/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved. * * Routines for PCI DMA mapping. See Documentation/DMA-API.txt for * a description of how these routines should be used. */ #include #include #include #include "pci/pcibus_provider_defs.h" #include "pci/pcidev.h" #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) /** * sn_dma_supported - test a DMA mask * @dev: device to test * @mask: DMA mask to test * * Return whether the given PCI device DMA address mask can be supported * properly. For example, if your device can only drive the low 24-bits * during PCI bus mastering, then you would pass 0x00ffffff as the mask to * this function. Of course, SN only supports devices that have 32 or more * address bits when using the PMU. */ int sn_dma_supported(struct device *dev, u64 mask) { BUG_ON(dev->bus != &pci_bus_type); if (mask < 0x7fffffff) return 0; return 1; } EXPORT_SYMBOL(sn_dma_supported); /** * sn_dma_set_mask - set the DMA mask * @dev: device to set * @dma_mask: new mask * * Set @dev's DMA mask if the hw supports it. */ int sn_dma_set_mask(struct device *dev, u64 dma_mask) { BUG_ON(dev->bus != &pci_bus_type); if (!sn_dma_supported(dev, dma_mask)) return 0; *dev->dma_mask = dma_mask; return 1; } EXPORT_SYMBOL(sn_dma_set_mask); /** * sn_dma_alloc_coherent - allocate memory for coherent DMA * @dev: device to allocate for * @size: size of the region * @dma_handle: DMA (bus) address * @flags: memory allocation flags * * dma_alloc_coherent() returns a pointer to a memory region suitable for * coherent DMA traffic to/from a PCI device. On SN platforms, this means * that @dma_handle will have the %PCIIO_DMA_CMD flag set. * * This interface is usually used for "command" streams (e.g. the command * queue for a SCSI controller). See Documentation/DMA-API.txt for * more information. */ void *sn_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t * dma_handle, int flags) { void *cpuaddr; unsigned long phys_addr; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); /* * Allocate the memory. * FIXME: We should be doing alloc_pages_node for the node closest * to the PCI device. */ if (!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size)))) return NULL; memset(cpuaddr, 0x0, size); /* physical addr. of the memory we just got */ phys_addr = __pa(cpuaddr); /* * 64 bit address translations should never fail. * 32 bit translations can fail if there are insufficient mapping * resources. */ *dma_handle = provider->dma_map_consistent(pdev, phys_addr, size); if (!*dma_handle) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); free_pages((unsigned long)cpuaddr, get_order(size)); return NULL; } return cpuaddr; } EXPORT_SYMBOL(sn_dma_alloc_coherent); /** * sn_pci_free_coherent - free memory associated with coherent DMAable region * @dev: device to free for * @size: size to free * @cpu_addr: kernel virtual address to free * @dma_handle: DMA address associated with this region * * Frees the memory allocated by dma_alloc_coherent(), potentially unmapping * any associated IOMMU mappings. */ void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); provider->dma_unmap(pdev, dma_handle, 0); free_pages((unsigned long)cpu_addr, get_order(size)); } EXPORT_SYMBOL(sn_dma_free_coherent); /** * sn_dma_map_single - map a single page for DMA * @dev: device to map for * @cpu_addr: kernel virtual address of the region to map * @size: size of the region * @direction: DMA direction * * Map the region pointed to by @cpu_addr for DMA and return the * DMA address. * * We map this to the one step pcibr_dmamap_trans interface rather than * the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have * no way of saving the dmamap handle from the alloc to later free * (which is pretty much unacceptable). * * TODO: simplify our interface; * figure out how to save dmamap handle so can use two step. */ dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size, int direction) { dma_addr_t dma_addr; unsigned long phys_addr; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); phys_addr = __pa(cpu_addr); dma_addr = provider->dma_map(pdev, phys_addr, size); if (!dma_addr) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); return 0; } return dma_addr; } EXPORT_SYMBOL(sn_dma_map_single); /** * sn_dma_unmap_single - unamp a DMA mapped page * @dev: device to sync * @dma_addr: DMA address to sync * @size: size of region * @direction: DMA direction * * This routine is supposed to sync the DMA region specified * by @dma_handle into the coherence domain. On SN, we're always cache * coherent, so we just need to free any ATEs associated with this mapping. */ void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, int direction) { struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); provider->dma_unmap(pdev, dma_addr, direction); } EXPORT_SYMBOL(sn_dma_unmap_single); /** * sn_dma_unmap_sg - unmap a DMA scatterlist * @dev: device to unmap * @sg: scatterlist to unmap * @nhwentries: number of scatterlist entries * @direction: DMA direction * * Unmap a set of streaming mode DMA translations. */ void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, int direction) { int i; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); for (i = 0; i < nhwentries; i++, sg++) { provider->dma_unmap(pdev, sg->dma_address, direction); sg->dma_address = (dma_addr_t) NULL; sg->dma_length = 0; } } EXPORT_SYMBOL(sn_dma_unmap_sg); /** * sn_dma_map_sg - map a scatterlist for DMA * @dev: device to map for * @sg: scatterlist to map * @nhwentries: number of entries * @direction: direction of the DMA transaction * * Maps each entry of @sg for DMA. */ int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries, int direction) { unsigned long phys_addr; struct scatterlist *saved_sg = sg; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); int i; BUG_ON(dev->bus != &pci_bus_type); /* * Setup a DMA address for each entry in the scatterlist. */ for (i = 0; i < nhwentries; i++, sg++) { phys_addr = SG_ENT_PHYS_ADDRESS(sg); sg->dma_address = provider->dma_map(pdev, phys_addr, sg->length); if (!sg->dma_address) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); /* * Free any successfully allocated entries. */ if (i > 0) sn_dma_unmap_sg(dev, saved_sg, i, direction); return 0; } sg->dma_length = sg->length; } return nhwentries; } EXPORT_SYMBOL(sn_dma_map_sg); void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_single_for_cpu); void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_single_for_device); void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu); void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_sg_for_device); int sn_dma_mapping_error(dma_addr_t dma_addr) { return 0; } EXPORT_SYMBOL(sn_dma_mapping_error); char *sn_pci_get_legacy_mem(struct pci_bus *bus) { if (!SN_PCIBUS_BUSSOFT(bus)) return ERR_PTR(-ENODEV); return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET); } int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) { unsigned long addr; int ret; if (!SN_PCIBUS_BUSSOFT(bus)) return -ENODEV; addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; addr += port; ret = ia64_sn_probe_mem(addr, (long)size, (void *)val); if (ret == 2) return -EINVAL; if (ret == 1) *val = -1; return size; } int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) { int ret = size; unsigned long paddr; unsigned long *addr; if (!SN_PCIBUS_BUSSOFT(bus)) { ret = -ENODEV; goto out; } /* Put the phys addr in uncached space */ paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; paddr += port; addr = (unsigned long *)paddr; switch (size) { case 1: *(volatile u8 *)(addr) = (u8)(val); break; case 2: *(volatile u16 *)(addr) = (u16)(val); break; case 4: *(volatile u32 *)(addr) = (u32)(val); break; default: ret = -EINVAL; break; } out: return ret; }