(serial->parent->usb, serial->out_endp-> bEndpointAddress & 0x7F), serial->tx_data, serial->tx_data_count, hso_std_serial_write_bulk_callback, serial); result = usb_submit_urb(serial->tx_urb, GFP_ATOMIC); if (result) { dev_warn(&serial->parent->usb->dev, "Failed to submit urb - res %d\n", result); return result; } return count; } /* callback after read or write on muxed serial port */ static void ctrl_callback(struct urb *urb) { struct hso_serial *serial = urb->context; struct usb_ctrlrequest *req; int status = urb->status; /* sanity check */ if (!serial) return; spin_lock(&serial->serial_lock); serial->tx_urb_used = 0; spin_unlock(&serial->serial_lock); if (status) { handle_usb_error(status, __func__, serial->parent); return; } /* what request? */ req = (struct usb_ctrlrequest *)(urb->setup_packet); D4("\n--- Got muxed ctrl callback 0x%02X ---", status); D4("Actual length of urb = %d\n", urb->actual_length); DUMP1(urb->transfer_buffer, urb->actual_length); if (req->bRequestType == (USB_DIR_IN | USB_TYPE_OPTION_VENDOR | USB_RECIP_INTERFACE)) { /* response to a read command */ serial->rx_urb_filled[0] = 1; spin_lock(&serial->serial_lock); put_rxbuf_data_and_resubmit_ctrl_urb(serial); spin_unlock(&serial->serial_lock); } else { hso_put_activity(serial->parent); tty_port_tty_wakeup(&serial->port); /* response to a write command */ hso_kick_transmit(serial); } } /* handle RX data for serial port */ static int put_rxbuf_data(struct urb *urb, struct hso_serial *serial) { struct tty_struct *tty; int write_length_remaining = 0; int curr_write_len; /* Sanity check */ if (urb == NULL || serial == NULL) { D1("serial = NULL"); return -2; } tty = tty_port_tty_get(&serial->port); /* Push data to tty */ write_length_remaining = urb->actual_length - serial->curr_rx_urb_offset; D1("data to push to tty"); while (write_length_remaining) { if (tty && test_bit(TTY_THROTTLED, &tty->flags)) { tty_kref_put(tty); return -1; } curr_write_len = tty_insert_flip_string(&serial->port, urb->transfer_buffer + serial->curr_rx_urb_offset, write_length_remaining); serial->curr_rx_urb_offset += curr_write_len; write_length_remaining -= curr_write_len; tty_flip_buffer_push(&serial->port); } tty_kref_put(tty); if (write_length_remaining == 0) { serial->curr_rx_urb_offset = 0; serial->rx_urb_filled[hso_urb_to_index(serial, urb)] = 0; } return write_length_remaining; } /* Base driver functions */ static void hso_log_port(struct hso_device *hso_dev) { char *port_type; char port_dev[20]; switch (hso_dev->port_spec & HSO_PORT_MASK) { case HSO_PORT_CONTROL: port_type = "Control"; break; case HSO_PORT_APP: port_type = "Application"; break; case HSO_PORT_GPS: port_type = "GPS"; break; case HSO_PORT_GPS_CONTROL: port_type = "GPS control"; break; case HSO_PORT_APP2: port_type = "Application2"; break; case HSO_PORT_PCSC: port_type = "PCSC"; break; case HSO_PORT_DIAG: port_type = "Diagnostic"; break; case HSO_PORT_DIAG2: port_type = "Diagnostic2"; break; case HSO_PORT_MODEM: port_type = "Modem"; break; case HSO_PORT_NETWORK: port_type = "Network"; break; default: port_type = "Unknown"; break; } if ((hso_dev->port_spec & HSO_PORT_MASK) == HSO_PORT_NETWORK) { sprintf(port_dev, "%s", dev2net(hso_dev)->net->name); } else sprintf(port_dev, "/dev/%s%d", tty_filename, dev2ser(hso_dev)->minor); dev_dbg(&hso_dev->interface->dev, "HSO: Found %s port %s\n", port_type, port_dev); } static int hso_start_net_device(struct hso_device *hso_dev) { int i, result = 0; struct hso_net *hso_net = dev2net(hso_dev); if (!hso_net) return -ENODEV; /* send URBs for all read buffers */ for (i = 0; i < MUX_BULK_RX_BUF_COUNT; i++) { /* Prep a receive URB */ usb_fill_bulk_urb(hso_net->mux_bulk_rx_urb_pool[i], hso_dev->usb, usb_rcvbulkpipe(hso_dev->usb, hso_net->in_endp-> bEndpointAddress & 0x7F), hso_net->mux_bulk_rx_buf_pool[i], MUX_BULK_RX_BUF_SIZE, read_bulk_callback, hso_net); /* Put it out there so the device can send us stuff */ result = usb_submit_urb(hso_net->mux_bulk_rx_urb_pool[i], GFP_NOIO); if (result) dev_warn(&hso_dev->usb->dev, "%s failed mux_bulk_rx_urb[%d] %d\n", __func__, i, result); } return result; } static int hso_stop_net_device(struct hso_device *hso_dev) { int i; struct hso_net *hso_net = dev2net(hso_dev); if (!hso_net) return -ENODEV; for (i = 0; i < MUX_BULK_RX_BUF_COUNT; i++) { if (hso_net->mux_bulk_rx_urb_pool[i]) usb_kill_urb(hso_net->mux_bulk_rx_urb_pool[i]); } if (hso_net->mux_bulk_tx_urb) usb_kill_urb(hso_net->mux_bulk_tx_urb); return 0; } static int hso_start_serial_device(struct hso_device *hso_dev, gfp_t flags) { int i, result = 0; struct hso_serial *serial = dev2ser(hso_dev); if (!serial) return -ENODEV; /* If it is not the MUX port fill in and submit a bulk urb (already * allocated in hso_serial_start) */ if (!(serial->parent->port_spec & HSO_INTF_MUX)) { for (i = 0; i < serial->num_rx_urbs; i++) { usb_fill_bulk_urb(serial->rx_urb[i], serial->parent->usb, usb_rcvbulkpipe(serial->parent->usb, serial->in_endp-> bEndpointAddress & 0x7F), serial->rx_data[i], serial->rx_data_length, hso_std_serial_read_bulk_callback, serial); result = usb_submit_urb(serial->rx_urb[i], flags); if (result) { dev_warn(&serial->parent->usb->dev, "Failed to submit urb - res %d\n", result); break; } } } else { mutex_lock(&serial->shared_int->shared_int_lock); if (!serial->shared_int->use_count) { result = hso_mux_submit_intr_urb(serial->shared_int, hso_dev->usb, flags); } serial->shared_int->use_count++; mutex_unlock(&serial->shared_int->shared_int_lock); } if (serial->tiocmget) tiocmget_submit_urb(serial, serial->tiocmget, serial->parent->usb); return result; } static int hso_stop_serial_device(struct hso_device *hso_dev) { int i; struct hso_serial *serial = dev2ser(hso_dev); struct hso_tiocmget *tiocmget; if (!serial) return -ENODEV; for (i = 0; i < serial->num_rx_urbs; i++) { if (serial->rx_urb[i]) { usb_kill_urb(serial->rx_urb[i]); serial->rx_urb_filled[i] = 0; } } serial->curr_rx_urb_idx = 0; serial->curr_rx_urb_offset = 0; if (serial->tx_urb) usb_kill_urb(serial->tx_urb); if (serial->shared_int) { mutex_lock(&serial->shared_int->shared_int_lock); if (serial->shared_int->use_count && (--serial->shared_int->use_count == 0)) { struct urb *urb; urb = serial->shared_int->shared_intr_urb; if (urb) usb_kill_urb(urb); } mutex_unlock(&serial->shared_int->shared_int_lock); } tiocmget = serial->tiocmget; if (tiocmget) { wake_up_interruptible(&tiocmget->waitq); usb_kill_urb(tiocmget->urb); } return 0; } static void hso_serial_common_free(struct hso_serial *serial) { int i; if (serial->parent->dev) device_remove_file(serial->parent->dev, &dev_attr_hsotype); tty_unregister_device(tty_drv, serial->minor); for (i = 0; i < serial->num_rx_urbs; i++) { /* unlink and free RX URB */ usb_free_urb(serial->rx_urb[i]); /* free the RX buffer */ kfree(serial->rx_data[i]); } /* unlink and free TX URB */ usb_free_urb(serial->tx_urb); kfree(serial->tx_data); tty_port_destroy(&serial->port); } static int hso_serial_common_create(struct hso_serial *serial, int num_urbs, int rx_size, int tx_size) { struct device *dev; int minor; int i; tty_port_init(&serial->port); minor = get_free_serial_index(); if (minor < 0) goto exit; /* register our minor number */ serial->parent->dev = tty_port_register_device(&serial->port, tty_drv, minor, &serial->parent->interface->dev); dev = serial->parent->dev; dev_set_drvdata(dev, serial->parent); i = device_create_file(dev, &dev_attr_hsotype); /* fill in specific data for later use */ serial->minor = minor; serial->magic = HSO_SERIAL_MAGIC; spin_lock_init(&serial->serial_lock); serial->num_rx_urbs = num_urbs; /* RX, allocate urb and initialize */ /* prepare our RX buffer */ serial->rx_data_length = rx_size; for (i = 0; i < serial->num_rx_urbs; i++) { serial->rx_urb[i] = usb_alloc_urb(0, GFP_KERNEL); if (!serial->rx_urb[i]) { dev_err(dev, "Could not allocate urb?\n"); goto exit; } serial->rx_urb[i]->transfer_buffer = NULL; serial->rx_urb[i]->transfer_buffer_length = 0; serial->rx_data[i] = kzalloc(serial->rx_data_length, GFP_KERNEL); if (!serial->rx_data[i]) goto exit; } /* TX, allocate urb and initialize */ serial->tx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!serial->tx_urb) { dev_err(dev, "Could not allocate urb?\n"); goto exit; } serial->tx_urb->transfer_buffer = NULL; serial->tx_urb->transfer_buffer_length = 0; /* prepare our TX buffer */ serial->tx_data_count = 0; serial->tx_buffer_count = 0; serial->tx_data_length = tx_size; serial->tx_data = kzalloc(serial->tx_data_length, GFP_KERNEL); if (!serial->tx_data) goto exit; serial->tx_buffer = kzalloc(serial->tx_data_length, GFP_KERNEL); if (!serial->tx_buffer) goto exit; return 0; exit: hso_serial_common_free(serial); return -1; } /* Creates a general hso device */ static struct hso_device *hso_create_device(struct usb_interface *intf, int port_spec) { struct hso_device *hso_dev; hso_dev = kzalloc(sizeof(*hso_dev), GFP_ATOMIC); if (!hso_dev) return NULL; hso_dev->port_spec = port_spec; hso_dev->usb = interface_to_usbdev(intf); hso_dev->interface = intf; kref_init(&hso_dev->ref); mutex_init(&hso_dev->mutex); INIT_WORK(&hso_dev->async_get_intf, async_get_intf); INIT_WORK(&hso_dev->async_put_intf, async_put_intf); INIT_WORK(&hso_dev->reset_device, reset_device); return hso_dev; } /* Removes a network device in the network device table */ static int remove_net_device(struct hso_device *hso_dev) { int i; for (i = 0; i < HSO_MAX_NET_DEVICES; i++) { if (network_table[i] == hso_dev) { network_table[i] = NULL; break; } } if (i == HSO_MAX_NET_DEVICES) return -1; return 0; } /* Frees our network device */ static void hso_free_net_device(struct hso_device *hso_dev) { int i; struct hso_net *hso_net = dev2net(hso_dev); if (!hso_net) return; remove_net_device(hso_net->parent); if (hso_net->net) unregister_netdev(hso_net->net); /* start freeing */ for (i = 0; i < MUX_BULK_RX_BUF_COUNT; i++) { usb_free_urb(hso_net->mux_bulk_rx_urb_pool[i]); kfree(hso_net->mux_bulk_rx_buf_pool[i]); hso_net->mux_bulk_rx_buf_pool[i] = NULL; } usb_free_urb(hso_net->mux_bulk_tx_urb); kfree(hso_net->mux_bulk_tx_buf); hso_net->mux_bulk_tx_buf = NULL; if (hso_net->net) free_netdev(hso_net->net); kfree(hso_dev); } static const struct net_device_ops hso_netdev_ops = { .ndo_open = hso_net_open, .ndo_stop = hso_net_close, .ndo_start_xmit = hso_net_start_xmit, .ndo_tx_timeout = hso_net_tx_timeout, }; /* initialize the network interface */ static void hso_net_init(struct net_device *net) { struct hso_net *hso_net = netdev_priv(net); D1("sizeof hso_net is %d", (int)sizeof(*hso_net)); /* fill in the other fields */ net->netdev_ops = &hso_netdev_ops; net->watchdog_timeo = HSO_NET_TX_TIMEOUT; net->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; net->type = ARPHRD_NONE; net->mtu = DEFAULT_MTU - 14; net->tx_queue_len = 10; SET_ETHTOOL_OPS(net, &ops); /* and initialize the semaphore */ spin_lock_init(&hso_net->net_lock); } /* Adds a network device in the network device table */ static int add_net_device(struct hso_device *hso_dev) { int i; for (i = 0; i < HSO_MAX_NET_DEVICES; i++) { if (network_table[i] == NULL) { network_table[i] = hso_dev; break; } } if (i == HSO_MAX_NET_DEVICES) return -1; return 0; } static int hso_rfkill_set_block(void *data, bool blocked) { struct hso_device *hso_dev = data; int enabled = !blocked; int rv; mutex_lock(&hso_dev->mutex); if (hso_dev->usb_gone) rv = 0; else rv = usb_control_msg(hso_dev->usb, usb_rcvctrlpipe(hso_dev->usb, 0), enabled ? 0x82 : 0x81, 0x40, 0, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); mutex_unlock(&hso_dev->mutex); return rv; } static const struct rfkill_ops hso_rfkill_ops = { .set_block = hso_rfkill_set_block, }; /* Creates and sets up everything for rfkill */ static void hso_create_rfkill(struct hso_device *hso_dev, struct usb_interface *interface) { struct hso_net *hso_net = dev2net(hso_dev); struct device *dev = &hso_net->net->dev; char *rfkn; rfkn = kzalloc(20, GFP_KERNEL); if (!rfkn) dev_err(dev, "%s - Out of memory\n", __func__); snprintf(rfkn, 20, "hso-%d", interface->altsetting->desc.bInterfaceNumber); hso_net->rfkill = rfkill_alloc(rfkn, &interface_to_usbdev(interface)->dev, RFKILL_TYPE_WWAN, &hso_rfkill_ops, hso_dev); if (!hso_net->rfkill) { dev_err(dev, "%s - Out of memory\n", __func__); kfree(rfkn); return; } if (rfkill_register(hso_net->rfkill) < 0) { rfkill_destroy(hso_net->rfkill); kfree(rfkn); hso_net->rfkill = NULL; dev_err(dev, "%s - Failed to register rfkill\n", __func__); return; } } static struct device_type hso_type = { .name = "wwan", }; /* Creates our network device */ static struct hso_device *hso_create_net_device(struct usb_interface *interface, int port_spec) { int result, i; struct net_device *net; struct hso_net *hso_net; struct hso_device *hso_dev; hso_dev = hso_create_device(interface, port_spec); if (!hso_dev) return NULL; /* allocate our network device, then we can put in our private data */ /* call hso_net_init to do the basic initialization */ net = alloc_netdev(sizeof(struct hso_net), "hso%d", hso_net_init); if (!net) { dev_err(&interface->dev, "Unable to create ethernet device\n"); goto exit; } hso_net = netdev_priv(net); hso_dev->port_data.dev_net = hso_net; hso_net->net = net; hso_net->parent = hso_dev; hso_net->in_endp = hso_get_ep(interface, USB_ENDPOINT_XFER_BULK, USB_DIR_IN); if (!hso_net->in_endp) { dev_err(&interface->dev, "Can't find BULK IN endpoint\n"); goto exit; } hso_net->out_endp = hso_get_ep(interface, USB_ENDPOINT_XFER_BULK, USB_DIR_OUT); if (!hso_net->out_endp) { dev_err(&interface->dev, "Can't find BULK OUT endpoint\n"); goto exit; } SET_NETDEV_DEV(net, &interface->dev); SET_NETDEV_DEVTYPE(net, &hso_type); /* registering our net device */ result = register_netdev(net); if (result) { dev_err(&interface->dev, "Failed to register device\n"); goto exit; } /* start allocating */ for (i = 0; i < MUX_BULK_RX_BUF_COUNT; i++) { hso_net->mux_bulk_rx_urb_pool[i] = usb_alloc_urb(0, GFP_KERNEL); if (!hso_net->mux_bulk_rx_urb_pool[i]) { dev_err(&interface->dev, "Could not allocate rx urb\n"); goto exit; } hso_net->mux_bulk_rx_buf_pool[i] = kzalloc(MUX_BULK_RX_BUF_SIZE, GFP_KERNEL); if (!hso_net->mux_bulk_rx_buf_pool[i]) goto exit; } hso_net->mux_bulk_tx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!hso_net->mux_bulk_tx_urb) { dev_err(&interface->dev, "Could not allocate tx urb\n"); goto exit; } hso_net->mux_bulk_tx_buf = kzalloc(MUX_BULK_TX_BUF_SIZE, GFP_KERNEL); if (!hso_net->mux_bulk_tx_buf) goto exit; add_net_device(hso_dev); hso_log_port(hso_dev); hso_create_rfkill(hso_dev, interface); return hso_dev; exit: hso_free_net_device(hso_dev); return NULL; } static void hso_free_tiomget(struct hso_serial *serial) { struct hso_tiocmget *tiocmget; if (!serial) return; tiocmget = serial->tiocmget; if (tiocmget) { usb_free_urb(tiocmget->urb); tiocmget->urb = NULL; serial->tiocmget = NULL; kfree(tiocmget); } } /* Frees an AT channel ( goes for both mux and non-mux ) */ static void hso_free_serial_device(struct hso_device *hso_dev) { struct hso_serial *serial = dev2ser(hso_dev); if (!serial) return; set_serial_by_index(serial->minor, NULL); hso_serial_common_free(serial); if (serial->shared_int) { mutex_lock(&serial->shared_int->shared_int_lock); if (--serial->shared_int->ref_count == 0) hso_free_shared_int(serial->shared_int); else mutex_unlock(&serial->shared_int->shared_int_lock); } hso_free_tiomget(serial); kfree(serial); kfree(hso_dev); } /* Creates a bulk AT channel */ static struct hso_device *hso_create_bulk_serial_device( struct usb_interface *interface, int port) { struct hso_device *hso_dev; struct hso_serial *serial; int num_urbs; struct hso_tiocmget *tiocmget; hso_dev = hso_create_device(interface, port); if (!hso_dev) return NULL; serial = kzalloc(sizeof(*serial), GFP_KERNEL); if (!serial) goto exit; serial->parent = hso_dev; hso_dev->port_data.dev_serial = serial; if ((port & HSO_PORT_MASK) == HSO_PORT_MODEM) { num_urbs = 2; serial->tiocmget = kzalloc(sizeof(struct hso_tiocmget), GFP_KERNEL); /* it isn't going to break our heart if serial->tiocmget * allocation fails don't bother checking this. */ if (serial->tiocmget) { tiocmget = serial->tiocmget; tiocmget->urb = usb_alloc_urb(0, GFP_KERNEL); if (tiocmget->urb) { mutex_init(&tiocmget->mutex); init_waitqueue_head(&tiocmget->waitq); tiocmget->endp = hso_get_ep( interface, USB_ENDPOINT_XFER_INT, USB_DIR_IN); } else hso_free_tiomget(serial); } } else num_urbs = 1; if (hso_serial_common_create(serial, num_urbs, BULK_URB_RX_SIZE, BULK_URB_TX_SIZE)) goto exit; serial->in_endp = hso_get_ep(interface, USB_ENDPOINT_XFER_BULK, USB_DIR_IN); if (!serial->in_endp) { dev_err(&interface->dev, "Failed to find BULK IN ep\n"); goto exit2; } if (! (serial->out_endp = hso_get_ep(interface, USB_ENDPOINT_XFER_BULK, USB_DIR_OUT))) { dev_err(&interface->dev, "Failed to find BULK IN ep\n"); goto exit2; } serial->write_data = hso_std_serial_write_data; /* and record this serial */ set_serial_by_index(serial->minor, serial); /* setup the proc dirs and files if needed */ hso_log_port(hso_dev); /* done, return it */ return hso_dev; exit2: hso_serial_common_free(serial); exit: hso_free_tiomget(serial); kfree(serial); kfree(hso_dev); return NULL; } /* Creates a multiplexed AT channel */ static struct hso_device *hso_create_mux_serial_device(struct usb_interface *interface, int port, struct hso_shared_int *mux) { struct hso_device *hso_dev; struct hso_serial *serial; int port_spec; port_spec = HSO_INTF_MUX; port_spec &= ~HSO_PORT_MASK; port_spec |= hso_mux_to_port(port); if ((port_spec & HSO_PORT_MASK) == HSO_PORT_NO_PORT) return NULL; hso_dev = hso_create_device(interface, port_spec); if (!hso_dev) return NULL; serial = kzalloc(sizeof(*serial), GFP_KERNEL); if (!serial) goto exit; hso_dev->port_data.dev_serial = serial; serial->parent = hso_dev; if (hso_serial_common_create (serial, 1, CTRL_URB_RX_SIZE, CTRL_URB_TX_SIZE)) goto exit; serial->tx_data_length--; serial->write_data = hso_mux_serial_write_data; serial->shared_int = mux; mutex_lock(&serial->shared_int->shared_int_lock); serial->shared_int->ref_count++; mutex_unlock(&serial->shared_int->shared_int_lock); /* and record this serial */ set_serial_by_index(serial->minor, serial); /* setup the proc dirs and files if needed */ hso_log_port(hso_dev); /* done, return it */ return hso_dev; exit: if (serial) { tty_unregister_device(tty_drv, serial->minor); kfree(serial); } if (hso_dev) kfree(hso_dev); return NULL; } static void hso_free_shared_int(struct hso_shared_int *mux) { usb_free_urb(mux->shared_intr_urb); kfree(mux->shared_intr_buf); mutex_unlock(&mux->shared_int_lock); kfree(mux); } static struct hso_shared_int *hso_create_shared_int(struct usb_interface *interface) { struct hso_shared_int *mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) return NULL; mux->intr_endp = hso_get_ep(interface, USB_ENDPOINT_XFER_INT, USB_DIR_IN); if (!mux->intr_endp) { dev_err(&interface->dev, "Can't find INT IN endpoint\n"); goto exit; } mux->shared_intr_urb = usb_alloc_urb(0, GFP_KERNEL); if (!mux->shared_intr_urb) { dev_err(&interface->dev, "Could not allocate intr urb?\n"); goto exit; } mux->shared_intr_buf = kzalloc(le16_to_cpu(mux->intr_endp->wMaxPacketSize), GFP_KERNEL); if (!mux->shared_intr_buf) goto exit; mutex_init(&mux->shared_int_lock); return mux; exit: kfree(mux->shared_intr_buf); usb_free_urb(mux->shared_intr_urb); kfree(mux); return NULL; } /* Gets the port spec for a certain interface */ static int hso_get_config_data(struct usb_interface *interface) { struct usb_device *usbdev = interface_to_usbdev(interface); u8 *config_data = kmalloc(17, GFP_KERNEL); u32 if_num = interface->altsetting->desc.bInterfaceNumber; s32 result; if (!config_data) return -ENOMEM; if (usb_control_msg(usbdev, usb_rcvctrlpipe(usbdev, 0), 0x86, 0xC0, 0, 0, config_data, 17, USB_CTRL_SET_TIMEOUT) != 0x11) { kfree(config_data); return -EIO; } switch (config_data[if_num]) { case 0x0: result = 0; break; case 0x1: result = HSO_PORT_DIAG; break; case 0x2: result = HSO_PORT_GPS; break; case 0x3: result = HSO_PORT_GPS_CONTROL; break; case 0x4: result = HSO_PORT_APP; break; case 0x5: result = HSO_PORT_APP2; break; case 0x6: result = HSO_PORT_CONTROL; break; case 0x7: result = HSO_PORT_NETWORK; break; case 0x8: result = HSO_PORT_MODEM; break; case 0x9: result = HSO_PORT_MSD; break; case 0xa: result = HSO_PORT_PCSC; break; case 0xb: result = HSO_PORT_VOICE; break; default: result = 0; } if (result) result |= HSO_INTF_BULK; if (config_data[16] & 0x1) result |= HSO_INFO_CRC_BUG; kfree(config_data); return result; } /* called once for each interface upon device insertion */ static int hso_probe(struct usb_interface *interface, const struct usb_device_id *id) { int mux, i, if_num, port_spec; unsigned char port_mask; struct hso_device *hso_dev = NULL; struct hso_shared_int *shared_int; struct hso_device *tmp_dev = NULL; if (interface->cur_altsetting->desc.bInterfaceClass != 0xFF) { dev_err(&interface->dev, "Not our interface\n"); return -ENODEV; } if_num = interface->altsetting->desc.bInterfaceNumber; /* Get the interface/port specification from either driver_info or from * the device itself */ if (id->driver_info) port_spec = ((u32 *)(id->driver_info))[if_num]; else port_spec = hso_get_config_data(interface); /* Check if we need to switch to alt interfaces prior to port * configuration */ if (interface->num_altsetting > 1) usb_set_interface(interface_to_usbdev(interface), if_num, 1); interface->needs_remote_wakeup = 1; /* Allocate new hso device(s) */ switch (port_spec & HSO_INTF_MASK) { case HSO_INTF_MUX: if ((port_spec & HSO_PORT_MASK) == HSO_PORT_NETWORK) { /* Create the network device */ if (!disable_net) { hso_dev = hso_create_net_device(interface, port_spec); if (!hso_dev) goto exit; tmp_dev = hso_dev; } } if (hso_get_mux_ports(interface, &port_mask)) /* TODO: de-allocate everything */ goto exit; shared_int = hso_create_shared_int(interface); if (!shared_int) goto exit; for (i = 1, mux = 0; i < 0x100; i = i << 1, mux++) { if (port_mask & i) { hso_dev = hso_create_mux_serial_device( interface, i, shared_int); if (!hso_dev) goto exit; } } if (tmp_dev) hso_dev = tmp_dev; break; case HSO_INTF_BULK: /* It's a regular bulk interface */ if ((port_spec & HSO_PORT_MASK) == HSO_PORT_NETWORK) { if (!disable_net) hso_dev = hso_create_net_device(interface, port_spec); } else { hso_dev = hso_create_bulk_serial_device(interface, port_spec); } if (!hso_dev) goto exit; break; default: goto exit; } /* save our data pointer in this device */ usb_set_intfdata(interface, hso_dev); /* done */ return 0; exit: hso_free_interface(interface); return -ENODEV; } /* device removed, cleaning up */ static void hso_disconnect(struct usb_interface *interface) { hso_free_interface(interface); /* remove reference of our private data */ usb_set_intfdata(interface, NULL); } static void async_get_intf(struct work_struct *data) { struct hso_device *hso_dev = container_of(data, struct hso_device, async_get_intf); usb_autopm_get_interface(hso_dev->interface); } static void async_put_intf(struct work_struct *data) { struct hso_device *hso_dev = container_of(data, struct hso_device, async_put_intf); usb_autopm_put_interface(hso_dev->interface); } static int hso_get_activity(struct hso_device *hso_dev) { if (hso_dev->usb->state == USB_STATE_SUSPENDED) { if (!hso_dev->is_active) { hso_dev->is_active = 1; schedule_work(&hso_dev->async_get_intf); } } if (hso_dev->usb->state != USB_STATE_CONFIGURED) return -EAGAIN; usb_mark_last_busy(hso_dev->usb); return 0; } static int hso_put_activity(struct hso_device *hso_dev) { if (hso_dev->usb->state != USB_STATE_SUSPENDED) { if (hso_dev->is_active) { hso_dev->is_active = 0; schedule_work(&hso_dev->async_put_intf); return -EAGAIN; } } hso_dev->is_active = 0; return 0; } /* called by kernel when we need to suspend device */ static int hso_suspend(struct usb_interface *iface, pm_message_t message) { int i, result; /* Stop all serial ports */ for (i = 0; i < HSO_SERIAL_TTY_MINORS; i++) { if (serial_table[i] && (serial_table[i]->interface == iface)) { result = hso_stop_serial_device(serial_table[i]); if (result) goto out; } } /* Stop all network ports */ for (i = 0; i < HSO_MAX_NET_DEVICES; i++) { if (network_table[i] && (network_table[i]->interface == iface)) { result = hso_stop_net_device(network_table[i]); if (result) goto out; } } out: return 0; } /* called by kernel when we need to resume device */ static int hso_resume(struct usb_interface *iface) { int i, result = 0; struct hso_net *hso_net; /* Start all serial ports */ for (i = 0; i < HSO_SERIAL_TTY_MINORS; i++) { if (serial_table[i] && (serial_table[i]->interface == iface)) { if (dev2ser(serial_table[i])->port.count) { result = hso_start_serial_device(serial_table[i], GFP_NOIO); hso_kick_transmit(dev2ser(serial_table[i])); if (result) goto out; } } } /* Start all network ports */ for (i = 0; i < HSO_MAX_NET_DEVICES; i++) { if (network_table[i] && (network_table[i]->interface == iface)) { hso_net = dev2net(network_table[i]); if (hso_net->flags & IFF_UP) { /* First transmit any lingering data, then restart the device. */ if (hso_net->skb_tx_buf) { dev_dbg(&iface->dev, "Transmitting" " lingering data\n"); hso_net_start_xmit(hso_net->skb_tx_buf, hso_net->net); hso_net->skb_tx_buf = NULL; } result = hso_start_net_device(network_table[i]); if (result) goto out; } } } out: return result; } static void reset_device(struct work_struct *data) { struct hso_device *hso_dev = container_of(data, struct hso_device, reset_device); struct usb_device *usb = hso_dev->usb; int result; if (hso_dev->usb_gone) { D1("No reset during disconnect\n"); } else { result = usb_lock_device_for_reset(usb, hso_dev->interface); if (result < 0) D1("unable to lock device for reset: %d\n", result); else { usb_reset_device(usb); usb_unlock_device(usb); } } } static void hso_serial_ref_free(struct kref *ref) { struct hso_device *hso_dev = container_of(ref, struct hso_device, ref); hso_free_serial_device(hso_dev); } static void hso_free_interface(struct usb_interface *interface) { struct hso_serial *hso_dev; int i; for (i = 0; i < HSO_SERIAL_TTY_MINORS; i++) { if (serial_table[i] && (serial_table[i]->interface == interface)) { hso_dev = dev2ser(serial_table[i]); tty_port_tty_hangup(&hso_dev->port, false); mutex_lock(&hso_dev->parent->mutex); hso_dev->parent->usb_gone = 1; mutex_unlock(&hso_dev->parent->mutex); kref_put(&serial_table[i]->ref, hso_serial_ref_free); } } for (i = 0; i < HSO_MAX_NET_DEVICES; i++) { if (network_table[i] && (network_table[i]->interface == interface)) { struct rfkill *rfk = dev2net(network_table[i])->rfkill; /* hso_stop_net_device doesn't stop the net queue since * traffic needs to start it again when suspended */ netif_stop_queue(dev2net(network_table[i])->net); hso_stop_net_device(network_table[i]); cancel_work_sync(&network_table[i]->async_put_intf); cancel_work_sync(&network_table[i]->async_get_intf); if (rfk) { rfkill_unregister(rfk); rfkill_destroy(rfk); } hso_free_net_device(network_table[i]); } } } /* Helper functions */ /* Get the endpoint ! */ static struct usb_endpoint_descriptor *hso_get_ep(struct usb_interface *intf, int type, int dir) { int i; struct usb_host_interface *iface = intf->cur_altsetting; struct usb_endpoint_descriptor *endp; for (i = 0; i < iface->desc.bNumEndpoints; i++) { endp = &iface->endpoint[i].desc; if (((endp->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == dir) && (usb_endpoint_type(endp) == type)) return endp; } return NULL; } /* Get the byte that describes which ports are enabled */ static int hso_get_mux_ports(struct usb_interface *intf, unsigned char *ports) { int i; struct usb_host_interface *iface = intf->cur_altsetting; if (iface->extralen == 3) { *ports = iface->extra[2]; return 0; } for (i = 0; i < iface->desc.bNumEndpoints; i++) { if (iface->endpoint[i].extralen == 3) { *ports = iface->endpoint[i].extra[2]; return 0; } } return -1; } /* interrupt urb needs to be submitted, used for serial read of muxed port */ static int hso_mux_submit_intr_urb(struct hso_shared_int *shared_int, struct usb_device *usb, gfp_t gfp) { int result; usb_fill_int_urb(shared_int->shared_intr_urb, usb, usb_rcvintpipe(usb, shared_int->intr_endp->bEndpointAddress & 0x7F), shared_int->shared_intr_buf, 1, intr_callback, shared_int, shared_int->intr_endp->bInterval); result = usb_submit_urb(shared_int->shared_intr_urb, gfp); if (result) dev_warn(&usb->dev, "%s failed mux_intr_urb %d\n", __func__, result); return result; } /* operations setup of the serial interface */ static const struct tty_operations hso_serial_ops = { .open = hso_serial_open, .close = hso_serial_close, .write = hso_serial_write, .write_room = hso_serial_write_room, .ioctl = hso_serial_ioctl, .set_termios = hso_serial_set_termios, .chars_in_buffer = hso_serial_chars_in_buffer, .tiocmget = hso_serial_tiocmget, .tiocmset = hso_serial_tiocmset, .get_icount = hso_get_count, .unthrottle = hso_unthrottle }; static struct usb_driver hso_driver = { .name = driver_name, .probe = hso_probe, .disconnect = hso_disconnect, .id_table = hso_ids, .suspend = hso_suspend, .resume = hso_resume, .reset_resume = hso_resume, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; static int __init hso_init(void) { int i; int result; /* put it in the log */ printk(KERN_INFO "hso: %s\n", version); /* Initialise the serial table semaphore and table */ spin_lock_init(&serial_table_lock); for (i = 0; i < HSO_SERIAL_TTY_MINORS; i++) serial_table[i] = NULL; /* allocate our driver using the proper amount of supported minors */ tty_drv = alloc_tty_driver(HSO_SERIAL_TTY_MINORS); if (!tty_drv) return -ENOMEM; /* fill in all needed values */ tty_drv->driver_name = driver_name; tty_drv->name = tty_filename; /* if major number is provided as parameter, use that one */ if (tty_major) tty_drv->major = tty_major; tty_drv->minor_start = 0; tty_drv->type = TTY_DRIVER_TYPE_SERIAL; tty_drv->subtype = SERIAL_TYPE_NORMAL; tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; tty_drv->init_termios = tty_std_termios; hso_init_termios(&tty_drv->init_termios); tty_set_operations(tty_drv, &hso_serial_ops); /* register the tty driver */ result = tty_register_driver(tty_drv); if (result) { printk(KERN_ERR "%s - tty_register_driver failed(%d)\n", __func__, result); goto err_free_tty; } /* register this module as an usb driver */ result = usb_register(&hso_driver); if (result) { printk(KERN_ERR "Could not register hso driver? error: %d\n", result); goto err_unreg_tty; } /* done */ return 0; err_unreg_tty: tty_unregister_driver(tty_drv); err_free_tty: put_tty_driver(tty_drv); return result; } static void __exit hso_exit(void) { printk(KERN_INFO "hso: unloaded\n"); tty_unregister_driver(tty_drv); put_tty_driver(tty_drv); /* deregister the usb driver */ usb_deregister(&hso_driver); } /* Module definitions */ module_init(hso_init); module_exit(hso_exit); MODULE_AUTHOR(MOD_AUTHOR); MODULE_DESCRIPTION(MOD_DESCRIPTION); MODULE_LICENSE(MOD_LICENSE); /* change the debug level (eg: insmod hso.ko debug=0x04) */ MODULE_PARM_DESC(debug, "Level of debug [0x01 | 0x02 | 0x04 | 0x08 | 0x10]"); module_param(debug, int, S_IRUGO | S_IWUSR); /* set the major tty number (eg: insmod hso.ko tty_major=245) */ MODULE_PARM_DESC(tty_major, "Set the major tty number"); module_param(tty_major, int, S_IRUGO | S_IWUSR); /* disable network interface (eg: insmod hso.ko disable_net=1) */ MODULE_PARM_DESC(disable_net, "Disable the network interface"); module_param(disable_net, int, S_IRUGO | S_IWUSR);