/* * X86 specific Hyper-V initialization code. * * Copyright (C) 2016, Microsoft, Inc. * * Author : K. Y. Srinivasan * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HYPERV_TSCPAGE static struct ms_hyperv_tsc_page *tsc_pg; struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return tsc_pg; } EXPORT_SYMBOL_GPL(hv_get_tsc_page); static u64 read_hv_clock_tsc(struct clocksource *arg) { u64 current_tick = hv_read_tsc_page(tsc_pg); if (current_tick == U64_MAX) rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); return current_tick; } static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 400, .read = read_hv_clock_tsc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #endif static u64 read_hv_clock_msr(struct clocksource *arg) { u64 current_tick; /* * Read the partition counter to get the current tick count. This count * is set to 0 when the partition is created and is incremented in * 100 nanosecond units. */ rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); return current_tick; } static struct clocksource hyperv_cs_msr = { .name = "hyperv_clocksource_msr", .rating = 400, .read = read_hv_clock_msr, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; void *hv_hypercall_pg; EXPORT_SYMBOL_GPL(hv_hypercall_pg); struct clocksource *hyperv_cs; EXPORT_SYMBOL_GPL(hyperv_cs); u32 *hv_vp_index; EXPORT_SYMBOL_GPL(hv_vp_index); u32 hv_max_vp_index; static int hv_cpu_init(unsigned int cpu) { u64 msr_vp_index; hv_get_vp_index(msr_vp_index); hv_vp_index[smp_processor_id()] = msr_vp_index; if (msr_vp_index > hv_max_vp_index) hv_max_vp_index = msr_vp_index; return 0; } /* * This function is to be invoked early in the boot sequence after the * hypervisor has been detected. * * 1. Setup the hypercall page. * 2. Register Hyper-V specific clocksource. */ void hyperv_init(void) { u64 guest_id, required_msrs; union hv_x64_msr_hypercall_contents hypercall_msr; if (x86_hyper_type != X86_HYPER_MS_HYPERV) return; /* Absolutely required MSRs */ required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE | HV_X64_MSR_VP_INDEX_AVAILABLE; if ((ms_hyperv.features & required_msrs) != required_msrs) return; /* Allocate percpu VP index */ hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), GFP_KERNEL); if (!hv_vp_index) return; if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", hv_cpu_init, NULL) < 0) goto free_vp_index; /* * Setup the hypercall page and enable hypercalls. * 1. Register the guest ID * 2. Enable the hypercall and register the hypercall page */ guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX); if (hv_hypercall_pg == NULL) { wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); goto free_vp_index; } rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); hypercall_msr.enable = 1; hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); hyper_alloc_mmu(); /* * Register Hyper-V specific clocksource. */ #ifdef CONFIG_HYPERV_TSCPAGE if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) { union hv_x64_msr_hypercall_contents tsc_msr; tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL); if (!tsc_pg) goto register_msr_cs; hyperv_cs = &hyperv_cs_tsc; rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); tsc_msr.enable = 1; tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg); wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK; clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); return; } register_msr_cs: #endif /* * For 32 bit guests just use the MSR based mechanism for reading * the partition counter. */ hyperv_cs = &hyperv_cs_msr; if (ms_hyperv.features & HV_X64_MSR_TIME_REF_COUNT_AVAILABLE) clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); return; free_vp_index: kfree(hv_vp_index); hv_vp_index = NULL; } /* * This routine is called before kexec/kdump, it does the required cleanup. */ void hyperv_cleanup(void) { union hv_x64_msr_hypercall_contents hypercall_msr; /* Reset our OS id */ wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); /* Reset the hypercall page */ hypercall_msr.as_uint64 = 0; wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); /* Reset the TSC page */ hypercall_msr.as_uint64 = 0; wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); } EXPORT_SYMBOL_GPL(hyperv_cleanup); void hyperv_report_panic(struct pt_regs *regs, long err) { static bool panic_reported; u64 guest_id; /* * We prefer to report panic on 'die' chain as we have proper * registers to report, but if we miss it (e.g. on BUG()) we need * to report it on 'panic'. */ if (panic_reported) return; panic_reported = true; rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); wrmsrl(HV_X64_MSR_CRASH_P0, err); wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); /* * Let Hyper-V know there is crash data available */ wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); } EXPORT_SYMBOL_GPL(hyperv_report_panic); bool hv_is_hypercall_page_setup(void) { union hv_x64_msr_hypercall_contents hypercall_msr; /* Check if the hypercall page is setup */ hypercall_msr.as_uint64 = 0; rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); if (!hypercall_msr.enable) return false; return true; } EXPORT_SYMBOL_GPL(hv_is_hypercall_page_setup);