#ifndef _ASM_POWERPC_MMU_HASH64_H_ #define _ASM_POWERPC_MMU_HASH64_H_ /* * PowerPC64 memory management structures * * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> * PPC64 rework. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include /* * This is necessary to get the definition of PGTABLE_RANGE which we * need for various slices related matters. Note that this isn't the * complete pgtable.h but only a portion of it. */ #include /* * Segment table */ #define STE_ESID_V 0x80 #define STE_ESID_KS 0x20 #define STE_ESID_KP 0x10 #define STE_ESID_N 0x08 #define STE_VSID_SHIFT 12 /* Location of cpu0's segment table */ #define STAB0_PAGE 0x8 #define STAB0_OFFSET (STAB0_PAGE << 12) #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) #ifndef __ASSEMBLY__ extern char initial_stab[]; #endif /* ! __ASSEMBLY */ /* * SLB */ #define SLB_NUM_BOLTED 3 #define SLB_CACHE_ENTRIES 8 #define SLB_MIN_SIZE 32 /* Bits in the SLB ESID word */ #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ /* Bits in the SLB VSID word */ #define SLB_VSID_SHIFT 12 #define SLB_VSID_SHIFT_1T 24 #define SLB_VSID_SSIZE_SHIFT 62 #define SLB_VSID_B ASM_CONST(0xc000000000000000) #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) #define SLB_VSID_KS ASM_CONST(0x0000000000000800) #define SLB_VSID_KP ASM_CONST(0x0000000000000400) #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ #define SLB_VSID_L ASM_CONST(0x0000000000000100) #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ #define SLB_VSID_LP ASM_CONST(0x0000000000000030) #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) #define SLB_VSID_KERNEL (SLB_VSID_KP) #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) #define SLBIE_C (0x08000000) #define SLBIE_SSIZE_SHIFT 25 /* * Hash table */ #define HPTES_PER_GROUP 8 #define HPTE_V_SSIZE_SHIFT 62 #define HPTE_V_AVPN_SHIFT 7 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) #define HPTE_V_VALID ASM_CONST(0x0000000000000001) #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) #define HPTE_R_TS ASM_CONST(0x4000000000000000) #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) #define HPTE_R_RPN_SHIFT 12 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) #define HPTE_R_PP ASM_CONST(0x0000000000000003) #define HPTE_R_N ASM_CONST(0x0000000000000004) #define HPTE_R_G ASM_CONST(0x0000000000000008) #define HPTE_R_M ASM_CONST(0x0000000000000010) #define HPTE_R_I ASM_CONST(0x0000000000000020) #define HPTE_R_W ASM_CONST(0x0000000000000040) #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) #define HPTE_R_C ASM_CONST(0x0000000000000080) #define HPTE_R_R ASM_CONST(0x0000000000000100) #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) /* Values for PP (assumes Ks=0, Kp=1) */ #define PP_RWXX 0 /* Supervisor read/write, User none */ #define PP_RWRX 1 /* Supervisor read/write, User read */ #define PP_RWRW 2 /* Supervisor read/write, User read/write */ #define PP_RXRX 3 /* Supervisor read, User read */ #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ /* Fields for tlbiel instruction in architecture 2.06 */ #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ #define TLBIEL_INVAL_SET_SHIFT 12 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ #ifndef __ASSEMBLY__ struct hash_pte { unsigned long v; unsigned long r; }; extern struct hash_pte *htab_address; extern unsigned long htab_size_bytes; extern unsigned long htab_hash_mask; /* * Page size definition * * shift : is the "PAGE_SHIFT" value for that page size * sllp : is a bit mask with the value of SLB L || LP to be or'ed * directly to a slbmte "vsid" value * penc : is the HPTE encoding mask for the "LP" field: * */ struct mmu_psize_def { unsigned int shift; /* number of bits */ unsigned int penc; /* HPTE encoding */ unsigned int tlbiel; /* tlbiel supported for that page size */ unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ }; #endif /* __ASSEMBLY__ */ /* * Segment sizes. * These are the values used by hardware in the B field of * SLB entries and the first dword of MMU hashtable entries. * The B field is 2 bits; the values 2 and 3 are unused and reserved. */ #define MMU_SEGSIZE_256M 0 #define MMU_SEGSIZE_1T 1 /* * encode page number shift. * in order to fit the 78 bit va in a 64 bit variable we shift the va by * 12 bits. This enable us to address upto 76 bit va. * For hpt hash from a va we can ignore the page size bits of va and for * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure * we work in all cases including 4k page size. */ #define VPN_SHIFT 12 #ifndef __ASSEMBLY__ static inline int segment_shift(int ssize) { if (ssize == MMU_SEGSIZE_256M) return SID_SHIFT; return SID_SHIFT_1T; } /* * The current system page and segment sizes */ extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; extern int mmu_linear_psize; extern int mmu_virtual_psize; extern int mmu_vmalloc_psize; extern int mmu_vmemmap_psize; extern int mmu_io_psize; extern int mmu_kernel_ssize; extern int mmu_highuser_ssize; extern u16 mmu_slb_size; extern unsigned long tce_alloc_start, tce_alloc_end; /* * If the processor supports 64k normal pages but not 64k cache * inhibited pages, we have to be prepared to switch processes * to use 4k pages when they create cache-inhibited mappings. * If this is the case, mmu_ci_restrictions will be set to 1. */ extern int mmu_ci_restrictions; /* * This computes the AVPN and B fields of the first dword of a HPTE, * for use when we want to match an existing PTE. The bottom 7 bits * of the returned value are zero. */ static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, int ssize) { unsigned long v; /* * The AVA field omits the low-order 23 bits of the 78 bits VA. * These bits are not needed in the PTE, because the * low-order b of these bits are part of the byte offset * into the virtual page and, if b < 23, the high-order * 23-b of these bits are always used in selecting the * PTEGs to be searched */ v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); v <<= HPTE_V_AVPN_SHIFT; v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; return v; } /* * This function sets the AVPN and L fields of the HPTE appropriately * for the page size */ static inline unsigned long hpte_encode_v(unsigned long vpn, int psize, int ssize) { unsigned long v; v = hpte_encode_avpn(vpn, psize, ssize); if (psize != MMU_PAGE_4K) v |= HPTE_V_LARGE; return v; } /* * This function sets the ARPN, and LP fields of the HPTE appropriately * for the page size. We assume the pa is already "clean" that is properly * aligned for the requested page size */ static inline unsigned long hpte_encode_r(unsigned long pa, int psize) { unsigned long r; /* A 4K page needs no special encoding */ if (psize == MMU_PAGE_4K) return pa & HPTE_R_RPN; else { unsigned int penc = mmu_psize_defs[psize].penc; unsigned int shift = mmu_psize_defs[psize].shift; return (pa & ~((1ul << shift) - 1)) | (penc << 12); } return r; } /* * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. */ static inline unsigned long hpt_vpn(unsigned long ea, unsigned long vsid, int ssize) { unsigned long mask; int s_shift = segment_shift(ssize); mask = (1ul << (s_shift - VPN_SHIFT)) - 1; return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); } /* * This hashes a virtual address */ static inline unsigned long hpt_hash(unsigned long vpn, unsigned int shift, int ssize) { int mask; unsigned long hash, vsid; /* VPN_SHIFT can be atmost 12 */ if (ssize == MMU_SEGSIZE_256M) { mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ ((vpn & mask) >> (shift - VPN_SHIFT)); } else { mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); hash = vsid ^ (vsid << 25) ^ ((vpn & mask) >> (shift - VPN_SHIFT)) ; } return hash & 0x7fffffffffUL; } extern int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned int local, int ssize, int subpage_prot); extern int __hash_page_64K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned int local, int ssize); struct mm_struct; unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, int local, int ssize, unsigned int shift, unsigned int mmu_psize); extern void hash_failure_debug(unsigned long ea, unsigned long access, unsigned long vsid, unsigned long trap, int ssize, int psize, unsigned long pte); extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, unsigned long pstart, unsigned long prot, int psize, int ssize); extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); extern void hpte_init_native(void); extern void hpte_init_lpar(void); extern void hpte_init_beat(void); extern void hpte_init_beat_v3(void); extern void stabs_alloc(void); extern void slb_initialize(void); extern void slb_flush_and_rebolt(void); extern void stab_initialize(unsigned long stab); extern void slb_vmalloc_update(void); extern void slb_set_size(u16 size); #endif /* __ASSEMBLY__ */ /* * VSID allocation (256MB segment) * * We first generate a 38-bit "proto-VSID". For kernel addresses this * is equal to the ESID | 1 << 37, for user addresses it is: * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1) * * This splits the proto-VSID into the below range * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range * * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1 * That is, we assign half of the space to user processes and half * to the kernel. * * The proto-VSIDs are then scrambled into real VSIDs with the * multiplicative hash: * * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS * * VSID_MULTIPLIER is prime, so in particular it is * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. * Because the modulus is 2^n-1 we can compute it efficiently without * a divide or extra multiply (see below). * * This scheme has several advantages over older methods: * * - We have VSIDs allocated for every kernel address * (i.e. everything above 0xC000000000000000), except the very top * segment, which simplifies several things. * * - We allow for USER_ESID_BITS significant bits of ESID and * CONTEXT_BITS bits of context for user addresses. * i.e. 64T (46 bits) of address space for up to half a million contexts. * * - The scramble function gives robust scattering in the hash * table (at least based on some initial results). The previous * method was more susceptible to pathological cases giving excessive * hash collisions. */ #define CONTEXT_BITS 19 #define USER_ESID_BITS 18 #define USER_ESID_BITS_1T 6 /* * This should be computed such that protovosid * vsid_mulitplier * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus */ #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ #define VSID_BITS_256M (CONTEXT_BITS + USER_ESID_BITS + 1) #define VSID_MODULUS_256M ((1UL<= \ * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ * the bit clear, r3 already has the answer we want, if it \ * doesn't, the answer is the low 36 bits of r3+1. So in all \ * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ addi rx,rt,1; \ srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ add rt,rt,rx /* 4 bits per slice and we have one slice per 1TB */ #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41) #ifndef __ASSEMBLY__ #ifdef CONFIG_PPC_SUBPAGE_PROT /* * For the sub-page protection option, we extend the PGD with one of * these. Basically we have a 3-level tree, with the top level being * the protptrs array. To optimize speed and memory consumption when * only addresses < 4GB are being protected, pointers to the first * four pages of sub-page protection words are stored in the low_prot * array. * Each page of sub-page protection words protects 1GB (4 bytes * protects 64k). For the 3-level tree, each page of pointers then * protects 8TB. */ struct subpage_prot_table { unsigned long maxaddr; /* only addresses < this are protected */ unsigned int **protptrs[2]; unsigned int *low_prot[4]; }; #define SBP_L1_BITS (PAGE_SHIFT - 2) #define SBP_L2_BITS (PAGE_SHIFT - 3) #define SBP_L1_COUNT (1 << SBP_L1_BITS) #define SBP_L2_COUNT (1 << SBP_L2_BITS) #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) extern void subpage_prot_free(struct mm_struct *mm); extern void subpage_prot_init_new_context(struct mm_struct *mm); #else static inline void subpage_prot_free(struct mm_struct *mm) {} static inline void subpage_prot_init_new_context(struct mm_struct *mm) { } #endif /* CONFIG_PPC_SUBPAGE_PROT */ typedef unsigned long mm_context_id_t; struct spinlock; typedef struct { mm_context_id_t id; u16 user_psize; /* page size index */ #ifdef CONFIG_PPC_MM_SLICES u64 low_slices_psize; /* SLB page size encodings */ unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; #else u16 sllp; /* SLB page size encoding */ #endif unsigned long vdso_base; #ifdef CONFIG_PPC_SUBPAGE_PROT struct subpage_prot_table spt; #endif /* CONFIG_PPC_SUBPAGE_PROT */ #ifdef CONFIG_PPC_ICSWX struct spinlock *cop_lockp; /* guard acop and cop_pid */ unsigned long acop; /* mask of enabled coprocessor types */ unsigned int cop_pid; /* pid value used with coprocessors */ #endif /* CONFIG_PPC_ICSWX */ } mm_context_t; #if 0 /* * The code below is equivalent to this function for arguments * < 2^VSID_BITS, which is all this should ever be called * with. However gcc is not clever enough to compute the * modulus (2^n-1) without a second multiply. */ #define vsid_scramble(protovsid, size) \ ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) #else /* 1 */ #define vsid_scramble(protovsid, size) \ ({ \ unsigned long x; \ x = (protovsid) * VSID_MULTIPLIER_##size; \ x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ }) #endif /* 1 */ /* * This is only valid for addresses >= PAGE_OFFSET * The proto-VSID space is divided into two class * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1 * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1 * * With KERNEL_START at 0xc000000000000000, the proto vsid for * the kernel ends up with 0xc00000000 (36 bits). With 64TB * support we need to have kernel proto-VSID in the * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS. */ static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) { unsigned long proto_vsid; /* * We need to make sure proto_vsid for the kernel is * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T]) */ if (ssize == MMU_SEGSIZE_256M) { proto_vsid = ea >> SID_SHIFT; proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS)); return vsid_scramble(proto_vsid, 256M); } proto_vsid = ea >> SID_SHIFT_1T; proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T)); return vsid_scramble(proto_vsid, 1T); } /* Returns the segment size indicator for a user address */ static inline int user_segment_size(unsigned long addr) { /* Use 1T segments if possible for addresses >= 1T */ if (addr >= (1UL << SID_SHIFT_1T)) return mmu_highuser_ssize; return MMU_SEGSIZE_256M; } /* This is only valid for user addresses (which are below 2^44) */ static inline unsigned long get_vsid(unsigned long context, unsigned long ea, int ssize) { if (ssize == MMU_SEGSIZE_256M) return vsid_scramble((context << USER_ESID_BITS) | (ea >> SID_SHIFT), 256M); return vsid_scramble((context << USER_ESID_BITS_1T) | (ea >> SID_SHIFT_1T), 1T); } #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_MMU_HASH64_H_ */