// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * Copyright (C) 2010 Red Hat, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_extent_busy.h" #include "xfs_quota.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_log.h" #include "xfs_trace.h" #include "xfs_error.h" #include "xfs_defer.h" kmem_zone_t *xfs_trans_zone; #if defined(CONFIG_TRACEPOINTS) static void xfs_trans_trace_reservations( struct xfs_mount *mp) { struct xfs_trans_res resv; struct xfs_trans_res *res; struct xfs_trans_res *end_res; int i; res = (struct xfs_trans_res *)M_RES(mp); end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); for (i = 0; res < end_res; i++, res++) trace_xfs_trans_resv_calc(mp, i, res); xfs_log_get_max_trans_res(mp, &resv); trace_xfs_trans_resv_calc(mp, -1, &resv); } #else # define xfs_trans_trace_reservations(mp) #endif /* * Initialize the precomputed transaction reservation values * in the mount structure. */ void xfs_trans_init( struct xfs_mount *mp) { xfs_trans_resv_calc(mp, M_RES(mp)); xfs_trans_trace_reservations(mp); } /* * Free the transaction structure. If there is more clean up * to do when the structure is freed, add it here. */ STATIC void xfs_trans_free( struct xfs_trans *tp) { xfs_extent_busy_sort(&tp->t_busy); xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); trace_xfs_trans_free(tp, _RET_IP_); atomic_dec(&tp->t_mountp->m_active_trans); if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) sb_end_intwrite(tp->t_mountp->m_super); xfs_trans_free_dqinfo(tp); kmem_zone_free(xfs_trans_zone, tp); } /* * This is called to create a new transaction which will share the * permanent log reservation of the given transaction. The remaining * unused block and rt extent reservations are also inherited. This * implies that the original transaction is no longer allowed to allocate * blocks. Locks and log items, however, are no inherited. They must * be added to the new transaction explicitly. */ STATIC struct xfs_trans * xfs_trans_dup( struct xfs_trans *tp) { struct xfs_trans *ntp; trace_xfs_trans_dup(tp, _RET_IP_); ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); /* * Initialize the new transaction structure. */ ntp->t_magic = XFS_TRANS_HEADER_MAGIC; ntp->t_mountp = tp->t_mountp; INIT_LIST_HEAD(&ntp->t_items); INIT_LIST_HEAD(&ntp->t_busy); INIT_LIST_HEAD(&ntp->t_dfops); ntp->t_firstblock = NULLFSBLOCK; ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(tp->t_ticket != NULL); ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE) | (tp->t_flags & XFS_TRANS_NO_WRITECOUNT); /* We gave our writer reference to the new transaction */ tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); ASSERT(tp->t_blk_res >= tp->t_blk_res_used); ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; tp->t_blk_res = tp->t_blk_res_used; ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; tp->t_rtx_res = tp->t_rtx_res_used; ntp->t_pflags = tp->t_pflags; /* move deferred ops over to the new tp */ xfs_defer_move(ntp, tp); xfs_trans_dup_dqinfo(tp, ntp); atomic_inc(&tp->t_mountp->m_active_trans); return ntp; } /* * This is called to reserve free disk blocks and log space for the * given transaction. This must be done before allocating any resources * within the transaction. * * This will return ENOSPC if there are not enough blocks available. * It will sleep waiting for available log space. * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which * is used by long running transactions. If any one of the reservations * fails then they will all be backed out. * * This does not do quota reservations. That typically is done by the * caller afterwards. */ static int xfs_trans_reserve( struct xfs_trans *tp, struct xfs_trans_res *resp, uint blocks, uint rtextents) { int error = 0; bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; /* Mark this thread as being in a transaction */ current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); /* * Attempt to reserve the needed disk blocks by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (blocks > 0) { error = xfs_mod_fdblocks(tp->t_mountp, -((int64_t)blocks), rsvd); if (error != 0) { current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); return -ENOSPC; } tp->t_blk_res += blocks; } /* * Reserve the log space needed for this transaction. */ if (resp->tr_logres > 0) { bool permanent = false; ASSERT(tp->t_log_res == 0 || tp->t_log_res == resp->tr_logres); ASSERT(tp->t_log_count == 0 || tp->t_log_count == resp->tr_logcount); if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { tp->t_flags |= XFS_TRANS_PERM_LOG_RES; permanent = true; } else { ASSERT(tp->t_ticket == NULL); ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); } if (tp->t_ticket != NULL) { ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); error = xfs_log_regrant(tp->t_mountp, tp->t_ticket); } else { error = xfs_log_reserve(tp->t_mountp, resp->tr_logres, resp->tr_logcount, &tp->t_ticket, XFS_TRANSACTION, permanent); } if (error) goto undo_blocks; tp->t_log_res = resp->tr_logres; tp->t_log_count = resp->tr_logcount; } /* * Attempt to reserve the needed realtime extents by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (rtextents > 0) { error = xfs_mod_frextents(tp->t_mountp, -((int64_t)rtextents)); if (error) { error = -ENOSPC; goto undo_log; } tp->t_rtx_res += rtextents; } return 0; /* * Error cases jump to one of these labels to undo any * reservations which have already been performed. */ undo_log: if (resp->tr_logres > 0) { xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, false); tp->t_ticket = NULL; tp->t_log_res = 0; tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; } undo_blocks: if (blocks > 0) { xfs_mod_fdblocks(tp->t_mountp, (int64_t)blocks, rsvd); tp->t_blk_res = 0; } current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); return error; } int xfs_trans_alloc( struct xfs_mount *mp, struct xfs_trans_res *resp, uint blocks, uint rtextents, uint flags, struct xfs_trans **tpp) { struct xfs_trans *tp; int error; /* * Allocate the handle before we do our freeze accounting and setting up * GFP_NOFS allocation context so that we avoid lockdep false positives * by doing GFP_KERNEL allocations inside sb_start_intwrite(). */ tp = kmem_zone_zalloc(xfs_trans_zone, (flags & XFS_TRANS_NOFS) ? KM_NOFS : KM_SLEEP); if (!(flags & XFS_TRANS_NO_WRITECOUNT)) sb_start_intwrite(mp->m_super); /* * Zero-reservation ("empty") transactions can't modify anything, so * they're allowed to run while we're frozen. */ WARN_ON(resp->tr_logres > 0 && mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); atomic_inc(&mp->m_active_trans); tp->t_magic = XFS_TRANS_HEADER_MAGIC; tp->t_flags = flags; tp->t_mountp = mp; INIT_LIST_HEAD(&tp->t_items); INIT_LIST_HEAD(&tp->t_busy); INIT_LIST_HEAD(&tp->t_dfops); tp->t_firstblock = NULLFSBLOCK; error = xfs_trans_reserve(tp, resp, blocks, rtextents); if (error) { xfs_trans_cancel(tp); return error; } trace_xfs_trans_alloc(tp, _RET_IP_); *tpp = tp; return 0; } /* * Create an empty transaction with no reservation. This is a defensive * mechanism for routines that query metadata without actually modifying * them -- if the metadata being queried is somehow cross-linked (think a * btree block pointer that points higher in the tree), we risk deadlock. * However, blocks grabbed as part of a transaction can be re-grabbed. * The verifiers will notice the corrupt block and the operation will fail * back to userspace without deadlocking. * * Note the zero-length reservation; this transaction MUST be cancelled * without any dirty data. */ int xfs_trans_alloc_empty( struct xfs_mount *mp, struct xfs_trans **tpp) { struct xfs_trans_res resv = {0}; return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); } /* * Record the indicated change to the given field for application * to the file system's superblock when the transaction commits. * For now, just store the change in the transaction structure. * * Mark the transaction structure to indicate that the superblock * needs to be updated before committing. * * Because we may not be keeping track of allocated/free inodes and * used filesystem blocks in the superblock, we do not mark the * superblock dirty in this transaction if we modify these fields. * We still need to update the transaction deltas so that they get * applied to the incore superblock, but we don't want them to * cause the superblock to get locked and logged if these are the * only fields in the superblock that the transaction modifies. */ void xfs_trans_mod_sb( xfs_trans_t *tp, uint field, int64_t delta) { uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); xfs_mount_t *mp = tp->t_mountp; switch (field) { case XFS_TRANS_SB_ICOUNT: tp->t_icount_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_IFREE: tp->t_ifree_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FDBLOCKS: /* * Track the number of blocks allocated in the transaction. * Make sure it does not exceed the number reserved. If so, * shutdown as this can lead to accounting inconsistency. */ if (delta < 0) { tp->t_blk_res_used += (uint)-delta; if (tp->t_blk_res_used > tp->t_blk_res) xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } tp->t_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_RES_FDBLOCKS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ tp->t_res_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FREXTENTS: /* * Track the number of blocks allocated in the * transaction. Make sure it does not exceed the * number reserved. */ if (delta < 0) { tp->t_rtx_res_used += (uint)-delta; ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); } tp->t_frextents_delta += delta; break; case XFS_TRANS_SB_RES_FREXTENTS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ ASSERT(delta < 0); tp->t_res_frextents_delta += delta; break; case XFS_TRANS_SB_DBLOCKS: ASSERT(delta > 0); tp->t_dblocks_delta += delta; break; case XFS_TRANS_SB_AGCOUNT: ASSERT(delta > 0); tp->t_agcount_delta += delta; break; case XFS_TRANS_SB_IMAXPCT: tp->t_imaxpct_delta += delta; break; case XFS_TRANS_SB_REXTSIZE: tp->t_rextsize_delta += delta; break; case XFS_TRANS_SB_RBMBLOCKS: tp->t_rbmblocks_delta += delta; break; case XFS_TRANS_SB_RBLOCKS: tp->t_rblocks_delta += delta; break; case XFS_TRANS_SB_REXTENTS: tp->t_rextents_delta += delta; break; case XFS_TRANS_SB_REXTSLOG: tp->t_rextslog_delta += delta; break; default: ASSERT(0); return; } tp->t_flags |= flags; } /* * xfs_trans_apply_sb_deltas() is called from the commit code * to bring the superblock buffer into the current transaction * and modify it as requested by earlier calls to xfs_trans_mod_sb(). * * For now we just look at each field allowed to change and change * it if necessary. */ STATIC void xfs_trans_apply_sb_deltas( xfs_trans_t *tp) { xfs_dsb_t *sbp; xfs_buf_t *bp; int whole = 0; bp = xfs_trans_getsb(tp, tp->t_mountp); sbp = XFS_BUF_TO_SBP(bp); /* * Check that superblock mods match the mods made to AGF counters. */ ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + tp->t_ag_btree_delta)); /* * Only update the superblock counters if we are logging them */ if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { if (tp->t_icount_delta) be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); if (tp->t_ifree_delta) be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); if (tp->t_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); if (tp->t_res_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); } if (tp->t_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); if (tp->t_res_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); if (tp->t_dblocks_delta) { be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); whole = 1; } if (tp->t_agcount_delta) { be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); whole = 1; } if (tp->t_imaxpct_delta) { sbp->sb_imax_pct += tp->t_imaxpct_delta; whole = 1; } if (tp->t_rextsize_delta) { be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); whole = 1; } if (tp->t_rbmblocks_delta) { be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); whole = 1; } if (tp->t_rblocks_delta) { be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); whole = 1; } if (tp->t_rextents_delta) { be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); whole = 1; } if (tp->t_rextslog_delta) { sbp->sb_rextslog += tp->t_rextslog_delta; whole = 1; } xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); if (whole) /* * Log the whole thing, the fields are noncontiguous. */ xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); else /* * Since all the modifiable fields are contiguous, we * can get away with this. */ xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), offsetof(xfs_dsb_t, sb_frextents) + sizeof(sbp->sb_frextents) - 1); } STATIC int xfs_sb_mod8( uint8_t *field, int8_t delta) { int8_t counter = *field; counter += delta; if (counter < 0) { ASSERT(0); return -EINVAL; } *field = counter; return 0; } STATIC int xfs_sb_mod32( uint32_t *field, int32_t delta) { int32_t counter = *field; counter += delta; if (counter < 0) { ASSERT(0); return -EINVAL; } *field = counter; return 0; } STATIC int xfs_sb_mod64( uint64_t *field, int64_t delta) { int64_t counter = *field; counter += delta; if (counter < 0) { ASSERT(0); return -EINVAL; } *field = counter; return 0; } /* * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations * and apply superblock counter changes to the in-core superblock. The * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT * applied to the in-core superblock. The idea is that that has already been * done. * * If we are not logging superblock counters, then the inode allocated/free and * used block counts are not updated in the on disk superblock. In this case, * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we * still need to update the incore superblock with the changes. */ void xfs_trans_unreserve_and_mod_sb( struct xfs_trans *tp) { struct xfs_mount *mp = tp->t_mountp; bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; int64_t blkdelta = 0; int64_t rtxdelta = 0; int64_t idelta = 0; int64_t ifreedelta = 0; int error; /* calculate deltas */ if (tp->t_blk_res > 0) blkdelta = tp->t_blk_res; if ((tp->t_fdblocks_delta != 0) && (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY))) blkdelta += tp->t_fdblocks_delta; if (tp->t_rtx_res > 0) rtxdelta = tp->t_rtx_res; if ((tp->t_frextents_delta != 0) && (tp->t_flags & XFS_TRANS_SB_DIRTY)) rtxdelta += tp->t_frextents_delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { idelta = tp->t_icount_delta; ifreedelta = tp->t_ifree_delta; } /* apply the per-cpu counters */ if (blkdelta) { error = xfs_mod_fdblocks(mp, blkdelta, rsvd); if (error) goto out; } if (idelta) { error = xfs_mod_icount(mp, idelta); if (error) goto out_undo_fdblocks; } if (ifreedelta) { error = xfs_mod_ifree(mp, ifreedelta); if (error) goto out_undo_icount; } if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY)) return; /* apply remaining deltas */ spin_lock(&mp->m_sb_lock); if (rtxdelta) { error = xfs_sb_mod64(&mp->m_sb.sb_frextents, rtxdelta); if (error) goto out_undo_ifree; } if (tp->t_dblocks_delta != 0) { error = xfs_sb_mod64(&mp->m_sb.sb_dblocks, tp->t_dblocks_delta); if (error) goto out_undo_frextents; } if (tp->t_agcount_delta != 0) { error = xfs_sb_mod32(&mp->m_sb.sb_agcount, tp->t_agcount_delta); if (error) goto out_undo_dblocks; } if (tp->t_imaxpct_delta != 0) { error = xfs_sb_mod8(&mp->m_sb.sb_imax_pct, tp->t_imaxpct_delta); if (error) goto out_undo_agcount; } if (tp->t_rextsize_delta != 0) { error = xfs_sb_mod32(&mp->m_sb.sb_rextsize, tp->t_rextsize_delta); if (error) goto out_undo_imaxpct; } if (tp->t_rbmblocks_delta != 0) { error = xfs_sb_mod32(&mp->m_sb.sb_rbmblocks, tp->t_rbmblocks_delta); if (error) goto out_undo_rextsize; } if (tp->t_rblocks_delta != 0) { error = xfs_sb_mod64(&mp->m_sb.sb_rblocks, tp->t_rblocks_delta); if (error) goto out_undo_rbmblocks; } if (tp->t_rextents_delta != 0) { error = xfs_sb_mod64(&mp->m_sb.sb_rextents, tp->t_rextents_delta); if (error) goto out_undo_rblocks; } if (tp->t_rextslog_delta != 0) { error = xfs_sb_mod8(&mp->m_sb.sb_rextslog, tp->t_rextslog_delta); if (error) goto out_undo_rextents; } spin_unlock(&mp->m_sb_lock); return; out_undo_rextents: if (tp->t_rextents_delta) xfs_sb_mod64(&mp->m_sb.sb_rextents, -tp->t_rextents_delta); out_undo_rblocks: if (tp->t_rblocks_delta) xfs_sb_mod64(&mp->m_sb.sb_rblocks, -tp->t_rblocks_delta); out_undo_rbmblocks: if (tp->t_rbmblocks_delta) xfs_sb_mod32(&mp->m_sb.sb_rbmblocks, -tp->t_rbmblocks_delta); out_undo_rextsize: if (tp->t_rextsize_delta) xfs_sb_mod32(&mp->m_sb.sb_rextsize, -tp->t_rextsize_delta); out_undo_imaxpct: if (tp->t_rextsize_delta) xfs_sb_mod8(&mp->m_sb.sb_imax_pct, -tp->t_imaxpct_delta); out_undo_agcount: if (tp->t_agcount_delta) xfs_sb_mod32(&mp->m_sb.sb_agcount, -tp->t_agcount_delta); out_undo_dblocks: if (tp->t_dblocks_delta) xfs_sb_mod64(&mp->m_sb.sb_dblocks, -tp->t_dblocks_delta); out_undo_frextents: if (rtxdelta) xfs_sb_mod64(&mp->m_sb.sb_frextents, -rtxdelta); out_undo_ifree: spin_unlock(&mp->m_sb_lock); if (ifreedelta) xfs_mod_ifree(mp, -ifreedelta); out_undo_icount: if (idelta) xfs_mod_icount(mp, -idelta); out_undo_fdblocks: if (blkdelta) xfs_mod_fdblocks(mp, -blkdelta, rsvd); out: ASSERT(error == 0); return; } /* Add the given log item to the transaction's list of log items. */ void xfs_trans_add_item( struct xfs_trans *tp, struct xfs_log_item *lip) { ASSERT(lip->li_mountp == tp->t_mountp); ASSERT(lip->li_ailp == tp->t_mountp->m_ail); ASSERT(list_empty(&lip->li_trans)); ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); list_add_tail(&lip->li_trans, &tp->t_items); trace_xfs_trans_add_item(tp, _RET_IP_); } /* * Unlink the log item from the transaction. the log item is no longer * considered dirty in this transaction, as the linked transaction has * finished, either by abort or commit completion. */ void xfs_trans_del_item( struct xfs_log_item *lip) { clear_bit(XFS_LI_DIRTY, &lip->li_flags); list_del_init(&lip->li_trans); } /* Detach and unlock all of the items in a transaction */ static void xfs_trans_free_items( struct xfs_trans *tp, bool abort) { struct xfs_log_item *lip, *next; trace_xfs_trans_free_items(tp, _RET_IP_); list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { xfs_trans_del_item(lip); if (abort) set_bit(XFS_LI_ABORTED, &lip->li_flags); if (lip->li_ops->iop_release) lip->li_ops->iop_release(lip); } } static inline void xfs_log_item_batch_insert( struct xfs_ail *ailp, struct xfs_ail_cursor *cur, struct xfs_log_item **log_items, int nr_items, xfs_lsn_t commit_lsn) { int i; spin_lock(&ailp->ail_lock); /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); for (i = 0; i < nr_items; i++) { struct xfs_log_item *lip = log_items[i]; if (lip->li_ops->iop_unpin) lip->li_ops->iop_unpin(lip, 0); } } /* * Bulk operation version of xfs_trans_committed that takes a log vector of * items to insert into the AIL. This uses bulk AIL insertion techniques to * minimise lock traffic. * * If we are called with the aborted flag set, it is because a log write during * a CIL checkpoint commit has failed. In this case, all the items in the * checkpoint have already gone through iop_committed and iop_committing, which * means that checkpoint commit abort handling is treated exactly the same * as an iclog write error even though we haven't started any IO yet. Hence in * this case all we need to do is iop_committed processing, followed by an * iop_unpin(aborted) call. * * The AIL cursor is used to optimise the insert process. If commit_lsn is not * at the end of the AIL, the insert cursor avoids the need to walk * the AIL to find the insertion point on every xfs_log_item_batch_insert() * call. This saves a lot of needless list walking and is a net win, even * though it slightly increases that amount of AIL lock traffic to set it up * and tear it down. */ void xfs_trans_committed_bulk( struct xfs_ail *ailp, struct xfs_log_vec *log_vector, xfs_lsn_t commit_lsn, bool aborted) { #define LOG_ITEM_BATCH_SIZE 32 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; struct xfs_log_vec *lv; struct xfs_ail_cursor cur; int i = 0; spin_lock(&ailp->ail_lock); xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); spin_unlock(&ailp->ail_lock); /* unpin all the log items */ for (lv = log_vector; lv; lv = lv->lv_next ) { struct xfs_log_item *lip = lv->lv_item; xfs_lsn_t item_lsn; if (aborted) set_bit(XFS_LI_ABORTED, &lip->li_flags); if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { lip->li_ops->iop_release(lip); continue; } if (lip->li_ops->iop_committed) item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); else item_lsn = commit_lsn; /* item_lsn of -1 means the item needs no further processing */ if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) continue; /* * if we are aborting the operation, no point in inserting the * object into the AIL as we are in a shutdown situation. */ if (aborted) { ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount)); if (lip->li_ops->iop_unpin) lip->li_ops->iop_unpin(lip, 1); continue; } if (item_lsn != commit_lsn) { /* * Not a bulk update option due to unusual item_lsn. * Push into AIL immediately, rechecking the lsn once * we have the ail lock. Then unpin the item. This does * not affect the AIL cursor the bulk insert path is * using. */ spin_lock(&ailp->ail_lock); if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) xfs_trans_ail_update(ailp, lip, item_lsn); else spin_unlock(&ailp->ail_lock); if (lip->li_ops->iop_unpin) lip->li_ops->iop_unpin(lip, 0); continue; } /* Item is a candidate for bulk AIL insert. */ log_items[i++] = lv->lv_item; if (i >= LOG_ITEM_BATCH_SIZE) { xfs_log_item_batch_insert(ailp, &cur, log_items, LOG_ITEM_BATCH_SIZE, commit_lsn); i = 0; } } /* make sure we insert the remainder! */ if (i) xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); spin_lock(&ailp->ail_lock); xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); } /* * Commit the given transaction to the log. * * XFS disk error handling mechanism is not based on a typical * transaction abort mechanism. Logically after the filesystem * gets marked 'SHUTDOWN', we can't let any new transactions * be durable - ie. committed to disk - because some metadata might * be inconsistent. In such cases, this returns an error, and the * caller may assume that all locked objects joined to the transaction * have already been unlocked as if the commit had succeeded. * Do not reference the transaction structure after this call. */ static int __xfs_trans_commit( struct xfs_trans *tp, bool regrant) { struct xfs_mount *mp = tp->t_mountp; xfs_lsn_t commit_lsn = -1; int error = 0; int sync = tp->t_flags & XFS_TRANS_SYNC; trace_xfs_trans_commit(tp, _RET_IP_); /* * Finish deferred items on final commit. Only permanent transactions * should ever have deferred ops. */ WARN_ON_ONCE(!list_empty(&tp->t_dfops) && !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { error = xfs_defer_finish_noroll(&tp); if (error) goto out_unreserve; } /* * If there is nothing to be logged by the transaction, * then unlock all of the items associated with the * transaction and free the transaction structure. * Also make sure to return any reserved blocks to * the free pool. */ if (!(tp->t_flags & XFS_TRANS_DIRTY)) goto out_unreserve; if (XFS_FORCED_SHUTDOWN(mp)) { error = -EIO; goto out_unreserve; } ASSERT(tp->t_ticket != NULL); /* * If we need to update the superblock, then do it now. */ if (tp->t_flags & XFS_TRANS_SB_DIRTY) xfs_trans_apply_sb_deltas(tp); xfs_trans_apply_dquot_deltas(tp); xfs_log_commit_cil(mp, tp, &commit_lsn, regrant); current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); xfs_trans_free(tp); /* * If the transaction needs to be synchronous, then force the * log out now and wait for it. */ if (sync) { error = xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, NULL); XFS_STATS_INC(mp, xs_trans_sync); } else { XFS_STATS_INC(mp, xs_trans_async); } return error; out_unreserve: xfs_trans_unreserve_and_mod_sb(tp); /* * It is indeed possible for the transaction to be not dirty but * the dqinfo portion to be. All that means is that we have some * (non-persistent) quota reservations that need to be unreserved. */ xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, regrant); if (commit_lsn == -1 && !error) error = -EIO; tp->t_ticket = NULL; } current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); xfs_trans_free_items(tp, !!error); xfs_trans_free(tp); XFS_STATS_INC(mp, xs_trans_empty); return error; } int xfs_trans_commit( struct xfs_trans *tp) { return __xfs_trans_commit(tp, false); } /* * Unlock all of the transaction's items and free the transaction. * The transaction must not have modified any of its items, because * there is no way to restore them to their previous state. * * If the transaction has made a log reservation, make sure to release * it as well. */ void xfs_trans_cancel( struct xfs_trans *tp) { struct xfs_mount *mp = tp->t_mountp; bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); trace_xfs_trans_cancel(tp, _RET_IP_); if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) xfs_defer_cancel(tp); /* * See if the caller is relying on us to shut down the * filesystem. This happens in paths where we detect * corruption and decide to give up. */ if (dirty && !XFS_FORCED_SHUTDOWN(mp)) { XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } #ifdef DEBUG if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) { struct xfs_log_item *lip; list_for_each_entry(lip, &tp->t_items, li_trans) ASSERT(!(lip->li_type == XFS_LI_EFD)); } #endif xfs_trans_unreserve_and_mod_sb(tp); xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { xfs_log_done(mp, tp->t_ticket, NULL, false); tp->t_ticket = NULL; } /* mark this thread as no longer being in a transaction */ current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); xfs_trans_free_items(tp, dirty); xfs_trans_free(tp); } /* * Roll from one trans in the sequence of PERMANENT transactions to * the next: permanent transactions are only flushed out when * committed with xfs_trans_commit(), but we still want as soon * as possible to let chunks of it go to the log. So we commit the * chunk we've been working on and get a new transaction to continue. */ int xfs_trans_roll( struct xfs_trans **tpp) { struct xfs_trans *trans = *tpp; struct xfs_trans_res tres; int error; trace_xfs_trans_roll(trans, _RET_IP_); /* * Copy the critical parameters from one trans to the next. */ tres.tr_logres = trans->t_log_res; tres.tr_logcount = trans->t_log_count; *tpp = xfs_trans_dup(trans); /* * Commit the current transaction. * If this commit failed, then it'd just unlock those items that * are not marked ihold. That also means that a filesystem shutdown * is in progress. The caller takes the responsibility to cancel * the duplicate transaction that gets returned. */ error = __xfs_trans_commit(trans, true); if (error) return error; /* * Reserve space in the log for the next transaction. * This also pushes items in the "AIL", the list of logged items, * out to disk if they are taking up space at the tail of the log * that we want to use. This requires that either nothing be locked * across this call, or that anything that is locked be logged in * the prior and the next transactions. */ tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; return xfs_trans_reserve(*tpp, &tres, 0, 0); }