// SPDX-License-Identifier: GPL-2.0-only /* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* This file implements TNC functions for committing */ #include <linux/random.h> #include "ubifs.h" /** * make_idx_node - make an index node for fill-the-gaps method of TNC commit. * @c: UBIFS file-system description object * @idx: buffer in which to place new index node * @znode: znode from which to make new index node * @lnum: LEB number where new index node will be written * @offs: offset where new index node will be written * @len: length of new index node */ static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, struct ubifs_znode *znode, int lnum, int offs, int len) { struct ubifs_znode *zp; u8 hash[UBIFS_HASH_ARR_SZ]; int i, err; /* Make index node */ idx->ch.node_type = UBIFS_IDX_NODE; idx->child_cnt = cpu_to_le16(znode->child_cnt); idx->level = cpu_to_le16(znode->level); for (i = 0; i < znode->child_cnt; i++) { struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); struct ubifs_zbranch *zbr = &znode->zbranch[i]; key_write_idx(c, &zbr->key, &br->key); br->lnum = cpu_to_le32(zbr->lnum); br->offs = cpu_to_le32(zbr->offs); br->len = cpu_to_le32(zbr->len); ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); if (!zbr->lnum || !zbr->len) { ubifs_err(c, "bad ref in znode"); ubifs_dump_znode(c, znode); if (zbr->znode) ubifs_dump_znode(c, zbr->znode); return -EINVAL; } } ubifs_prepare_node(c, idx, len, 0); ubifs_node_calc_hash(c, idx, hash); znode->lnum = lnum; znode->offs = offs; znode->len = len; err = insert_old_idx_znode(c, znode); /* Update the parent */ zp = znode->parent; if (zp) { struct ubifs_zbranch *zbr; zbr = &zp->zbranch[znode->iip]; zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; ubifs_copy_hash(c, hash, zbr->hash); } else { c->zroot.lnum = lnum; c->zroot.offs = offs; c->zroot.len = len; ubifs_copy_hash(c, hash, c->zroot.hash); } c->calc_idx_sz += ALIGN(len, 8); atomic_long_dec(&c->dirty_zn_cnt); ubifs_assert(c, ubifs_zn_dirty(znode)); ubifs_assert(c, ubifs_zn_cow(znode)); /* * Note, unlike 'write_index()' we do not add memory barriers here * because this function is called with @c->tnc_mutex locked. */ __clear_bit(DIRTY_ZNODE, &znode->flags); __clear_bit(COW_ZNODE, &znode->flags); return err; } /** * fill_gap - make index nodes in gaps in dirty index LEBs. * @c: UBIFS file-system description object * @lnum: LEB number that gap appears in * @gap_start: offset of start of gap * @gap_end: offset of end of gap * @dirt: adds dirty space to this * * This function returns the number of index nodes written into the gap. */ static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, int *dirt) { int len, gap_remains, gap_pos, written, pad_len; ubifs_assert(c, (gap_start & 7) == 0); ubifs_assert(c, (gap_end & 7) == 0); ubifs_assert(c, gap_end >= gap_start); gap_remains = gap_end - gap_start; if (!gap_remains) return 0; gap_pos = gap_start; written = 0; while (c->enext) { len = ubifs_idx_node_sz(c, c->enext->child_cnt); if (len < gap_remains) { struct ubifs_znode *znode = c->enext; const int alen = ALIGN(len, 8); int err; ubifs_assert(c, alen <= gap_remains); err = make_idx_node(c, c->ileb_buf + gap_pos, znode, lnum, gap_pos, len); if (err) return err; gap_remains -= alen; gap_pos += alen; c->enext = znode->cnext; if (c->enext == c->cnext) c->enext = NULL; written += 1; } else break; } if (gap_end == c->leb_size) { c->ileb_len = ALIGN(gap_pos, c->min_io_size); /* Pad to end of min_io_size */ pad_len = c->ileb_len - gap_pos; } else /* Pad to end of gap */ pad_len = gap_remains; dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); *dirt += pad_len; return written; } /** * find_old_idx - find an index node obsoleted since the last commit start. * @c: UBIFS file-system description object * @lnum: LEB number of obsoleted index node * @offs: offset of obsoleted index node * * Returns %1 if found and %0 otherwise. */ static int find_old_idx(struct ubifs_info *c, int lnum, int offs) { struct ubifs_old_idx *o; struct rb_node *p; p = c->old_idx.rb_node; while (p) { o = rb_entry(p, struct ubifs_old_idx, rb); if (lnum < o->lnum) p = p->rb_left; else if (lnum > o->lnum) p = p->rb_right; else if (offs < o->offs) p = p->rb_left; else if (offs > o->offs) p = p->rb_right; else return 1; } return 0; } /** * is_idx_node_in_use - determine if an index node can be overwritten. * @c: UBIFS file-system description object * @key: key of index node * @level: index node level * @lnum: LEB number of index node * @offs: offset of index node * * If @key / @lnum / @offs identify an index node that was not part of the old * index, then this function returns %0 (obsolete). Else if the index node was * part of the old index but is now dirty %1 is returned, else if it is clean %2 * is returned. A negative error code is returned on failure. */ static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs) { int ret; ret = is_idx_node_in_tnc(c, key, level, lnum, offs); if (ret < 0) return ret; /* Error code */ if (ret == 0) if (find_old_idx(c, lnum, offs)) return 1; return ret; } /** * layout_leb_in_gaps - layout index nodes using in-the-gaps method. * @c: UBIFS file-system description object * @p: return LEB number in @c->gap_lebs[p] * * This function lays out new index nodes for dirty znodes using in-the-gaps * method of TNC commit. * This function merely puts the next znode into the next gap, making no attempt * to try to maximise the number of znodes that fit. * This function returns the number of index nodes written into the gaps, or a * negative error code on failure. */ static int layout_leb_in_gaps(struct ubifs_info *c, int p) { struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; tot_written = 0; /* Get an index LEB with lots of obsolete index nodes */ lnum = ubifs_find_dirty_idx_leb(c); if (lnum < 0) /* * There also may be dirt in the index head that could be * filled, however we do not check there at present. */ return lnum; /* Error code */ c->gap_lebs[p] = lnum; dbg_gc("LEB %d", lnum); /* * Scan the index LEB. We use the generic scan for this even though * it is more comprehensive and less efficient than is needed for this * purpose. */ sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); c->ileb_len = 0; if (IS_ERR(sleb)) return PTR_ERR(sleb); gap_start = 0; list_for_each_entry(snod, &sleb->nodes, list) { struct ubifs_idx_node *idx; int in_use, level; ubifs_assert(c, snod->type == UBIFS_IDX_NODE); idx = snod->node; key_read(c, ubifs_idx_key(c, idx), &snod->key); level = le16_to_cpu(idx->level); /* Determine if the index node is in use (not obsolete) */ in_use = is_idx_node_in_use(c, &snod->key, level, lnum, snod->offs); if (in_use < 0) { ubifs_scan_destroy(sleb); return in_use; /* Error code */ } if (in_use) { if (in_use == 1) dirt += ALIGN(snod->len, 8); /* * The obsolete index nodes form gaps that can be * overwritten. This gap has ended because we have * found an index node that is still in use * i.e. not obsolete */ gap_end = snod->offs; /* Try to fill gap */ written = fill_gap(c, lnum, gap_start, gap_end, &dirt); if (written < 0) { ubifs_scan_destroy(sleb); return written; /* Error code */ } tot_written += written; gap_start = ALIGN(snod->offs + snod->len, 8); } } ubifs_scan_destroy(sleb); c->ileb_len = c->leb_size; gap_end = c->leb_size; /* Try to fill gap */ written = fill_gap(c, lnum, gap_start, gap_end, &dirt); if (written < 0) return written; /* Error code */ tot_written += written; if (tot_written == 0) { struct ubifs_lprops lp; dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); err = ubifs_read_one_lp(c, lnum, &lp); if (err) return err; if (lp.free == c->leb_size) { /* * We must have snatched this LEB from the idx_gc list * so we need to correct the free and dirty space. */ err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 0, 0, 0); if (err) return err; } return 0; } err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 0, 0, 0); if (err) return err; err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); if (err) return err; dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); return tot_written; } /** * get_leb_cnt - calculate the number of empty LEBs needed to commit. * @c: UBIFS file-system description object * @cnt: number of znodes to commit * * This function returns the number of empty LEBs needed to commit @cnt znodes * to the current index head. The number is not exact and may be more than * needed. */ static int get_leb_cnt(struct ubifs_info *c, int cnt) { int d; /* Assume maximum index node size (i.e. overestimate space needed) */ cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; if (cnt < 0) cnt = 0; d = c->leb_size / c->max_idx_node_sz; return DIV_ROUND_UP(cnt, d); } /** * layout_in_gaps - in-the-gaps method of committing TNC. * @c: UBIFS file-system description object * @cnt: number of dirty znodes to commit. * * This function lays out new index nodes for dirty znodes using in-the-gaps * method of TNC commit. * * This function returns %0 on success and a negative error code on failure. */ static int layout_in_gaps(struct ubifs_info *c, int cnt) { int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs; dbg_gc("%d znodes to write", cnt); c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int), GFP_NOFS); if (!c->gap_lebs) return -ENOMEM; old_idx_lebs = c->lst.idx_lebs; do { ubifs_assert(c, p < c->lst.idx_lebs); written = layout_leb_in_gaps(c, p); if (written < 0) { err = written; if (err != -ENOSPC) { kfree(c->gap_lebs); c->gap_lebs = NULL; return err; } if (!dbg_is_chk_index(c)) { /* * Do not print scary warnings if the debugging * option which forces in-the-gaps is enabled. */ ubifs_warn(c, "out of space"); ubifs_dump_budg(c, &c->bi); ubifs_dump_lprops(c); } /* Try to commit anyway */ break; } p++; cnt -= written; leb_needed_cnt = get_leb_cnt(c, cnt); dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, leb_needed_cnt, c->ileb_cnt); /* * Dynamically change the size of @c->gap_lebs to prevent * oob, because @c->lst.idx_lebs could be increased by * function @get_idx_gc_leb (called by layout_leb_in_gaps-> * ubifs_find_dirty_idx_leb) during loop. Only enlarge * @c->gap_lebs when needed. * */ if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs && old_idx_lebs < c->lst.idx_lebs) { old_idx_lebs = c->lst.idx_lebs; gap_lebs = krealloc(c->gap_lebs, sizeof(int) * (old_idx_lebs + 1), GFP_NOFS); if (!gap_lebs) { kfree(c->gap_lebs); c->gap_lebs = NULL; return -ENOMEM; } c->gap_lebs = gap_lebs; } } while (leb_needed_cnt > c->ileb_cnt); c->gap_lebs[p] = -1; return 0; } /** * layout_in_empty_space - layout index nodes in empty space. * @c: UBIFS file-system description object * * This function lays out new index nodes for dirty znodes using empty LEBs. * * This function returns %0 on success and a negative error code on failure. */ static int layout_in_empty_space(struct ubifs_info *c) { struct ubifs_znode *znode, *cnext, *zp; int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; int wlen, blen, err; cnext = c->enext; if (!cnext) return 0; lnum = c->ihead_lnum; buf_offs = c->ihead_offs; buf_len = ubifs_idx_node_sz(c, c->fanout); buf_len = ALIGN(buf_len, c->min_io_size); used = 0; avail = buf_len; /* Ensure there is enough room for first write */ next_len = ubifs_idx_node_sz(c, cnext->child_cnt); if (buf_offs + next_len > c->leb_size) lnum = -1; while (1) { znode = cnext; len = ubifs_idx_node_sz(c, znode->child_cnt); /* Determine the index node position */ if (lnum == -1) { if (c->ileb_nxt >= c->ileb_cnt) { ubifs_err(c, "out of space"); return -ENOSPC; } lnum = c->ilebs[c->ileb_nxt++]; buf_offs = 0; used = 0; avail = buf_len; } offs = buf_offs + used; znode->lnum = lnum; znode->offs = offs; znode->len = len; /* Update the parent */ zp = znode->parent; if (zp) { struct ubifs_zbranch *zbr; int i; i = znode->iip; zbr = &zp->zbranch[i]; zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; } else { c->zroot.lnum = lnum; c->zroot.offs = offs; c->zroot.len = len; } c->calc_idx_sz += ALIGN(len, 8); /* * Once lprops is updated, we can decrease the dirty znode count * but it is easier to just do it here. */ atomic_long_dec(&c->dirty_zn_cnt); /* * Calculate the next index node length to see if there is * enough room for it */ cnext = znode->cnext; if (cnext == c->cnext) next_len = 0; else next_len = ubifs_idx_node_sz(c, cnext->child_cnt); /* Update buffer positions */ wlen = used + len; used += ALIGN(len, 8); avail -= ALIGN(len, 8); if (next_len != 0 && buf_offs + used + next_len <= c->leb_size && avail > 0) continue; if (avail <= 0 && next_len && buf_offs + used + next_len <= c->leb_size) blen = buf_len; else blen = ALIGN(wlen, c->min_io_size); /* The buffer is full or there are no more znodes to do */ buf_offs += blen; if (next_len) { if (buf_offs + next_len > c->leb_size) { err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, blen - used, 0, 0); if (err) return err; lnum = -1; } used -= blen; if (used < 0) used = 0; avail = buf_len - used; continue; } err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, blen - used, 0, 0); if (err) return err; break; } c->dbg->new_ihead_lnum = lnum; c->dbg->new_ihead_offs = buf_offs; return 0; } /** * layout_commit - determine positions of index nodes to commit. * @c: UBIFS file-system description object * @no_space: indicates that insufficient empty LEBs were allocated * @cnt: number of znodes to commit * * Calculate and update the positions of index nodes to commit. If there were * an insufficient number of empty LEBs allocated, then index nodes are placed * into the gaps created by obsolete index nodes in non-empty index LEBs. For * this purpose, an obsolete index node is one that was not in the index as at * the end of the last commit. To write "in-the-gaps" requires that those index * LEBs are updated atomically in-place. */ static int layout_commit(struct ubifs_info *c, int no_space, int cnt) { int err; if (no_space) { err = layout_in_gaps(c, cnt); if (err) return err; } err = layout_in_empty_space(c); return err; } /** * find_first_dirty - find first dirty znode. * @znode: znode to begin searching from */ static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) { int i, cont; if (!znode) return NULL; while (1) { if (znode->level == 0) { if (ubifs_zn_dirty(znode)) return znode; return NULL; } cont = 0; for (i = 0; i < znode->child_cnt; i++) { struct ubifs_zbranch *zbr = &znode->zbranch[i]; if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { znode = zbr->znode; cont = 1; break; } } if (!cont) { if (ubifs_zn_dirty(znode)) return znode; return NULL; } } } /** * find_next_dirty - find next dirty znode. * @znode: znode to begin searching from */ static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) { int n = znode->iip + 1; znode = znode->parent; if (!znode) return NULL; for (; n < znode->child_cnt; n++) { struct ubifs_zbranch *zbr = &znode->zbranch[n]; if (zbr->znode && ubifs_zn_dirty(zbr->znode)) return find_first_dirty(zbr->znode); } return znode; } /** * get_znodes_to_commit - create list of dirty znodes to commit. * @c: UBIFS file-system description object * * This function returns the number of znodes to commit. */ static int get_znodes_to_commit(struct ubifs_info *c) { struct ubifs_znode *znode, *cnext; int cnt = 0; c->cnext = find_first_dirty(c->zroot.znode); znode = c->enext = c->cnext; if (!znode) { dbg_cmt("no znodes to commit"); return 0; } cnt += 1; while (1) { ubifs_assert(c, !ubifs_zn_cow(znode)); __set_bit(COW_ZNODE, &znode->flags); znode->alt = 0; cnext = find_next_dirty(znode); if (!cnext) { znode->cnext = c->cnext; break; } znode->cparent = znode->parent; znode->ciip = znode->iip; znode->cnext = cnext; znode = cnext; cnt += 1; } dbg_cmt("committing %d znodes", cnt); ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt)); return cnt; } /** * alloc_idx_lebs - allocate empty LEBs to be used to commit. * @c: UBIFS file-system description object * @cnt: number of znodes to commit * * This function returns %-ENOSPC if it cannot allocate a sufficient number of * empty LEBs. %0 is returned on success, otherwise a negative error code * is returned. */ static int alloc_idx_lebs(struct ubifs_info *c, int cnt) { int i, leb_cnt, lnum; c->ileb_cnt = 0; c->ileb_nxt = 0; leb_cnt = get_leb_cnt(c, cnt); dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); if (!leb_cnt) return 0; c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS); if (!c->ilebs) return -ENOMEM; for (i = 0; i < leb_cnt; i++) { lnum = ubifs_find_free_leb_for_idx(c); if (lnum < 0) return lnum; c->ilebs[c->ileb_cnt++] = lnum; dbg_cmt("LEB %d", lnum); } if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) return -ENOSPC; return 0; } /** * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. * @c: UBIFS file-system description object * * It is possible that we allocate more empty LEBs for the commit than we need. * This functions frees the surplus. * * This function returns %0 on success and a negative error code on failure. */ static int free_unused_idx_lebs(struct ubifs_info *c) { int i, err = 0, lnum, er; for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { lnum = c->ilebs[i]; dbg_cmt("LEB %d", lnum); er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, LPROPS_INDEX | LPROPS_TAKEN, 0); if (!err) err = er; } return err; } /** * free_idx_lebs - free unused LEBs after commit end. * @c: UBIFS file-system description object * * This function returns %0 on success and a negative error code on failure. */ static int free_idx_lebs(struct ubifs_info *c) { int err; err = free_unused_idx_lebs(c); kfree(c->ilebs); c->ilebs = NULL; return err; } /** * ubifs_tnc_start_commit - start TNC commit. * @c: UBIFS file-system description object * @zroot: new index root position is returned here * * This function prepares the list of indexing nodes to commit and lays out * their positions on flash. If there is not enough free space it uses the * in-gap commit method. Returns zero in case of success and a negative error * code in case of failure. */ int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) { int err = 0, cnt; mutex_lock(&c->tnc_mutex); err = dbg_check_tnc(c, 1); if (err) goto out; cnt = get_znodes_to_commit(c); if (cnt != 0) { int no_space = 0; err = alloc_idx_lebs(c, cnt); if (err == -ENOSPC) no_space = 1; else if (err) goto out_free; err = layout_commit(c, no_space, cnt); if (err) goto out_free; ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0); err = free_unused_idx_lebs(c); if (err) goto out; } destroy_old_idx(c); memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); err = ubifs_save_dirty_idx_lnums(c); if (err) goto out; spin_lock(&c->space_lock); /* * Although we have not finished committing yet, update size of the * committed index ('c->bi.old_idx_sz') and zero out the index growth * budget. It is OK to do this now, because we've reserved all the * space which is needed to commit the index, and it is save for the * budgeting subsystem to assume the index is already committed, * even though it is not. */ ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); c->bi.old_idx_sz = c->calc_idx_sz; c->bi.uncommitted_idx = 0; c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); spin_unlock(&c->space_lock); mutex_unlock(&c->tnc_mutex); dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); dbg_cmt("size of index %llu", c->calc_idx_sz); return err; out_free: free_idx_lebs(c); out: mutex_unlock(&c->tnc_mutex); return err; } /** * write_index - write index nodes. * @c: UBIFS file-system description object * * This function writes the index nodes whose positions were laid out in the * layout_in_empty_space function. */ static int write_index(struct ubifs_info *c) { struct ubifs_idx_node *idx; struct ubifs_znode *znode, *cnext; int i, lnum, offs, len, next_len, buf_len, buf_offs, used; int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; cnext = c->enext; if (!cnext) return 0; /* * Always write index nodes to the index head so that index nodes and * other types of nodes are never mixed in the same erase block. */ lnum = c->ihead_lnum; buf_offs = c->ihead_offs; /* Allocate commit buffer */ buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); used = 0; avail = buf_len; /* Ensure there is enough room for first write */ next_len = ubifs_idx_node_sz(c, cnext->child_cnt); if (buf_offs + next_len > c->leb_size) { err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, LPROPS_TAKEN); if (err) return err; lnum = -1; } while (1) { u8 hash[UBIFS_HASH_ARR_SZ]; cond_resched(); znode = cnext; idx = c->cbuf + used; /* Make index node */ idx->ch.node_type = UBIFS_IDX_NODE; idx->child_cnt = cpu_to_le16(znode->child_cnt); idx->level = cpu_to_le16(znode->level); for (i = 0; i < znode->child_cnt; i++) { struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); struct ubifs_zbranch *zbr = &znode->zbranch[i]; key_write_idx(c, &zbr->key, &br->key); br->lnum = cpu_to_le32(zbr->lnum); br->offs = cpu_to_le32(zbr->offs); br->len = cpu_to_le32(zbr->len); ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); if (!zbr->lnum || !zbr->len) { ubifs_err(c, "bad ref in znode"); ubifs_dump_znode(c, znode); if (zbr->znode) ubifs_dump_znode(c, zbr->znode); return -EINVAL; } } len = ubifs_idx_node_sz(c, znode->child_cnt); ubifs_prepare_node(c, idx, len, 0); ubifs_node_calc_hash(c, idx, hash); mutex_lock(&c->tnc_mutex); if (znode->cparent) ubifs_copy_hash(c, hash, znode->cparent->zbranch[znode->ciip].hash); if (znode->parent) { if (!ubifs_zn_obsolete(znode)) ubifs_copy_hash(c, hash, znode->parent->zbranch[znode->iip].hash); } else { ubifs_copy_hash(c, hash, c->zroot.hash); } mutex_unlock(&c->tnc_mutex); /* Determine the index node position */ if (lnum == -1) { lnum = c->ilebs[lnum_pos++]; buf_offs = 0; used = 0; avail = buf_len; } offs = buf_offs + used; if (lnum != znode->lnum || offs != znode->offs || len != znode->len) { ubifs_err(c, "inconsistent znode posn"); return -EINVAL; } /* Grab some stuff from znode while we still can */ cnext = znode->cnext; ubifs_assert(c, ubifs_zn_dirty(znode)); ubifs_assert(c, ubifs_zn_cow(znode)); /* * It is important that other threads should see %DIRTY_ZNODE * flag cleared before %COW_ZNODE. Specifically, it matters in * the 'dirty_cow_znode()' function. This is the reason for the * first barrier. Also, we want the bit changes to be seen to * other threads ASAP, to avoid unnecesarry copying, which is * the reason for the second barrier. */ clear_bit(DIRTY_ZNODE, &znode->flags); smp_mb__before_atomic(); clear_bit(COW_ZNODE, &znode->flags); smp_mb__after_atomic(); /* * We have marked the znode as clean but have not updated the * @c->clean_zn_cnt counter. If this znode becomes dirty again * before 'free_obsolete_znodes()' is called, then * @c->clean_zn_cnt will be decremented before it gets * incremented (resulting in 2 decrements for the same znode). * This means that @c->clean_zn_cnt may become negative for a * while. * * Q: why we cannot increment @c->clean_zn_cnt? * A: because we do not have the @c->tnc_mutex locked, and the * following code would be racy and buggy: * * if (!ubifs_zn_obsolete(znode)) { * atomic_long_inc(&c->clean_zn_cnt); * atomic_long_inc(&ubifs_clean_zn_cnt); * } * * Thus, we just delay the @c->clean_zn_cnt update until we * have the mutex locked. */ /* Do not access znode from this point on */ /* Update buffer positions */ wlen = used + len; used += ALIGN(len, 8); avail -= ALIGN(len, 8); /* * Calculate the next index node length to see if there is * enough room for it */ if (cnext == c->cnext) next_len = 0; else next_len = ubifs_idx_node_sz(c, cnext->child_cnt); nxt_offs = buf_offs + used + next_len; if (next_len && nxt_offs <= c->leb_size) { if (avail > 0) continue; else blen = buf_len; } else { wlen = ALIGN(wlen, 8); blen = ALIGN(wlen, c->min_io_size); ubifs_pad(c, c->cbuf + wlen, blen - wlen); } /* The buffer is full or there are no more znodes to do */ err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); if (err) return err; buf_offs += blen; if (next_len) { if (nxt_offs > c->leb_size) { err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, LPROPS_TAKEN); if (err) return err; lnum = -1; } used -= blen; if (used < 0) used = 0; avail = buf_len - used; memmove(c->cbuf, c->cbuf + blen, used); continue; } break; } if (lnum != c->dbg->new_ihead_lnum || buf_offs != c->dbg->new_ihead_offs) { ubifs_err(c, "inconsistent ihead"); return -EINVAL; } c->ihead_lnum = lnum; c->ihead_offs = buf_offs; return 0; } /** * free_obsolete_znodes - free obsolete znodes. * @c: UBIFS file-system description object * * At the end of commit end, obsolete znodes are freed. */ static void free_obsolete_znodes(struct ubifs_info *c) { struct ubifs_znode *znode, *cnext; cnext = c->cnext; do { znode = cnext; cnext = znode->cnext; if (ubifs_zn_obsolete(znode)) kfree(znode); else { znode->cnext = NULL; atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } } while (cnext != c->cnext); } /** * return_gap_lebs - return LEBs used by the in-gap commit method. * @c: UBIFS file-system description object * * This function clears the "taken" flag for the LEBs which were used by the * "commit in-the-gaps" method. */ static int return_gap_lebs(struct ubifs_info *c) { int *p, err; if (!c->gap_lebs) return 0; dbg_cmt(""); for (p = c->gap_lebs; *p != -1; p++) { err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, LPROPS_TAKEN, 0); if (err) return err; } kfree(c->gap_lebs); c->gap_lebs = NULL; return 0; } /** * ubifs_tnc_end_commit - update the TNC for commit end. * @c: UBIFS file-system description object * * Write the dirty znodes. */ int ubifs_tnc_end_commit(struct ubifs_info *c) { int err; if (!c->cnext) return 0; err = return_gap_lebs(c); if (err) return err; err = write_index(c); if (err) return err; mutex_lock(&c->tnc_mutex); dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); free_obsolete_znodes(c); c->cnext = NULL; kfree(c->ilebs); c->ilebs = NULL; mutex_unlock(&c->tnc_mutex); return 0; }