// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018, The Linux Foundation. All rights reserved. * datasheet: http://www.ti.com/lit/ds/symlink/sn65dsi86.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SN_DEVICE_REV_REG 0x08 #define SN_DPPLL_SRC_REG 0x0A #define DPPLL_CLK_SRC_DSICLK BIT(0) #define REFCLK_FREQ_MASK GENMASK(3, 1) #define REFCLK_FREQ(x) ((x) << 1) #define DPPLL_SRC_DP_PLL_LOCK BIT(7) #define SN_PLL_ENABLE_REG 0x0D #define SN_DSI_LANES_REG 0x10 #define CHA_DSI_LANES_MASK GENMASK(4, 3) #define CHA_DSI_LANES(x) ((x) << 3) #define SN_DSIA_CLK_FREQ_REG 0x12 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D #define CHA_HSYNC_POLARITY BIT(7) #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 #define CHA_VSYNC_POLARITY BIT(7) #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A #define SN_LN_ASSIGN_REG 0x59 #define LN_ASSIGN_WIDTH 2 #define SN_ENH_FRAME_REG 0x5A #define VSTREAM_ENABLE BIT(3) #define LN_POLRS_OFFSET 4 #define LN_POLRS_MASK 0xf0 #define SN_DATA_FORMAT_REG 0x5B #define BPP_18_RGB BIT(0) #define SN_HPD_DISABLE_REG 0x5C #define HPD_DISABLE BIT(0) #define SN_GPIO_IO_REG 0x5E #define SN_GPIO_INPUT_SHIFT 4 #define SN_GPIO_OUTPUT_SHIFT 0 #define SN_GPIO_CTRL_REG 0x5F #define SN_GPIO_MUX_INPUT 0 #define SN_GPIO_MUX_OUTPUT 1 #define SN_GPIO_MUX_SPECIAL 2 #define SN_GPIO_MUX_MASK 0x3 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) #define SN_AUX_ADDR_19_16_REG 0x74 #define SN_AUX_ADDR_15_8_REG 0x75 #define SN_AUX_ADDR_7_0_REG 0x76 #define SN_AUX_LENGTH_REG 0x77 #define SN_AUX_CMD_REG 0x78 #define AUX_CMD_SEND BIT(0) #define AUX_CMD_REQ(x) ((x) << 4) #define SN_AUX_RDATA_REG(x) (0x79 + (x)) #define SN_SSC_CONFIG_REG 0x93 #define DP_NUM_LANES_MASK GENMASK(5, 4) #define DP_NUM_LANES(x) ((x) << 4) #define SN_DATARATE_CONFIG_REG 0x94 #define DP_DATARATE_MASK GENMASK(7, 5) #define DP_DATARATE(x) ((x) << 5) #define SN_ML_TX_MODE_REG 0x96 #define ML_TX_MAIN_LINK_OFF 0 #define ML_TX_NORMAL_MODE BIT(0) #define SN_AUX_CMD_STATUS_REG 0xF4 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) #define MIN_DSI_CLK_FREQ_MHZ 40 /* fudge factor required to account for 8b/10b encoding */ #define DP_CLK_FUDGE_NUM 10 #define DP_CLK_FUDGE_DEN 8 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ #define SN_AUX_MAX_PAYLOAD_BYTES 16 #define SN_REGULATOR_SUPPLY_NUM 4 #define SN_MAX_DP_LANES 4 #define SN_NUM_GPIOS 4 #define SN_GPIO_PHYSICAL_OFFSET 1 /** * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver. * @dev: Pointer to our device. * @regmap: Regmap for accessing i2c. * @aux: Our aux channel. * @bridge: Our bridge. * @connector: Our connector. * @debugfs: Used for managing our debugfs. * @host_node: Remote DSI node. * @dsi: Our MIPI DSI source. * @refclk: Our reference clock. * @panel: Our panel. * @enable_gpio: The GPIO we toggle to enable the bridge. * @supplies: Data for bulk enabling/disabling our regulators. * @dp_lanes: Count of dp_lanes we're using. * @ln_assign: Value to program to the LN_ASSIGN register. * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. * * @gchip: If we expose our GPIOs, this is used. * @gchip_output: A cache of whether we've set GPIOs to output. This * serves double-duty of keeping track of the direction and * also keeping track of whether we've incremented the * pm_runtime reference count for this pin, which we do * whenever a pin is configured as an output. This is a * bitmap so we can do atomic ops on it without an extra * lock so concurrent users of our 4 GPIOs don't stomp on * each other's read-modify-write. */ struct ti_sn_bridge { struct device *dev; struct regmap *regmap; struct drm_dp_aux aux; struct drm_bridge bridge; struct drm_connector connector; struct dentry *debugfs; struct device_node *host_node; struct mipi_dsi_device *dsi; struct clk *refclk; struct drm_panel *panel; struct gpio_desc *enable_gpio; struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; int dp_lanes; u8 ln_assign; u8 ln_polrs; #if defined(CONFIG_OF_GPIO) struct gpio_chip gchip; DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); #endif }; static const struct regmap_range ti_sn_bridge_volatile_ranges[] = { { .range_min = 0, .range_max = 0xFF }, }; static const struct regmap_access_table ti_sn_bridge_volatile_table = { .yes_ranges = ti_sn_bridge_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges), }; static const struct regmap_config ti_sn_bridge_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &ti_sn_bridge_volatile_table, .cache_type = REGCACHE_NONE, }; static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata, unsigned int reg, u16 val) { regmap_write(pdata->regmap, reg, val & 0xFF); regmap_write(pdata->regmap, reg + 1, val >> 8); } static int __maybe_unused ti_sn_bridge_resume(struct device *dev) { struct ti_sn_bridge *pdata = dev_get_drvdata(dev); int ret; ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); if (ret) { DRM_ERROR("failed to enable supplies %d\n", ret); return ret; } gpiod_set_value(pdata->enable_gpio, 1); return ret; } static int __maybe_unused ti_sn_bridge_suspend(struct device *dev) { struct ti_sn_bridge *pdata = dev_get_drvdata(dev); int ret; gpiod_set_value(pdata->enable_gpio, 0); ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); if (ret) DRM_ERROR("failed to disable supplies %d\n", ret); return ret; } static const struct dev_pm_ops ti_sn_bridge_pm_ops = { SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL) }; static int status_show(struct seq_file *s, void *data) { struct ti_sn_bridge *pdata = s->private; unsigned int reg, val; seq_puts(s, "STATUS REGISTERS:\n"); pm_runtime_get_sync(pdata->dev); /* IRQ Status Registers, see Table 31 in datasheet */ for (reg = 0xf0; reg <= 0xf8; reg++) { regmap_read(pdata->regmap, reg, &val); seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); } pm_runtime_put(pdata->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(status); static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata) { pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL); debugfs_create_file("status", 0600, pdata->debugfs, pdata, &status_fops); } static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata) { debugfs_remove_recursive(pdata->debugfs); pdata->debugfs = NULL; } /* Connector funcs */ static struct ti_sn_bridge * connector_to_ti_sn_bridge(struct drm_connector *connector) { return container_of(connector, struct ti_sn_bridge, connector); } static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector) { struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector); return drm_panel_get_modes(pdata->panel, connector); } static enum drm_mode_status ti_sn_bridge_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { /* maximum supported resolution is 4K at 60 fps */ if (mode->clock > 594000) return MODE_CLOCK_HIGH; return MODE_OK; } static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = { .get_modes = ti_sn_bridge_connector_get_modes, .mode_valid = ti_sn_bridge_connector_mode_valid, }; static enum drm_connector_status ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force) { /** * TODO: Currently if drm_panel is present, then always * return the status as connected. Need to add support to detect * device state for hot pluggable scenarios. */ return connector_status_connected; } static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = ti_sn_bridge_connector_detect, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge) { return container_of(bridge, struct ti_sn_bridge, bridge); } static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata) { unsigned int i; const char * const ti_sn_bridge_supply_names[] = { "vcca", "vcc", "vccio", "vpll", }; for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, pdata->supplies); } static int ti_sn_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { int ret, val; struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge); struct mipi_dsi_host *host; struct mipi_dsi_device *dsi; const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", .channel = 0, .node = NULL, }; if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) { DRM_ERROR("Fix bridge driver to make connector optional!"); return -EINVAL; } ret = drm_connector_init(bridge->dev, &pdata->connector, &ti_sn_bridge_connector_funcs, DRM_MODE_CONNECTOR_eDP); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(&pdata->connector, &ti_sn_bridge_connector_helper_funcs); drm_connector_attach_encoder(&pdata->connector, bridge->encoder); /* * TODO: ideally finding host resource and dsi dev registration needs * to be done in bridge probe. But some existing DSI host drivers will * wait for any of the drm_bridge/drm_panel to get added to the global * bridge/panel list, before completing their probe. So if we do the * dsi dev registration part in bridge probe, before populating in * the global bridge list, then it will cause deadlock as dsi host probe * will never complete, neither our bridge probe. So keeping it here * will satisfy most of the existing host drivers. Once the host driver * is fixed we can move the below code to bridge probe safely. */ host = of_find_mipi_dsi_host_by_node(pdata->host_node); if (!host) { DRM_ERROR("failed to find dsi host\n"); ret = -ENODEV; goto err_dsi_host; } dsi = mipi_dsi_device_register_full(host, &info); if (IS_ERR(dsi)) { DRM_ERROR("failed to create dsi device\n"); ret = PTR_ERR(dsi); goto err_dsi_host; } /* TODO: setting to 4 MIPI lanes always for now */ dsi->lanes = 4; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO; /* check if continuous dsi clock is required or not */ pm_runtime_get_sync(pdata->dev); regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); pm_runtime_put(pdata->dev); if (!(val & DPPLL_CLK_SRC_DSICLK)) dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; ret = mipi_dsi_attach(dsi); if (ret < 0) { DRM_ERROR("failed to attach dsi to host\n"); goto err_dsi_attach; } pdata->dsi = dsi; /* attach panel to bridge */ drm_panel_attach(pdata->panel, &pdata->connector); return 0; err_dsi_attach: mipi_dsi_device_unregister(dsi); err_dsi_host: drm_connector_cleanup(&pdata->connector); return ret; } static void ti_sn_bridge_disable(struct drm_bridge *bridge) { struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge); drm_panel_disable(pdata->panel); /* disable video stream */ regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); /* semi auto link training mode OFF */ regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); /* disable DP PLL */ regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); drm_panel_unprepare(pdata->panel); } static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata) { u32 bit_rate_khz, clk_freq_khz; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; bit_rate_khz = mode->clock * mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); return clk_freq_khz; } /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ static const u32 ti_sn_bridge_refclk_lut[] = { 12000000, 19200000, 26000000, 27000000, 38400000, }; /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ static const u32 ti_sn_bridge_dsiclk_lut[] = { 468000000, 384000000, 416000000, 486000000, 460800000, }; static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata) { int i; u32 refclk_rate; const u32 *refclk_lut; size_t refclk_lut_size; if (pdata->refclk) { refclk_rate = clk_get_rate(pdata->refclk); refclk_lut = ti_sn_bridge_refclk_lut; refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); clk_prepare_enable(pdata->refclk); } else { refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; refclk_lut = ti_sn_bridge_dsiclk_lut; refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); } /* for i equals to refclk_lut_size means default frequency */ for (i = 0; i < refclk_lut_size; i++) if (refclk_lut[i] == refclk_rate) break; regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, REFCLK_FREQ(i)); } static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata) { unsigned int bit_rate_mhz, clk_freq_mhz; unsigned int val; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; /* set DSIA clk frequency */ bit_rate_mhz = (mode->clock / 1000) * mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); /* for each increment in val, frequency increases by 5MHz */ val = (MIN_DSI_CLK_FREQ_MHZ / 5) + (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); } static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata) { if (pdata->connector.display_info.bpc <= 6) return 18; else return 24; } /* * LUT index corresponds to register value and * LUT values corresponds to dp data rate supported * by the bridge in Mbps unit. */ static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 }; static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata) { unsigned int bit_rate_khz, dp_rate_mhz; unsigned int i; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; /* Calculate minimum bit rate based on our pixel clock. */ bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata); /* Calculate minimum DP data rate, taking 80% as per DP spec */ dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) break; return i; } static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata, bool rate_valid[]) { unsigned int rate_per_200khz; unsigned int rate_mhz; u8 dpcd_val; int ret; int i, j; ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read eDP rev (%d), assuming 1.1\n", ret); dpcd_val = DP_EDP_11; } if (dpcd_val >= DP_EDP_14) { /* eDP 1.4 devices must provide a custom table */ __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); if (ret != sizeof(sink_rates)) { DRM_DEV_ERROR(pdata->dev, "Can't read supported rate table (%d)\n", ret); /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ memset(sink_rates, 0, sizeof(sink_rates)); } for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { rate_per_200khz = le16_to_cpu(sink_rates[i]); if (!rate_per_200khz) break; rate_mhz = rate_per_200khz * 200 / 1000; for (j = 0; j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); j++) { if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) rate_valid[j] = true; } } for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { if (rate_valid[i]) return; } DRM_DEV_ERROR(pdata->dev, "No matching eDP rates in table; falling back\n"); } /* On older versions best we can do is use DP_MAX_LINK_RATE */ ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read max rate (%d); assuming 5.4 GHz\n", ret); dpcd_val = DP_LINK_BW_5_4; } switch (dpcd_val) { default: DRM_DEV_ERROR(pdata->dev, "Unexpected max rate (%#x); assuming 5.4 GHz\n", (int)dpcd_val); /* fall through */ case DP_LINK_BW_5_4: rate_valid[7] = 1; /* fall through */ case DP_LINK_BW_2_7: rate_valid[4] = 1; /* fall through */ case DP_LINK_BW_1_62: rate_valid[1] = 1; break; } } static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata) { struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; u8 hsync_polarity = 0, vsync_polarity = 0; if (mode->flags & DRM_MODE_FLAG_PHSYNC) hsync_polarity = CHA_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_PVSYNC) vsync_polarity = CHA_VSYNC_POLARITY; ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, mode->hdisplay); ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, mode->vdisplay); regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, (mode->hsync_end - mode->hsync_start) & 0xFF); regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | hsync_polarity); regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, (mode->vsync_end - mode->vsync_start) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | vsync_polarity); regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, (mode->htotal - mode->hsync_end) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, (mode->vtotal - mode->vsync_end) & 0xFF); regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, (mode->hsync_start - mode->hdisplay) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, (mode->vsync_start - mode->vdisplay) & 0xFF); usleep_range(10000, 10500); /* 10ms delay recommended by spec */ } static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata) { u8 data; int ret; ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read lane count (%d); assuming 4\n", ret); return 4; } return data & DP_LANE_COUNT_MASK; } static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx, const char **last_err_str) { unsigned int val; int ret; /* set dp clk frequency value */ regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); /* enable DP PLL */ regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, val & DPPLL_SRC_DP_PLL_LOCK, 1000, 50 * 1000); if (ret) { *last_err_str = "DP_PLL_LOCK polling failed"; goto exit; } /* Semi auto link training mode */ regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, val == ML_TX_MAIN_LINK_OFF || val == ML_TX_NORMAL_MODE, 1000, 500 * 1000); if (ret) { *last_err_str = "Training complete polling failed"; } else if (val == ML_TX_MAIN_LINK_OFF) { *last_err_str = "Link training failed, link is off"; ret = -EIO; } exit: /* Disable the PLL if we failed */ if (ret) regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); return ret; } static void ti_sn_bridge_enable(struct drm_bridge *bridge) { struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge); bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { }; const char *last_err_str = "No supported DP rate"; int dp_rate_idx; unsigned int val; int ret = -EINVAL; int max_dp_lanes; max_dp_lanes = ti_sn_get_max_lanes(pdata); pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); /* DSI_A lane config */ val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, CHA_DSI_LANES_MASK, val); regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, pdata->ln_polrs << LN_POLRS_OFFSET); /* set dsi clk frequency value */ ti_sn_bridge_set_dsi_rate(pdata); /** * The SN65DSI86 only supports ASSR Display Authentication method and * this method is enabled by default. An eDP panel must support this * authentication method. We need to enable this method in the eDP panel * at DisplayPort address 0x0010A prior to link training. */ drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); /* Set the DP output format (18 bpp or 24 bpp) */ val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0; regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); /* DP lane config */ val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, val); ti_sn_bridge_read_valid_rates(pdata, rate_valid); /* Train until we run out of rates */ for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata); dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); dp_rate_idx++) { if (!rate_valid[dp_rate_idx]) continue; ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); if (!ret) break; } if (ret) { DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); return; } /* config video parameters */ ti_sn_bridge_set_video_timings(pdata); /* enable video stream */ regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, VSTREAM_ENABLE); drm_panel_enable(pdata->panel); } static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge) { struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge); pm_runtime_get_sync(pdata->dev); /* configure bridge ref_clk */ ti_sn_bridge_set_refclk_freq(pdata); /* * HPD on this bridge chip is a bit useless. This is an eDP bridge * so the HPD is an internal signal that's only there to signal that * the panel is done powering up. ...but the bridge chip debounces * this signal by between 100 ms and 400 ms (depending on process, * voltage, and temperate--I measured it at about 200 ms). One * particular panel asserted HPD 84 ms after it was powered on meaning * that we saw HPD 284 ms after power on. ...but the same panel said * that instead of looking at HPD you could just hardcode a delay of * 200 ms. We'll assume that the panel driver will have the hardcoded * delay in its prepare and always disable HPD. * * If HPD somehow makes sense on some future panel we'll have to * change this to be conditional on someone specifying that HPD should * be used. */ regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, HPD_DISABLE); drm_panel_prepare(pdata->panel); } static void ti_sn_bridge_post_disable(struct drm_bridge *bridge) { struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge); if (pdata->refclk) clk_disable_unprepare(pdata->refclk); pm_runtime_put_sync(pdata->dev); } static const struct drm_bridge_funcs ti_sn_bridge_funcs = { .attach = ti_sn_bridge_attach, .pre_enable = ti_sn_bridge_pre_enable, .enable = ti_sn_bridge_enable, .disable = ti_sn_bridge_disable, .post_disable = ti_sn_bridge_post_disable, }; static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux) { return container_of(aux, struct ti_sn_bridge, aux); } static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux); u32 request = msg->request & ~DP_AUX_I2C_MOT; u32 request_val = AUX_CMD_REQ(msg->request); u8 *buf = (u8 *)msg->buffer; unsigned int val; int ret, i; if (msg->size > SN_AUX_MAX_PAYLOAD_BYTES) return -EINVAL; switch (request) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); break; default: return -EINVAL; } regmap_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, (msg->address >> 16) & 0xF); regmap_write(pdata->regmap, SN_AUX_ADDR_15_8_REG, (msg->address >> 8) & 0xFF); regmap_write(pdata->regmap, SN_AUX_ADDR_7_0_REG, msg->address & 0xFF); regmap_write(pdata->regmap, SN_AUX_LENGTH_REG, msg->size); if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) { for (i = 0; i < msg->size; i++) regmap_write(pdata->regmap, SN_AUX_WDATA_REG(i), buf[i]); } /* Clear old status bits before start so we don't get confused */ regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, AUX_IRQ_STATUS_NAT_I2C_FAIL | AUX_IRQ_STATUS_AUX_RPLY_TOUT | AUX_IRQ_STATUS_AUX_SHORT); regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, !(val & AUX_CMD_SEND), 200, 50 * 1000); if (ret) return ret; ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); if (ret) return ret; else if ((val & AUX_IRQ_STATUS_NAT_I2C_FAIL) || (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) || (val & AUX_IRQ_STATUS_AUX_SHORT)) return -ENXIO; if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) return msg->size; for (i = 0; i < msg->size; i++) { unsigned int val; ret = regmap_read(pdata->regmap, SN_AUX_RDATA_REG(i), &val); if (ret) return ret; WARN_ON(val & ~0xFF); buf[i] = (u8)(val & 0xFF); } return msg->size; } static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata) { struct device_node *np = pdata->dev->of_node; pdata->host_node = of_graph_get_remote_node(np, 0, 0); if (!pdata->host_node) { DRM_ERROR("remote dsi host node not found\n"); return -ENODEV; } return 0; } #if defined(CONFIG_OF_GPIO) static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, const struct of_phandle_args *gpiospec, u32 *flags) { if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) return -EINVAL; if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) return -EINVAL; if (flags) *flags = gpiospec->args[1]; return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; } static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { struct ti_sn_bridge *pdata = gpiochip_get_data(chip); /* * We already have to keep track of the direction because we use * that to figure out whether we've powered the device. We can * just return that rather than (maybe) powering up the device * to ask its direction. */ return test_bit(offset, pdata->gchip_output) ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) { struct ti_sn_bridge *pdata = gpiochip_get_data(chip); unsigned int val; int ret; /* * When the pin is an input we don't forcibly keep the bridge * powered--we just power it on to read the pin. NOTE: part of * the reason this works is that the bridge defaults (when * powered back on) to all 4 GPIOs being configured as GPIO input. * Also note that if something else is keeping the chip powered the * pm_runtime functions are lightweight increments of a refcount. */ pm_runtime_get_sync(pdata->dev); ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); pm_runtime_put(pdata->dev); if (ret) return ret; return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); } static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, int val) { struct ti_sn_bridge *pdata = gpiochip_get_data(chip); int ret; if (!test_bit(offset, pdata->gchip_output)) { dev_err(pdata->dev, "Ignoring GPIO set while input\n"); return; } val &= 1; ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, BIT(SN_GPIO_OUTPUT_SHIFT + offset), val << (SN_GPIO_OUTPUT_SHIFT + offset)); if (ret) dev_warn(pdata->dev, "Failed to set bridge GPIO %u: %d\n", offset, ret); } static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) { struct ti_sn_bridge *pdata = gpiochip_get_data(chip); int shift = offset * 2; int ret; if (!test_and_clear_bit(offset, pdata->gchip_output)) return 0; ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, SN_GPIO_MUX_MASK << shift, SN_GPIO_MUX_INPUT << shift); if (ret) { set_bit(offset, pdata->gchip_output); return ret; } /* * NOTE: if nobody else is powering the device this may fully power * it off and when it comes back it will have lost all state, but * that's OK because the default is input and we're now an input. */ pm_runtime_put(pdata->dev); return 0; } static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int val) { struct ti_sn_bridge *pdata = gpiochip_get_data(chip); int shift = offset * 2; int ret; if (test_and_set_bit(offset, pdata->gchip_output)) return 0; pm_runtime_get_sync(pdata->dev); /* Set value first to avoid glitching */ ti_sn_bridge_gpio_set(chip, offset, val); /* Set direction */ ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, SN_GPIO_MUX_MASK << shift, SN_GPIO_MUX_OUTPUT << shift); if (ret) { clear_bit(offset, pdata->gchip_output); pm_runtime_put(pdata->dev); } return ret; } static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) { /* We won't keep pm_runtime if we're input, so switch there on free */ ti_sn_bridge_gpio_direction_input(chip, offset); } static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { "GPIO1", "GPIO2", "GPIO3", "GPIO4" }; static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata) { int ret; /* Only init if someone is going to use us as a GPIO controller */ if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) return 0; pdata->gchip.label = dev_name(pdata->dev); pdata->gchip.parent = pdata->dev; pdata->gchip.owner = THIS_MODULE; pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; pdata->gchip.of_gpio_n_cells = 2; pdata->gchip.free = ti_sn_bridge_gpio_free; pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; pdata->gchip.get = ti_sn_bridge_gpio_get; pdata->gchip.set = ti_sn_bridge_gpio_set; pdata->gchip.can_sleep = true; pdata->gchip.names = ti_sn_bridge_gpio_names; pdata->gchip.ngpio = SN_NUM_GPIOS; pdata->gchip.base = -1; ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata); if (ret) dev_err(pdata->dev, "can't add gpio chip\n"); return ret; } #else static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata) { return 0; } #endif static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata, struct device_node *np) { u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; u32 lane_polarities[SN_MAX_DP_LANES] = { }; struct device_node *endpoint; u8 ln_assign = 0; u8 ln_polrs = 0; int dp_lanes; int i; /* * Read config from the device tree about lane remapping and lane * polarities. These are optional and we assume identity map and * normal polarity if nothing is specified. It's OK to specify just * data-lanes but not lane-polarities but not vice versa. * * Error checking is light (we just make sure we don't crash or * buffer overrun) and we assume dts is well formed and specifying * mappings that the hardware supports. */ endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes"); if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) { of_property_read_u32_array(endpoint, "data-lanes", lane_assignments, dp_lanes); of_property_read_u32_array(endpoint, "lane-polarities", lane_polarities, dp_lanes); } else { dp_lanes = SN_MAX_DP_LANES; } of_node_put(endpoint); /* * Convert into register format. Loop over all lanes even if * data-lanes had fewer elements so that we nicely initialize * the LN_ASSIGN register. */ for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; ln_polrs = ln_polrs << 1 | lane_polarities[i]; } /* Stash in our struct for when we power on */ pdata->dp_lanes = dp_lanes; pdata->ln_assign = ln_assign; pdata->ln_polrs = ln_polrs; } static int ti_sn_bridge_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct ti_sn_bridge *pdata; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { DRM_ERROR("device doesn't support I2C\n"); return -ENODEV; } pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->regmap = devm_regmap_init_i2c(client, &ti_sn_bridge_regmap_config); if (IS_ERR(pdata->regmap)) { DRM_ERROR("regmap i2c init failed\n"); return PTR_ERR(pdata->regmap); } pdata->dev = &client->dev; ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0, &pdata->panel, NULL); if (ret) { DRM_ERROR("could not find any panel node\n"); return ret; } dev_set_drvdata(&client->dev, pdata); pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(pdata->enable_gpio)) { DRM_ERROR("failed to get enable gpio from DT\n"); ret = PTR_ERR(pdata->enable_gpio); return ret; } ti_sn_bridge_parse_lanes(pdata, client->dev.of_node); ret = ti_sn_bridge_parse_regulators(pdata); if (ret) { DRM_ERROR("failed to parse regulators\n"); return ret; } pdata->refclk = devm_clk_get(pdata->dev, "refclk"); if (IS_ERR(pdata->refclk)) { ret = PTR_ERR(pdata->refclk); if (ret == -EPROBE_DEFER) return ret; DRM_DEBUG_KMS("refclk not found\n"); pdata->refclk = NULL; } ret = ti_sn_bridge_parse_dsi_host(pdata); if (ret) return ret; pm_runtime_enable(pdata->dev); ret = ti_sn_setup_gpio_controller(pdata); if (ret) { pm_runtime_disable(pdata->dev); return ret; } i2c_set_clientdata(client, pdata); pdata->aux.name = "ti-sn65dsi86-aux"; pdata->aux.dev = pdata->dev; pdata->aux.transfer = ti_sn_aux_transfer; drm_dp_aux_register(&pdata->aux); pdata->bridge.funcs = &ti_sn_bridge_funcs; pdata->bridge.of_node = client->dev.of_node; drm_bridge_add(&pdata->bridge); ti_sn_debugfs_init(pdata); return 0; } static int ti_sn_bridge_remove(struct i2c_client *client) { struct ti_sn_bridge *pdata = i2c_get_clientdata(client); if (!pdata) return -EINVAL; ti_sn_debugfs_remove(pdata); of_node_put(pdata->host_node); pm_runtime_disable(pdata->dev); if (pdata->dsi) { mipi_dsi_detach(pdata->dsi); mipi_dsi_device_unregister(pdata->dsi); } drm_bridge_remove(&pdata->bridge); return 0; } static struct i2c_device_id ti_sn_bridge_id[] = { { "ti,sn65dsi86", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id); static const struct of_device_id ti_sn_bridge_match_table[] = { {.compatible = "ti,sn65dsi86"}, {}, }; MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table); static struct i2c_driver ti_sn_bridge_driver = { .driver = { .name = "ti_sn65dsi86", .of_match_table = ti_sn_bridge_match_table, .pm = &ti_sn_bridge_pm_ops, }, .probe = ti_sn_bridge_probe, .remove = ti_sn_bridge_remove, .id_table = ti_sn_bridge_id, }; module_i2c_driver(ti_sn_bridge_driver); MODULE_AUTHOR("Sandeep Panda "); MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); MODULE_LICENSE("GPL v2");