// SPDX-License-Identifier: GPL-2.0-or-later /* * Gas Gauge driver for SBS Compliant Batteries * * Copyright (c) 2010, NVIDIA Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum { REG_MANUFACTURER_DATA, REG_BATTERY_MODE, REG_TEMPERATURE, REG_VOLTAGE, REG_CURRENT_NOW, REG_CURRENT_AVG, REG_MAX_ERR, REG_CAPACITY, REG_TIME_TO_EMPTY, REG_TIME_TO_FULL, REG_STATUS, REG_CAPACITY_LEVEL, REG_CYCLE_COUNT, REG_SERIAL_NUMBER, REG_REMAINING_CAPACITY, REG_REMAINING_CAPACITY_CHARGE, REG_FULL_CHARGE_CAPACITY, REG_FULL_CHARGE_CAPACITY_CHARGE, REG_DESIGN_CAPACITY, REG_DESIGN_CAPACITY_CHARGE, REG_DESIGN_VOLTAGE_MIN, REG_DESIGN_VOLTAGE_MAX, REG_CHEMISTRY, REG_MANUFACTURER, REG_MODEL_NAME, REG_CHARGE_CURRENT, REG_CHARGE_VOLTAGE, }; #define REG_ADDR_SPEC_INFO 0x1A #define SPEC_INFO_VERSION_MASK GENMASK(7, 4) #define SPEC_INFO_VERSION_SHIFT 4 #define SBS_VERSION_1_0 1 #define SBS_VERSION_1_1 2 #define SBS_VERSION_1_1_WITH_PEC 3 #define REG_ADDR_MANUFACTURE_DATE 0x1B /* Battery Mode defines */ #define BATTERY_MODE_OFFSET 0x03 #define BATTERY_MODE_CAPACITY_MASK BIT(15) enum sbs_capacity_mode { CAPACITY_MODE_AMPS = 0, CAPACITY_MODE_WATTS = BATTERY_MODE_CAPACITY_MASK }; #define BATTERY_MODE_CHARGER_MASK (1<<14) /* manufacturer access defines */ #define MANUFACTURER_ACCESS_STATUS 0x0006 #define MANUFACTURER_ACCESS_SLEEP 0x0011 /* battery status value bits */ #define BATTERY_INITIALIZED 0x80 #define BATTERY_DISCHARGING 0x40 #define BATTERY_FULL_CHARGED 0x20 #define BATTERY_FULL_DISCHARGED 0x10 /* min_value and max_value are only valid for numerical data */ #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \ .psp = _psp, \ .addr = _addr, \ .min_value = _min_value, \ .max_value = _max_value, \ } static const struct chip_data { enum power_supply_property psp; u8 addr; int min_value; int max_value; } sbs_data[] = { [REG_MANUFACTURER_DATA] = SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535), [REG_BATTERY_MODE] = SBS_DATA(-1, 0x03, 0, 65535), [REG_TEMPERATURE] = SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535), [REG_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000), [REG_CURRENT_NOW] = SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767), [REG_CURRENT_AVG] = SBS_DATA(POWER_SUPPLY_PROP_CURRENT_AVG, 0x0B, -32768, 32767), [REG_MAX_ERR] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, 0x0c, 0, 100), [REG_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100), [REG_REMAINING_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535), [REG_REMAINING_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535), [REG_FULL_CHARGE_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535), [REG_FULL_CHARGE_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535), [REG_TIME_TO_EMPTY] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535), [REG_TIME_TO_FULL] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535), [REG_CHARGE_CURRENT] = SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 0x14, 0, 65535), [REG_CHARGE_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 0x15, 0, 65535), [REG_STATUS] = SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535), [REG_CAPACITY_LEVEL] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535), [REG_CYCLE_COUNT] = SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535), [REG_DESIGN_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_VOLTAGE_MIN] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535), [REG_DESIGN_VOLTAGE_MAX] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535), [REG_SERIAL_NUMBER] = SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535), /* Properties of type `const char *' */ [REG_MANUFACTURER] = SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535), [REG_MODEL_NAME] = SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535), [REG_CHEMISTRY] = SBS_DATA(POWER_SUPPLY_PROP_TECHNOLOGY, 0x22, 0, 65535) }; static const enum power_supply_property sbs_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_MANUFACTURE_YEAR, POWER_SUPPLY_PROP_MANUFACTURE_MONTH, POWER_SUPPLY_PROP_MANUFACTURE_DAY, /* Properties of type `const char *' */ POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME }; /* Supports special manufacturer commands from TI BQ20Z65 and BQ20Z75 IC. */ #define SBS_FLAGS_TI_BQ20ZX5 BIT(0) struct sbs_info { struct i2c_client *client; struct power_supply *power_supply; bool is_present; struct gpio_desc *gpio_detect; bool charger_broadcasts; int last_state; int poll_time; u32 i2c_retry_count; u32 poll_retry_count; struct delayed_work work; struct mutex mode_lock; u32 flags; }; static char model_name[I2C_SMBUS_BLOCK_MAX + 1]; static char manufacturer[I2C_SMBUS_BLOCK_MAX + 1]; static char chemistry[I2C_SMBUS_BLOCK_MAX + 1]; static bool force_load; static int sbs_read_word_data(struct i2c_client *client, u8 address); static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value); static void sbs_disable_charger_broadcasts(struct sbs_info *chip) { int val = sbs_read_word_data(chip->client, BATTERY_MODE_OFFSET); if (val < 0) goto exit; val |= BATTERY_MODE_CHARGER_MASK; val = sbs_write_word_data(chip->client, BATTERY_MODE_OFFSET, val); exit: if (val < 0) dev_err(&chip->client->dev, "Failed to disable charger broadcasting: %d\n", val); else dev_dbg(&chip->client->dev, "%s\n", __func__); } static int sbs_update_presence(struct sbs_info *chip, bool is_present) { struct i2c_client *client = chip->client; int retries = chip->i2c_retry_count; s32 ret = 0; u8 version; if (chip->is_present == is_present) return 0; if (!is_present) { chip->is_present = false; /* Disable PEC when no device is present */ client->flags &= ~I2C_CLIENT_PEC; return 0; } /* Check if device supports packet error checking and use it */ while (retries > 0) { ret = i2c_smbus_read_word_data(client, REG_ADDR_SPEC_INFO); if (ret >= 0) break; /* * Some batteries trigger the detection pin before the * I2C bus is properly connected. This works around the * issue. */ msleep(100); retries--; } if (ret < 0) { dev_dbg(&client->dev, "failed to read spec info: %d\n", ret); /* fallback to old behaviour */ client->flags &= ~I2C_CLIENT_PEC; chip->is_present = true; return ret; } version = (ret & SPEC_INFO_VERSION_MASK) >> SPEC_INFO_VERSION_SHIFT; if (version == SBS_VERSION_1_1_WITH_PEC) client->flags |= I2C_CLIENT_PEC; else client->flags &= ~I2C_CLIENT_PEC; dev_dbg(&client->dev, "PEC: %s\n", (client->flags & I2C_CLIENT_PEC) ? "enabled" : "disabled"); if (!chip->is_present && is_present && !chip->charger_broadcasts) sbs_disable_charger_broadcasts(chip); chip->is_present = true; return 0; } static int sbs_read_word_data(struct i2c_client *client, u8 address) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; s32 ret = 0; while (retries > 0) { ret = i2c_smbus_read_word_data(client, address); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } return ret; } static int sbs_read_string_data_fallback(struct i2c_client *client, u8 address, char *values) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret = 0, block_length = 0; int retries_length, retries_block; u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1]; retries_length = chip->i2c_retry_count; retries_block = chip->i2c_retry_count; dev_warn_once(&client->dev, "I2C adapter does not support I2C_FUNC_SMBUS_READ_BLOCK_DATA.\n" "Fallback method does not support PEC.\n"); /* Adapter needs to support these two functions */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)){ return -ENODEV; } /* Get the length of block data */ while (retries_length > 0) { ret = i2c_smbus_read_byte_data(client, address); if (ret >= 0) break; retries_length--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } /* block_length does not include NULL terminator */ block_length = ret; if (block_length > I2C_SMBUS_BLOCK_MAX) { dev_err(&client->dev, "%s: Returned block_length is longer than 0x%x\n", __func__, I2C_SMBUS_BLOCK_MAX); return -EINVAL; } /* Get the block data */ while (retries_block > 0) { ret = i2c_smbus_read_i2c_block_data( client, address, block_length + 1, block_buffer); if (ret >= 0) break; retries_block--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } /* block_buffer[0] == block_length */ memcpy(values, block_buffer + 1, block_length); values[block_length] = '\0'; return ret; } static int sbs_read_string_data(struct i2c_client *client, u8 address, char *values) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; int ret = 0; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BLOCK_DATA)) { bool pec = client->flags & I2C_CLIENT_PEC; client->flags &= ~I2C_CLIENT_PEC; ret = sbs_read_string_data_fallback(client, address, values); if (pec) client->flags |= I2C_CLIENT_PEC; return ret; } while (retries > 0) { ret = i2c_smbus_read_block_data(client, address, values); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "failed to read block 0x%x: %d\n", address, ret); return ret; } /* add string termination */ values[ret] = '\0'; return ret; } static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; s32 ret = 0; while (retries > 0) { ret = i2c_smbus_write_word_data(client, address, value); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c write to address 0x%x failed\n", __func__, address); return ret; } return 0; } static int sbs_status_correct(struct i2c_client *client, int *intval) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_CURRENT_NOW].addr); if (ret < 0) return ret; ret = (s16)ret; /* Not drawing current -> not charging (i.e. idle) */ if (*intval != POWER_SUPPLY_STATUS_FULL && ret == 0) *intval = POWER_SUPPLY_STATUS_NOT_CHARGING; if (*intval == POWER_SUPPLY_STATUS_FULL) { /* Drawing or providing current when full */ if (ret > 0) *intval = POWER_SUPPLY_STATUS_CHARGING; else if (ret < 0) *intval = POWER_SUPPLY_STATUS_DISCHARGING; } return 0; } static bool sbs_bat_needs_calibration(struct i2c_client *client) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_BATTERY_MODE].addr); if (ret < 0) return false; return !!(ret & BIT(7)); } static int sbs_get_ti_battery_presence_and_health( struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; /* * Write to ManufacturerAccess with ManufacturerAccess command * and then read the status. */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_STATUS); if (ret < 0) { if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 0; /* battery removed */ return ret; } ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr); if (ret < 0) { if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 0; /* battery removed */ return ret; } if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value || ret > sbs_data[REG_MANUFACTURER_DATA].max_value) { val->intval = 0; return 0; } /* Mask the upper nibble of 2nd byte and * lower byte of response then * shift the result by 8 to get status*/ ret &= 0x0F00; ret >>= 8; if (psp == POWER_SUPPLY_PROP_PRESENT) { if (ret == 0x0F) /* battery removed */ val->intval = 0; else val->intval = 1; } else if (psp == POWER_SUPPLY_PROP_HEALTH) { if (ret == 0x09) val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else if (ret == 0x0B) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (ret == 0x0C) val->intval = POWER_SUPPLY_HEALTH_DEAD; else if (sbs_bat_needs_calibration(client)) val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED; else val->intval = POWER_SUPPLY_HEALTH_GOOD; } return 0; } static int sbs_get_battery_presence_and_health( struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = i2c_get_clientdata(client); int ret; if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) return sbs_get_ti_battery_presence_and_health(client, psp, val); /* Dummy command; if it succeeds, battery is present. */ ret = sbs_read_word_data(client, sbs_data[REG_STATUS].addr); if (ret < 0) { /* battery not present*/ if (psp == POWER_SUPPLY_PROP_PRESENT) { val->intval = 0; return 0; } return ret; } if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 1; /* battery present */ else { /* POWER_SUPPLY_PROP_HEALTH */ if (sbs_bat_needs_calibration(client)) { val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED; } else { /* SBS spec doesn't have a general health command. */ val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; } } return 0; } static int sbs_get_battery_property(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; /* returned values are 16 bit */ if (sbs_data[reg_offset].min_value < 0) ret = (s16)ret; if (ret >= sbs_data[reg_offset].min_value && ret <= sbs_data[reg_offset].max_value) { val->intval = ret; if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) { if (!(ret & BATTERY_INITIALIZED)) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; else if (ret & BATTERY_FULL_CHARGED) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (ret & BATTERY_FULL_DISCHARGED) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; return 0; } else if (psp != POWER_SUPPLY_PROP_STATUS) { return 0; } if (ret & BATTERY_FULL_CHARGED) val->intval = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_DISCHARGING) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else val->intval = POWER_SUPPLY_STATUS_CHARGING; sbs_status_correct(client, &val->intval); if (chip->poll_time == 0) chip->last_state = val->intval; else if (chip->last_state != val->intval) { cancel_delayed_work_sync(&chip->work); power_supply_changed(chip->power_supply); chip->poll_time = 0; } } else { if (psp == POWER_SUPPLY_PROP_STATUS) val->intval = POWER_SUPPLY_STATUS_UNKNOWN; else if (psp == POWER_SUPPLY_PROP_CAPACITY) /* sbs spec says that this can be >100 % * even if max value is 100 % */ val->intval = min(ret, 100); else val->intval = 0; } return 0; } static int sbs_get_battery_string_property(struct i2c_client *client, int reg_offset, enum power_supply_property psp, char *val) { s32 ret; ret = sbs_read_string_data(client, sbs_data[reg_offset].addr, val); if (ret < 0) return ret; return 0; } static void sbs_unit_adjustment(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { #define BASE_UNIT_CONVERSION 1000 #define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION) #define TIME_UNIT_CONVERSION 60 #define TEMP_KELVIN_TO_CELSIUS 2731 switch (psp) { case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: /* sbs provides energy in units of 10mWh. * Convert to µWh */ val->intval *= BATTERY_MODE_CAP_MULT_WATT; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval *= BASE_UNIT_CONVERSION; break; case POWER_SUPPLY_PROP_TEMP: /* sbs provides battery temperature in 0.1K * so convert it to 0.1°C */ val->intval -= TEMP_KELVIN_TO_CELSIUS; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: /* sbs provides time to empty and time to full in minutes. * Convert to seconds */ val->intval *= TIME_UNIT_CONVERSION; break; default: dev_dbg(&client->dev, "%s: no need for unit conversion %d\n", __func__, psp); } } static enum sbs_capacity_mode sbs_set_capacity_mode(struct i2c_client *client, enum sbs_capacity_mode mode) { int ret, original_val; original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET); if (original_val < 0) return original_val; if ((original_val & BATTERY_MODE_CAPACITY_MASK) == mode) return mode; if (mode == CAPACITY_MODE_AMPS) ret = original_val & ~BATTERY_MODE_CAPACITY_MASK; else ret = original_val | BATTERY_MODE_CAPACITY_MASK; ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret); if (ret < 0) return ret; usleep_range(1000, 2000); return original_val & BATTERY_MODE_CAPACITY_MASK; } static int sbs_get_battery_capacity(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; enum sbs_capacity_mode mode = CAPACITY_MODE_WATTS; if (power_supply_is_amp_property(psp)) mode = CAPACITY_MODE_AMPS; mode = sbs_set_capacity_mode(client, mode); if ((int)mode < 0) return mode; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; val->intval = ret; ret = sbs_set_capacity_mode(client, mode); if (ret < 0) return ret; return 0; } static char sbs_serial[5]; static int sbs_get_battery_serial_number(struct i2c_client *client, union power_supply_propval *val) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr); if (ret < 0) return ret; sprintf(sbs_serial, "%04x", ret); val->strval = sbs_serial; return 0; } static int sbs_get_property_index(struct i2c_client *client, enum power_supply_property psp) { int count; for (count = 0; count < ARRAY_SIZE(sbs_data); count++) if (psp == sbs_data[count].psp) return count; dev_warn(&client->dev, "%s: Invalid Property - %d\n", __func__, psp); return -EINVAL; } static int sbs_get_chemistry(struct i2c_client *client, union power_supply_propval *val) { enum power_supply_property psp = POWER_SUPPLY_PROP_TECHNOLOGY; int ret; ret = sbs_get_property_index(client, psp); if (ret < 0) return ret; ret = sbs_get_battery_string_property(client, ret, psp, chemistry); if (ret < 0) return ret; if (!strncasecmp(chemistry, "LION", 4)) val->intval = POWER_SUPPLY_TECHNOLOGY_LION; else if (!strncasecmp(chemistry, "LiP", 3)) val->intval = POWER_SUPPLY_TECHNOLOGY_LIPO; else if (!strncasecmp(chemistry, "NiCd", 4)) val->intval = POWER_SUPPLY_TECHNOLOGY_NiCd; else if (!strncasecmp(chemistry, "NiMH", 4)) val->intval = POWER_SUPPLY_TECHNOLOGY_NiMH; else val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; if (val->intval == POWER_SUPPLY_TECHNOLOGY_UNKNOWN) dev_warn(&client->dev, "Unknown chemistry: %s\n", chemistry); return 0; } static int sbs_get_battery_manufacture_date(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { int ret; u16 day, month, year; ret = sbs_read_word_data(client, REG_ADDR_MANUFACTURE_DATE); if (ret < 0) return ret; day = ret & GENMASK(4, 0); month = (ret & GENMASK(8, 5)) >> 5; year = ((ret & GENMASK(15, 9)) >> 9) + 1980; switch (psp) { case POWER_SUPPLY_PROP_MANUFACTURE_YEAR: val->intval = year; break; case POWER_SUPPLY_PROP_MANUFACTURE_MONTH: val->intval = month; break; case POWER_SUPPLY_PROP_MANUFACTURE_DAY: val->intval = day; break; default: return -EINVAL; } return 0; } static int sbs_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct sbs_info *chip = power_supply_get_drvdata(psy); struct i2c_client *client = chip->client; if (chip->gpio_detect) { ret = gpiod_get_value_cansleep(chip->gpio_detect); if (ret < 0) return ret; if (psp == POWER_SUPPLY_PROP_PRESENT) { val->intval = ret; sbs_update_presence(chip, ret); return 0; } if (ret == 0) return -ENODATA; } switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_HEALTH: ret = sbs_get_battery_presence_and_health(client, psp, val); /* this can only be true if no gpio is used */ if (psp == POWER_SUPPLY_PROP_PRESENT) return 0; break; case POWER_SUPPLY_PROP_TECHNOLOGY: ret = sbs_get_chemistry(client, val); if (ret < 0) break; goto done; /* don't trigger power_supply_changed()! */ case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = sbs_get_property_index(client, psp); if (ret < 0) break; /* sbs_get_battery_capacity() will change the battery mode * temporarily to read the requested attribute. Ensure we stay * in the desired mode for the duration of the attribute read. */ mutex_lock(&chip->mode_lock); ret = sbs_get_battery_capacity(client, ret, psp, val); mutex_unlock(&chip->mode_lock); break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: ret = sbs_get_battery_serial_number(client, val); break; case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CAPACITY_LEVEL: case POWER_SUPPLY_PROP_CYCLE_COUNT: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_CAPACITY: case POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_property(client, ret, psp, val); break; case POWER_SUPPLY_PROP_MODEL_NAME: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_string_property(client, ret, psp, model_name); val->strval = model_name; break; case POWER_SUPPLY_PROP_MANUFACTURER: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_string_property(client, ret, psp, manufacturer); val->strval = manufacturer; break; case POWER_SUPPLY_PROP_MANUFACTURE_YEAR: case POWER_SUPPLY_PROP_MANUFACTURE_MONTH: case POWER_SUPPLY_PROP_MANUFACTURE_DAY: ret = sbs_get_battery_manufacture_date(client, psp, val); break; default: dev_err(&client->dev, "%s: INVALID property\n", __func__); return -EINVAL; } if (!chip->gpio_detect && chip->is_present != (ret >= 0)) { bool old_present = chip->is_present; union power_supply_propval val; ret = sbs_get_battery_presence_and_health( client, POWER_SUPPLY_PROP_PRESENT, &val); sbs_update_presence(chip, !ret && val.intval); if (old_present != chip->is_present) power_supply_changed(chip->power_supply); } done: if (!ret) { /* Convert units to match requirements for power supply class */ sbs_unit_adjustment(client, psp, val); } dev_dbg(&client->dev, "%s: property = %d, value = %x\n", __func__, psp, val->intval); if (ret && chip->is_present) return ret; /* battery not present, so return NODATA for properties */ if (ret) return -ENODATA; return 0; } static void sbs_supply_changed(struct sbs_info *chip) { struct power_supply *battery = chip->power_supply; int ret; ret = gpiod_get_value_cansleep(chip->gpio_detect); if (ret < 0) return; sbs_update_presence(chip, ret); power_supply_changed(battery); } static irqreturn_t sbs_irq(int irq, void *devid) { sbs_supply_changed(devid); return IRQ_HANDLED; } static void sbs_alert(struct i2c_client *client, enum i2c_alert_protocol prot, unsigned int data) { sbs_supply_changed(i2c_get_clientdata(client)); } static void sbs_external_power_changed(struct power_supply *psy) { struct sbs_info *chip = power_supply_get_drvdata(psy); /* cancel outstanding work */ cancel_delayed_work_sync(&chip->work); schedule_delayed_work(&chip->work, HZ); chip->poll_time = chip->poll_retry_count; } static void sbs_delayed_work(struct work_struct *work) { struct sbs_info *chip; s32 ret; chip = container_of(work, struct sbs_info, work.work); ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr); /* if the read failed, give up on this work */ if (ret < 0) { chip->poll_time = 0; return; } if (ret & BATTERY_FULL_CHARGED) ret = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_DISCHARGING) ret = POWER_SUPPLY_STATUS_DISCHARGING; else ret = POWER_SUPPLY_STATUS_CHARGING; sbs_status_correct(chip->client, &ret); if (chip->last_state != ret) { chip->poll_time = 0; power_supply_changed(chip->power_supply); return; } if (chip->poll_time > 0) { schedule_delayed_work(&chip->work, HZ); chip->poll_time--; return; } } static const struct power_supply_desc sbs_default_desc = { .type = POWER_SUPPLY_TYPE_BATTERY, .properties = sbs_properties, .num_properties = ARRAY_SIZE(sbs_properties), .get_property = sbs_get_property, .external_power_changed = sbs_external_power_changed, }; static int sbs_probe(struct i2c_client *client) { struct sbs_info *chip; struct power_supply_desc *sbs_desc; struct sbs_platform_data *pdata = client->dev.platform_data; struct power_supply_config psy_cfg = {}; int rc; int irq; sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc, sizeof(*sbs_desc), GFP_KERNEL); if (!sbs_desc) return -ENOMEM; sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s", dev_name(&client->dev)); if (!sbs_desc->name) return -ENOMEM; chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL); if (!chip) return -ENOMEM; chip->flags = (u32)(uintptr_t)device_get_match_data(&client->dev); chip->client = client; psy_cfg.of_node = client->dev.of_node; psy_cfg.drv_data = chip; chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN; mutex_init(&chip->mode_lock); /* use pdata if available, fall back to DT properties, * or hardcoded defaults if not */ rc = device_property_read_u32(&client->dev, "sbs,i2c-retry-count", &chip->i2c_retry_count); if (rc) chip->i2c_retry_count = 0; rc = device_property_read_u32(&client->dev, "sbs,poll-retry-count", &chip->poll_retry_count); if (rc) chip->poll_retry_count = 0; if (pdata) { chip->poll_retry_count = pdata->poll_retry_count; chip->i2c_retry_count = pdata->i2c_retry_count; } chip->i2c_retry_count = chip->i2c_retry_count + 1; chip->charger_broadcasts = !device_property_read_bool(&client->dev, "sbs,disable-charger-broadcasts"); chip->gpio_detect = devm_gpiod_get_optional(&client->dev, "sbs,battery-detect", GPIOD_IN); if (IS_ERR(chip->gpio_detect)) { dev_err(&client->dev, "Failed to get gpio: %ld\n", PTR_ERR(chip->gpio_detect)); return PTR_ERR(chip->gpio_detect); } i2c_set_clientdata(client, chip); if (!chip->gpio_detect) goto skip_gpio; irq = gpiod_to_irq(chip->gpio_detect); if (irq <= 0) { dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq); goto skip_gpio; } rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&client->dev), chip); if (rc) { dev_warn(&client->dev, "Failed to request irq: %d\n", rc); goto skip_gpio; } skip_gpio: /* * Before we register, we might need to make sure we can actually talk * to the battery. */ if (!(force_load || chip->gpio_detect)) { union power_supply_propval val; rc = sbs_get_battery_presence_and_health( client, POWER_SUPPLY_PROP_PRESENT, &val); if (rc < 0 || !val.intval) { dev_err(&client->dev, "Failed to get present status\n"); rc = -ENODEV; goto exit_psupply; } } INIT_DELAYED_WORK(&chip->work, sbs_delayed_work); chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc, &psy_cfg); if (IS_ERR(chip->power_supply)) { dev_err(&client->dev, "%s: Failed to register power supply\n", __func__); rc = PTR_ERR(chip->power_supply); goto exit_psupply; } dev_info(&client->dev, "%s: battery gas gauge device registered\n", client->name); return 0; exit_psupply: return rc; } static int sbs_remove(struct i2c_client *client) { struct sbs_info *chip = i2c_get_clientdata(client); cancel_delayed_work_sync(&chip->work); return 0; } #if defined CONFIG_PM_SLEEP static int sbs_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct sbs_info *chip = i2c_get_clientdata(client); int ret; if (chip->poll_time > 0) cancel_delayed_work_sync(&chip->work); if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) { /* Write to manufacturer access with sleep command. */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_SLEEP); if (chip->is_present && ret < 0) return ret; } return 0; } static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL); #define SBS_PM_OPS (&sbs_pm_ops) #else #define SBS_PM_OPS NULL #endif static const struct i2c_device_id sbs_id[] = { { "bq20z65", 0 }, { "bq20z75", 0 }, { "sbs-battery", 1 }, {} }; MODULE_DEVICE_TABLE(i2c, sbs_id); static const struct of_device_id sbs_dt_ids[] = { { .compatible = "sbs,sbs-battery" }, { .compatible = "ti,bq20z65", .data = (void *)SBS_FLAGS_TI_BQ20ZX5, }, { .compatible = "ti,bq20z75", .data = (void *)SBS_FLAGS_TI_BQ20ZX5, }, { } }; MODULE_DEVICE_TABLE(of, sbs_dt_ids); static struct i2c_driver sbs_battery_driver = { .probe_new = sbs_probe, .remove = sbs_remove, .alert = sbs_alert, .id_table = sbs_id, .driver = { .name = "sbs-battery", .of_match_table = sbs_dt_ids, .pm = SBS_PM_OPS, }, }; module_i2c_driver(sbs_battery_driver); MODULE_DESCRIPTION("SBS battery monitor driver"); MODULE_LICENSE("GPL"); module_param(force_load, bool, 0444); MODULE_PARM_DESC(force_load, "Attempt to load the driver even if no battery is connected");