// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include #include #include "misc.h" #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" #include "disk-io.h" #include "compression.h" #include "delalloc-space.h" #include "qgroup.h" static struct kmem_cache *btrfs_ordered_extent_cache; static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->num_bytes < entry->file_offset) return (u64)-1; return entry->file_offset + entry->num_bytes; } /* returns NULL if the insertion worked, or it returns the node it did find * in the tree */ static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_ordered_extent *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * look for a given offset in the tree, and if it can't be found return the * first lesser offset */ static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while (n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while (prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while (prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } /* * helper to check if a given offset is inside a given entry */ static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) { if (file_offset < entry->file_offset || entry->file_offset + entry->num_bytes <= file_offset) return 0; return 1; } static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, u64 len) { if (file_offset + len <= entry->file_offset || entry->file_offset + entry->num_bytes <= file_offset) return 0; return 1; } /* * look find the first ordered struct that has this offset, otherwise * the first one less than this offset */ static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, u64 file_offset) { struct rb_root *root = &tree->tree; struct rb_node *prev = NULL; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (tree->last) { entry = rb_entry(tree->last, struct btrfs_ordered_extent, rb_node); if (offset_in_entry(entry, file_offset)) return tree->last; } ret = __tree_search(root, file_offset, &prev); if (!ret) ret = prev; if (ret) tree->last = ret; return ret; } /* * Allocate and add a new ordered_extent into the per-inode tree. * * The tree is given a single reference on the ordered extent that was * inserted. */ static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type, int dio, int compress_type) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *node; struct btrfs_ordered_extent *entry; int ret; if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { /* For nocow write, we can release the qgroup rsv right now */ ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); if (ret < 0) return ret; ret = 0; } else { /* * The ordered extent has reserved qgroup space, release now * and pass the reserved number for qgroup_record to free. */ ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); if (ret < 0) return ret; } entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); if (!entry) return -ENOMEM; entry->file_offset = file_offset; entry->disk_bytenr = disk_bytenr; entry->num_bytes = num_bytes; entry->disk_num_bytes = disk_num_bytes; entry->bytes_left = num_bytes; entry->inode = igrab(&inode->vfs_inode); entry->compress_type = compress_type; entry->truncated_len = (u64)-1; entry->qgroup_rsv = ret; if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) set_bit(type, &entry->flags); if (dio) { percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes, fs_info->delalloc_batch); set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); } /* one ref for the tree */ refcount_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); INIT_LIST_HEAD(&entry->log_list); INIT_LIST_HEAD(&entry->root_extent_list); INIT_LIST_HEAD(&entry->work_list); init_completion(&entry->completion); trace_btrfs_ordered_extent_add(inode, entry); spin_lock_irq(&tree->lock); node = tree_insert(&tree->tree, file_offset, &entry->rb_node); if (node) btrfs_panic(fs_info, -EEXIST, "inconsistency in ordered tree at offset %llu", file_offset); spin_unlock_irq(&tree->lock); spin_lock(&root->ordered_extent_lock); list_add_tail(&entry->root_extent_list, &root->ordered_extents); root->nr_ordered_extents++; if (root->nr_ordered_extents == 1) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(!list_empty(&root->ordered_root)); list_add_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); /* * We don't need the count_max_extents here, we can assume that all of * that work has been done at higher layers, so this is truly the * smallest the extent is going to get. */ spin_lock(&inode->lock); btrfs_mod_outstanding_extents(inode, 1); spin_unlock(&inode->lock); return 0; } int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 0, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 1, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type, int compress_type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 0, compress_type); } /* * Add a struct btrfs_ordered_sum into the list of checksums to be inserted * when an ordered extent is finished. If the list covers more than one * ordered extent, it is split across multiples. */ void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, struct btrfs_ordered_sum *sum) { struct btrfs_ordered_inode_tree *tree; tree = &BTRFS_I(entry->inode)->ordered_tree; spin_lock_irq(&tree->lock); list_add_tail(&sum->list, &entry->list); spin_unlock_irq(&tree->lock); } /* * this is used to account for finished IO across a given range * of the file. The IO may span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. * * file_offset is updated to one byte past the range that is recorded as * complete. This allows you to walk forward in the file. */ int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, struct btrfs_ordered_extent **cached, u64 *file_offset, u64 io_size, int uptodate) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; int ret; unsigned long flags; u64 dec_end; u64 dec_start; u64 to_dec; spin_lock_irqsave(&tree->lock, flags); node = tree_search(tree, *file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, *file_offset)) { ret = 1; goto out; } dec_start = max(*file_offset, entry->file_offset); dec_end = min(*file_offset + io_size, entry->file_offset + entry->num_bytes); *file_offset = dec_end; if (dec_start > dec_end) { btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", dec_start, dec_end); } to_dec = dec_end - dec_start; if (to_dec > entry->bytes_left) { btrfs_crit(fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, to_dec); } entry->bytes_left -= to_dec; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); /* test_and_set_bit implies a barrier */ cond_wake_up_nomb(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; refcount_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* * this is used to account for finished IO across a given range * of the file. The IO should not span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. */ int btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, struct btrfs_ordered_extent **cached, u64 file_offset, u64 io_size, int uptodate) { struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; int ret; spin_lock_irqsave(&tree->lock, flags); if (cached && *cached) { entry = *cached; goto have_entry; } node = tree_search(tree, file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); have_entry: if (!offset_in_entry(entry, file_offset)) { ret = 1; goto out; } if (io_size > entry->bytes_left) { btrfs_crit(inode->root->fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, io_size); } entry->bytes_left -= io_size; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); /* test_and_set_bit implies a barrier */ cond_wake_up_nomb(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; refcount_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* * used to drop a reference on an ordered extent. This will free * the extent if the last reference is dropped */ void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { struct list_head *cur; struct btrfs_ordered_sum *sum; trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); if (refcount_dec_and_test(&entry->refs)) { ASSERT(list_empty(&entry->root_extent_list)); ASSERT(list_empty(&entry->log_list)); ASSERT(RB_EMPTY_NODE(&entry->rb_node)); if (entry->inode) btrfs_add_delayed_iput(entry->inode); while (!list_empty(&entry->list)) { cur = entry->list.next; sum = list_entry(cur, struct btrfs_ordered_sum, list); list_del(&sum->list); kvfree(sum); } kmem_cache_free(btrfs_ordered_extent_cache, entry); } } /* * remove an ordered extent from the tree. No references are dropped * and waiters are woken up. */ void btrfs_remove_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ordered_inode_tree *tree; struct btrfs_inode *btrfs_inode = BTRFS_I(inode); struct btrfs_root *root = btrfs_inode->root; struct rb_node *node; bool pending; /* This is paired with btrfs_add_ordered_extent. */ spin_lock(&btrfs_inode->lock); btrfs_mod_outstanding_extents(btrfs_inode, -1); spin_unlock(&btrfs_inode->lock); if (root != fs_info->tree_root) btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, false); if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes, fs_info->delalloc_batch); tree = &btrfs_inode->ordered_tree; spin_lock_irq(&tree->lock); node = &entry->rb_node; rb_erase(node, &tree->tree); RB_CLEAR_NODE(node); if (tree->last == node) tree->last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); spin_unlock_irq(&tree->lock); /* * The current running transaction is waiting on us, we need to let it * know that we're complete and wake it up. */ if (pending) { struct btrfs_transaction *trans; /* * The checks for trans are just a formality, it should be set, * but if it isn't we don't want to deref/assert under the spin * lock, so be nice and check if trans is set, but ASSERT() so * if it isn't set a developer will notice. */ spin_lock(&fs_info->trans_lock); trans = fs_info->running_transaction; if (trans) refcount_inc(&trans->use_count); spin_unlock(&fs_info->trans_lock); ASSERT(trans); if (trans) { if (atomic_dec_and_test(&trans->pending_ordered)) wake_up(&trans->pending_wait); btrfs_put_transaction(trans); } } spin_lock(&root->ordered_extent_lock); list_del_init(&entry->root_extent_list); root->nr_ordered_extents--; trace_btrfs_ordered_extent_remove(BTRFS_I(inode), entry); if (!root->nr_ordered_extents) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(list_empty(&root->ordered_root)); list_del_init(&root->ordered_root); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); wake_up(&entry->wait); } static void btrfs_run_ordered_extent_work(struct btrfs_work *work) { struct btrfs_ordered_extent *ordered; ordered = container_of(work, struct btrfs_ordered_extent, flush_work); btrfs_start_ordered_extent(ordered->inode, ordered, 1); complete(&ordered->completion); } /* * wait for all the ordered extents in a root. This is done when balancing * space between drives. */ u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, const u64 range_start, const u64 range_len) { struct btrfs_fs_info *fs_info = root->fs_info; LIST_HEAD(splice); LIST_HEAD(skipped); LIST_HEAD(works); struct btrfs_ordered_extent *ordered, *next; u64 count = 0; const u64 range_end = range_start + range_len; mutex_lock(&root->ordered_extent_mutex); spin_lock(&root->ordered_extent_lock); list_splice_init(&root->ordered_extents, &splice); while (!list_empty(&splice) && nr) { ordered = list_first_entry(&splice, struct btrfs_ordered_extent, root_extent_list); if (range_end <= ordered->disk_bytenr || ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { list_move_tail(&ordered->root_extent_list, &skipped); cond_resched_lock(&root->ordered_extent_lock); continue; } list_move_tail(&ordered->root_extent_list, &root->ordered_extents); refcount_inc(&ordered->refs); spin_unlock(&root->ordered_extent_lock); btrfs_init_work(&ordered->flush_work, btrfs_run_ordered_extent_work, NULL, NULL); list_add_tail(&ordered->work_list, &works); btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); cond_resched(); spin_lock(&root->ordered_extent_lock); if (nr != U64_MAX) nr--; count++; } list_splice_tail(&skipped, &root->ordered_extents); list_splice_tail(&splice, &root->ordered_extents); spin_unlock(&root->ordered_extent_lock); list_for_each_entry_safe(ordered, next, &works, work_list) { list_del_init(&ordered->work_list); wait_for_completion(&ordered->completion); btrfs_put_ordered_extent(ordered); cond_resched(); } mutex_unlock(&root->ordered_extent_mutex); return count; } void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, const u64 range_start, const u64 range_len) { struct btrfs_root *root; struct list_head splice; u64 done; INIT_LIST_HEAD(&splice); mutex_lock(&fs_info->ordered_operations_mutex); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice) && nr) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); root = btrfs_grab_root(root); BUG_ON(!root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); done = btrfs_wait_ordered_extents(root, nr, range_start, range_len); btrfs_put_root(root); spin_lock(&fs_info->ordered_root_lock); if (nr != U64_MAX) { nr -= done; } } list_splice_tail(&splice, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); mutex_unlock(&fs_info->ordered_operations_mutex); } /* * Used to start IO or wait for a given ordered extent to finish. * * If wait is one, this effectively waits on page writeback for all the pages * in the extent, and it waits on the io completion code to insert * metadata into the btree corresponding to the extent */ void btrfs_start_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry, int wait) { u64 start = entry->file_offset; u64 end = start + entry->num_bytes - 1; trace_btrfs_ordered_extent_start(BTRFS_I(inode), entry); /* * pages in the range can be dirty, clean or writeback. We * start IO on any dirty ones so the wait doesn't stall waiting * for the flusher thread to find them */ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) filemap_fdatawrite_range(inode->i_mapping, start, end); if (wait) { wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } } /* * Used to wait on ordered extents across a large range of bytes. */ int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) { int ret = 0; int ret_wb = 0; u64 end; u64 orig_end; struct btrfs_ordered_extent *ordered; if (start + len < start) { orig_end = INT_LIMIT(loff_t); } else { orig_end = start + len - 1; if (orig_end > INT_LIMIT(loff_t)) orig_end = INT_LIMIT(loff_t); } /* start IO across the range first to instantiate any delalloc * extents */ ret = btrfs_fdatawrite_range(inode, start, orig_end); if (ret) return ret; /* * If we have a writeback error don't return immediately. Wait first * for any ordered extents that haven't completed yet. This is to make * sure no one can dirty the same page ranges and call writepages() * before the ordered extents complete - to avoid failures (-EEXIST) * when adding the new ordered extents to the ordered tree. */ ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); end = orig_end; while (1) { ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); if (!ordered) break; if (ordered->file_offset > orig_end) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->num_bytes <= start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(inode, ordered, 1); end = ordered->file_offset; /* * If the ordered extent had an error save the error but don't * exit without waiting first for all other ordered extents in * the range to complete. */ if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) ret = -EIO; btrfs_put_ordered_extent(ordered); if (end == 0 || end == start) break; end--; } return ret_wb ? ret_wb : ret; } /* * find an ordered extent corresponding to file_offset. return NULL if * nothing is found, otherwise take a reference on the extent and return it */ struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) entry = NULL; if (entry) refcount_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* Since the DIO code tries to lock a wide area we need to look for any ordered * extents that exist in the range, rather than just the start of the range. */ struct btrfs_ordered_extent *btrfs_lookup_ordered_range( struct btrfs_inode *inode, u64 file_offset, u64 len) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) { node = tree_search(tree, file_offset + len); if (!node) goto out; } while (1) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) break; if (entry->file_offset >= file_offset + len) { entry = NULL; break; } entry = NULL; node = rb_next(node); if (!node) break; } out: if (entry) refcount_inc(&entry->refs); spin_unlock_irq(&tree->lock); return entry; } /* * Adds all ordered extents to the given list. The list ends up sorted by the * file_offset of the ordered extents. */ void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, struct list_head *list) { struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *n; ASSERT(inode_is_locked(&inode->vfs_inode)); spin_lock_irq(&tree->lock); for (n = rb_first(&tree->tree); n; n = rb_next(n)) { struct btrfs_ordered_extent *ordered; ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) continue; ASSERT(list_empty(&ordered->log_list)); list_add_tail(&ordered->log_list, list); refcount_inc(&ordered->refs); } spin_unlock_irq(&tree->lock); } /* * lookup and return any extent before 'file_offset'. NULL is returned * if none is found */ struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); refcount_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* * search the ordered extents for one corresponding to 'offset' and * try to find a checksum. This is used because we allow pages to * be reclaimed before their checksum is actually put into the btree */ int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u8 *sum, int len) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ordered_sum *ordered_sum; struct btrfs_ordered_extent *ordered; struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; unsigned long num_sectors; unsigned long i; u32 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); int index = 0; ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset); if (!ordered) return 0; spin_lock_irq(&tree->lock); list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { if (disk_bytenr >= ordered_sum->bytenr && disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { i = (disk_bytenr - ordered_sum->bytenr) >> inode->i_sb->s_blocksize_bits; num_sectors = ordered_sum->len >> inode->i_sb->s_blocksize_bits; num_sectors = min_t(int, len - index, num_sectors - i); memcpy(sum + index, ordered_sum->sums + i * csum_size, num_sectors * csum_size); index += (int)num_sectors * csum_size; if (index == len) goto out; disk_bytenr += num_sectors * sectorsize; } } out: spin_unlock_irq(&tree->lock); btrfs_put_ordered_extent(ordered); return index; } /* * btrfs_flush_ordered_range - Lock the passed range and ensures all pending * ordered extents in it are run to completion. * * @inode: Inode whose ordered tree is to be searched * @start: Beginning of range to flush * @end: Last byte of range to lock * @cached_state: If passed, will return the extent state responsible for the * locked range. It's the caller's responsibility to free the cached state. * * This function always returns with the given range locked, ensuring after it's * called no order extent can be pending. */ void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, struct extent_state **cached_state) { struct btrfs_ordered_extent *ordered; struct extent_state *cache = NULL; struct extent_state **cachedp = &cache; if (cached_state) cachedp = cached_state; while (1) { lock_extent_bits(&inode->io_tree, start, end, cachedp); ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); if (!ordered) { /* * If no external cached_state has been passed then * decrement the extra ref taken for cachedp since we * aren't exposing it outside of this function */ if (!cached_state) refcount_dec(&cache->refs); break; } unlock_extent_cached(&inode->io_tree, start, end, cachedp); btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); btrfs_put_ordered_extent(ordered); } } int __init ordered_data_init(void) { btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", sizeof(struct btrfs_ordered_extent), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_ordered_extent_cache) return -ENOMEM; return 0; } void __cold ordered_data_exit(void) { kmem_cache_destroy(btrfs_ordered_extent_cache); }