/* SPDX-License-Identifier: GPL-2.0-only */ /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. * Copyright 2019-2020 Xilinx Inc. */ #ifndef EFX_NIC_COMMON_H #define EFX_NIC_COMMON_H #include "net_driver.h" #include "efx_common.h" #include "mcdi.h" #include "ptp.h" enum { /* Revisions 0-2 were Falcon A0, A1 and B0 respectively. * They are not supported by this driver but these revision numbers * form part of the ethtool API for register dumping. */ EFX_REV_SIENA_A0 = 3, EFX_REV_HUNT_A0 = 4, }; static inline int efx_nic_rev(struct efx_nic *efx) { return efx->type->revision; } /* Read the current event from the event queue */ static inline efx_qword_t *efx_event(struct efx_channel *channel, unsigned int index) { return ((efx_qword_t *) (channel->eventq.buf.addr)) + (index & channel->eventq_mask); } /* See if an event is present * * We check both the high and low dword of the event for all ones. We * wrote all ones when we cleared the event, and no valid event can * have all ones in either its high or low dwords. This approach is * robust against reordering. * * Note that using a single 64-bit comparison is incorrect; even * though the CPU read will be atomic, the DMA write may not be. */ static inline int efx_event_present(efx_qword_t *event) { return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | EFX_DWORD_IS_ALL_ONES(event->dword[1])); } /* Returns a pointer to the specified transmit descriptor in the TX * descriptor queue belonging to the specified channel. */ static inline efx_qword_t * efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) { return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index; } /* Report whether this TX queue would be empty for the given write_count. * May return false negative. */ static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count) { unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count); if (empty_read_count == 0) return false; return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; } /* Report whether the NIC considers this TX queue empty, using * packet_write_count (the write count recorded for the last completable * doorbell push). May return false negative. EF10 only, which is OK * because only EF10 supports PIO. */ static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue) { EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors); return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count); } /* Get partner of a TX queue, seen as part of the same net core queue */ /* XXX is this a thing on EF100? */ static inline struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue) { if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) return tx_queue - EFX_TXQ_TYPE_OFFLOAD; else return tx_queue + EFX_TXQ_TYPE_OFFLOAD; } /* Decide whether we can use TX PIO, ie. write packet data directly into * a buffer on the device. This can reduce latency at the expense of * throughput, so we only do this if both hardware and software TX rings * are empty. This also ensures that only one packet at a time can be * using the PIO buffer. */ static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue) { struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue); return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) && efx_nic_tx_is_empty(partner); } int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb, bool *data_mapped); /* Decide whether to push a TX descriptor to the NIC vs merely writing * the doorbell. This can reduce latency when we are adding a single * descriptor to an empty queue, but is otherwise pointless. Further, * Falcon and Siena have hardware bugs (SF bug 33851) that may be * triggered if we don't check this. * We use the write_count used for the last doorbell push, to get the * NIC's view of the tx queue. */ static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) { bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count); tx_queue->empty_read_count = 0; return was_empty && tx_queue->write_count - write_count == 1; } /* Returns a pointer to the specified descriptor in the RX descriptor queue */ static inline efx_qword_t * efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index; } /* Alignment of PCIe DMA boundaries (4KB) */ #define EFX_PAGE_SIZE 4096 /* Size and alignment of buffer table entries (same) */ #define EFX_BUF_SIZE EFX_PAGE_SIZE /* NIC-generic software stats */ enum { GENERIC_STAT_rx_noskb_drops, GENERIC_STAT_rx_nodesc_trunc, GENERIC_STAT_COUNT }; #define EFX_GENERIC_SW_STAT(ext_name) \ [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } /* TX data path */ static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) { return tx_queue->efx->type->tx_probe(tx_queue); } static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue) { tx_queue->efx->type->tx_init(tx_queue); } static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) { if (tx_queue->efx->type->tx_remove) tx_queue->efx->type->tx_remove(tx_queue); } static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) { tx_queue->efx->type->tx_write(tx_queue); } /* RX data path */ static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) { return rx_queue->efx->type->rx_probe(rx_queue); } static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_init(rx_queue); } static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_remove(rx_queue); } static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_write(rx_queue); } static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_defer_refill(rx_queue); } /* Event data path */ static inline int efx_nic_probe_eventq(struct efx_channel *channel) { return channel->efx->type->ev_probe(channel); } static inline int efx_nic_init_eventq(struct efx_channel *channel) { return channel->efx->type->ev_init(channel); } static inline void efx_nic_fini_eventq(struct efx_channel *channel) { channel->efx->type->ev_fini(channel); } static inline void efx_nic_remove_eventq(struct efx_channel *channel) { channel->efx->type->ev_remove(channel); } static inline int efx_nic_process_eventq(struct efx_channel *channel, int quota) { return channel->efx->type->ev_process(channel, quota); } static inline void efx_nic_eventq_read_ack(struct efx_channel *channel) { channel->efx->type->ev_read_ack(channel); } void efx_nic_event_test_start(struct efx_channel *channel); bool efx_nic_event_present(struct efx_channel *channel); /* Some statistics are computed as A - B where A and B each increase * linearly with some hardware counter(s) and the counters are read * asynchronously. If the counters contributing to B are always read * after those contributing to A, the computed value may be lower than * the true value by some variable amount, and may decrease between * subsequent computations. * * We should never allow statistics to decrease or to exceed the true * value. Since the computed value will never be greater than the * true value, we can achieve this by only storing the computed value * when it increases. */ static inline void efx_update_diff_stat(u64 *stat, u64 diff) { if ((s64)(diff - *stat) > 0) *stat = diff; } /* Interrupts */ int efx_nic_init_interrupt(struct efx_nic *efx); int efx_nic_irq_test_start(struct efx_nic *efx); void efx_nic_fini_interrupt(struct efx_nic *efx); static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) { return READ_ONCE(channel->event_test_cpu); } static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) { return READ_ONCE(efx->last_irq_cpu); } /* Global Resources */ int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len, gfp_t gfp_flags); void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); size_t efx_nic_get_regs_len(struct efx_nic *efx); void efx_nic_get_regs(struct efx_nic *efx, void *buf); #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1)) size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u8 *names); int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest); void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u64 *stats, const void *dma_buf, bool accumulate); void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat); #define EFX_MAX_FLUSH_TIME 5000 #endif /* EFX_NIC_COMMON_H */