/* * Algorithm testing framework and tests. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) 2007 Nokia Siemens Networks * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> * * Updated RFC4106 AES-GCM testing. * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/aead.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/err.h> #include <linux/fips.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/string.h> #include <crypto/rng.h> #include <crypto/drbg.h> #include <crypto/akcipher.h> #include "internal.h" #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS /* a perfect nop */ int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { return 0; } #else #include "testmgr.h" /* * Need slab memory for testing (size in number of pages). */ #define XBUFSIZE 8 /* * Indexes into the xbuf to simulate cross-page access. */ #define IDX1 32 #define IDX2 32400 #define IDX3 1 #define IDX4 8193 #define IDX5 22222 #define IDX6 17101 #define IDX7 27333 #define IDX8 3000 /* * Used by test_cipher() */ #define ENCRYPT 1 #define DECRYPT 0 struct tcrypt_result { struct completion completion; int err; }; struct aead_test_suite { struct { struct aead_testvec *vecs; unsigned int count; } enc, dec; }; struct cipher_test_suite { struct { struct cipher_testvec *vecs; unsigned int count; } enc, dec; }; struct comp_test_suite { struct { struct comp_testvec *vecs; unsigned int count; } comp, decomp; }; struct hash_test_suite { struct hash_testvec *vecs; unsigned int count; }; struct cprng_test_suite { struct cprng_testvec *vecs; unsigned int count; }; struct drbg_test_suite { struct drbg_testvec *vecs; unsigned int count; }; struct akcipher_test_suite { struct akcipher_testvec *vecs; unsigned int count; }; struct alg_test_desc { const char *alg; int (*test)(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask); int fips_allowed; /* set if alg is allowed in fips mode */ union { struct aead_test_suite aead; struct cipher_test_suite cipher; struct comp_test_suite comp; struct hash_test_suite hash; struct cprng_test_suite cprng; struct drbg_test_suite drbg; struct akcipher_test_suite akcipher; } suite; }; static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 }; static void hexdump(unsigned char *buf, unsigned int len) { print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } static void tcrypt_complete(struct crypto_async_request *req, int err) { struct tcrypt_result *res = req->data; if (err == -EINPROGRESS) return; res->err = err; complete(&res->completion); } static int testmgr_alloc_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) { buf[i] = (void *)__get_free_page(GFP_KERNEL); if (!buf[i]) goto err_free_buf; } return 0; err_free_buf: while (i-- > 0) free_page((unsigned long)buf[i]); return -ENOMEM; } static void testmgr_free_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) free_page((unsigned long)buf[i]); } static int wait_async_op(struct tcrypt_result *tr, int ret) { if (ret == -EINPROGRESS || ret == -EBUSY) { wait_for_completion(&tr->completion); reinit_completion(&tr->completion); ret = tr->err; } return ret; } static int ahash_partial_update(struct ahash_request **preq, struct crypto_ahash *tfm, struct hash_testvec *template, void *hash_buff, int k, int temp, struct scatterlist *sg, const char *algo, char *result, struct tcrypt_result *tresult) { char *state; struct ahash_request *req; int statesize, ret = -EINVAL; req = *preq; statesize = crypto_ahash_statesize( crypto_ahash_reqtfm(req)); state = kmalloc(statesize, GFP_KERNEL); if (!state) { pr_err("alt: hash: Failed to alloc state for %s\n", algo); goto out_nostate; } ret = crypto_ahash_export(req, state); if (ret) { pr_err("alt: hash: Failed to export() for %s\n", algo); goto out; } ahash_request_free(req); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: hash: Failed to alloc request for %s\n", algo); goto out_noreq; } ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, tresult); memcpy(hash_buff, template->plaintext + temp, template->tap[k]); sg_init_one(&sg[0], hash_buff, template->tap[k]); ahash_request_set_crypt(req, sg, result, template->tap[k]); ret = crypto_ahash_import(req, state); if (ret) { pr_err("alg: hash: Failed to import() for %s\n", algo); goto out; } ret = wait_async_op(tresult, crypto_ahash_update(req)); if (ret) goto out; *preq = req; ret = 0; goto out_noreq; out: ahash_request_free(req); out_noreq: kfree(state); out_nostate: return ret; } static int __test_hash(struct crypto_ahash *tfm, struct hash_testvec *template, unsigned int tcount, bool use_digest, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); unsigned int i, j, k, temp; struct scatterlist sg[8]; char *result; char *key; struct ahash_request *req; struct tcrypt_result tresult; void *hash_buff; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; result = kmalloc(MAX_DIGEST_SIZE, GFP_KERNEL); if (!result) return ret; key = kmalloc(MAX_KEYLEN, GFP_KERNEL); if (!key) goto out_nobuf; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; init_completion(&tresult.completion); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { printk(KERN_ERR "alg: hash: Failed to allocate request for " "%s\n", algo); goto out_noreq; } ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &tresult); j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; ret = -EINVAL; if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE)) goto out; j++; memset(result, 0, MAX_DIGEST_SIZE); hash_buff = xbuf[0]; hash_buff += align_offset; memcpy(hash_buff, template[i].plaintext, template[i].psize); sg_init_one(&sg[0], hash_buff, template[i].psize); if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey failed on " "test %d for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); if (use_digest) { ret = wait_async_op(&tresult, crypto_ahash_digest(req)); if (ret) { pr_err("alg: hash: digest failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } else { ret = wait_async_op(&tresult, crypto_ahash_init(req)); if (ret) { pr_err("alt: hash: init failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = wait_async_op(&tresult, crypto_ahash_update(req)); if (ret) { pr_err("alt: hash: update failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = wait_async_op(&tresult, crypto_ahash_final(req)); if (ret) { pr_err("alt: hash: final failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Test %d failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; j++; memset(result, 0, MAX_DIGEST_SIZE); temp = 0; sg_init_table(sg, template[i].np); ret = -EINVAL; for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; sg_set_buf(&sg[k], memcpy(xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].plaintext + temp, template[i].tap[k]), template[i].tap[k]); temp += template[i].tap[k]; } if (template[i].ksize) { if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } crypto_ahash_clear_flags(tfm, ~0); memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey " "failed on chunking test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); ret = crypto_ahash_digest(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: wait_for_completion(&tresult.completion); reinit_completion(&tresult.completion); ret = tresult.err; if (!ret) break; /* fall through */ default: printk(KERN_ERR "alg: hash: digest failed " "on chunking test %d for %s: " "ret=%d\n", j, algo, -ret); goto out; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Chunking test %d " "failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } /* partial update exercise */ j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (template[i].np < 2) continue; j++; memset(result, 0, MAX_DIGEST_SIZE); ret = -EINVAL; hash_buff = xbuf[0]; memcpy(hash_buff, template[i].plaintext, template[i].tap[0]); sg_init_one(&sg[0], hash_buff, template[i].tap[0]); if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); if (template[i].ksize > MAX_KEYLEN) { pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n", j, algo, template[i].ksize, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].ksize); ret = crypto_ahash_setkey(tfm, key, template[i].ksize); if (ret) { pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].tap[0]); ret = wait_async_op(&tresult, crypto_ahash_init(req)); if (ret) { pr_err("alt: hash: init failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } ret = wait_async_op(&tresult, crypto_ahash_update(req)); if (ret) { pr_err("alt: hash: update failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } temp = template[i].tap[0]; for (k = 1; k < template[i].np; k++) { ret = ahash_partial_update(&req, tfm, &template[i], hash_buff, k, temp, &sg[0], algo, result, &tresult); if (ret) { pr_err("hash: partial update failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out_noreq; } temp += template[i].tap[k]; } ret = wait_async_op(&tresult, crypto_ahash_final(req)); if (ret) { pr_err("alt: hash: final failed on test %d for %s: ret=%d\n", j, algo, -ret); goto out; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { pr_err("alg: hash: Partial Test %d failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } ret = 0; out: ahash_request_free(req); out_noreq: testmgr_free_buf(xbuf); out_nobuf: kfree(key); kfree(result); return ret; } static int test_hash(struct crypto_ahash *tfm, struct hash_testvec *template, unsigned int tcount, bool use_digest) { unsigned int alignmask; int ret; ret = __test_hash(tfm, template, tcount, use_digest, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_hash(tfm, template, tcount, use_digest, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_hash(tfm, template, tcount, use_digest, alignmask + 1); if (ret) return ret; } return 0; } static int __test_aead(struct crypto_aead *tfm, int enc, struct aead_testvec *template, unsigned int tcount, const bool diff_dst, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm)); unsigned int i, j, k, n, temp; int ret = -ENOMEM; char *q; char *key; struct aead_request *req; struct scatterlist *sg; struct scatterlist *sgout; const char *e, *d; struct tcrypt_result result; unsigned int authsize, iv_len; void *input; void *output; void *assoc; char *iv; char *xbuf[XBUFSIZE]; char *xoutbuf[XBUFSIZE]; char *axbuf[XBUFSIZE]; iv = kzalloc(MAX_IVLEN, GFP_KERNEL); if (!iv) return ret; key = kmalloc(MAX_KEYLEN, GFP_KERNEL); if (!key) goto out_noxbuf; if (testmgr_alloc_buf(xbuf)) goto out_noxbuf; if (testmgr_alloc_buf(axbuf)) goto out_noaxbuf; if (diff_dst && testmgr_alloc_buf(xoutbuf)) goto out_nooutbuf; /* avoid "the frame size is larger than 1024 bytes" compiler warning */ sg = kmalloc(sizeof(*sg) * 8 * (diff_dst ? 4 : 2), GFP_KERNEL); if (!sg) goto out_nosg; sgout = &sg[16]; if (diff_dst) d = "-ddst"; else d = ""; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; init_completion(&result.completion); req = aead_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: aead%s: Failed to allocate request for %s\n", d, algo); goto out; } aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &result); iv_len = crypto_aead_ivsize(tfm); for (i = 0, j = 0; i < tcount; i++) { if (template[i].np) continue; j++; /* some templates have no input data but they will * touch input */ input = xbuf[0]; input += align_offset; assoc = axbuf[0]; ret = -EINVAL; if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE || template[i].alen > PAGE_SIZE)) goto out; memcpy(input, template[i].input, template[i].ilen); memcpy(assoc, template[i].assoc, template[i].alen); if (template[i].iv) memcpy(iv, template[i].iv, iv_len); else memset(iv, 0, iv_len); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); if (template[i].klen > MAX_KEYLEN) { pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n", d, j, algo, template[i].klen, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].klen); ret = crypto_aead_setkey(tfm, key, template[i].klen); if (!ret == template[i].fail) { pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n", d, j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n", d, authsize, j, algo); goto out; } k = !!template[i].alen; sg_init_table(sg, k + 1); sg_set_buf(&sg[0], assoc, template[i].alen); sg_set_buf(&sg[k], input, template[i].ilen + (enc ? authsize : 0)); output = input; if (diff_dst) { sg_init_table(sgout, k + 1); sg_set_buf(&sgout[0], assoc, template[i].alen); output = xoutbuf[0]; output += align_offset; sg_set_buf(&sgout[k], output, template[i].rlen + (enc ? 0 : authsize)); } aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); aead_request_set_ad(req, template[i].alen); ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n", d, e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EINPROGRESS: case -EBUSY: wait_for_completion(&result.completion); reinit_completion(&result.completion); ret = result.err; if (!ret) break; case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } q = output; if (memcmp(q, template[i].result, template[i].rlen)) { pr_err("alg: aead%s: Test %d failed on %s for %s\n", d, j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } for (i = 0, j = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; j++; if (template[i].iv) memcpy(iv, template[i].iv, iv_len); else memset(iv, 0, MAX_IVLEN); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); if (template[i].klen > MAX_KEYLEN) { pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n", d, j, algo, template[i].klen, MAX_KEYLEN); ret = -EINVAL; goto out; } memcpy(key, template[i].key, template[i].klen); ret = crypto_aead_setkey(tfm, key, template[i].klen); if (!ret == template[i].fail) { pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n", d, j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = -EINVAL; sg_init_table(sg, template[i].anp + template[i].np); if (diff_dst) sg_init_table(sgout, template[i].anp + template[i].np); ret = -EINVAL; for (k = 0, temp = 0; k < template[i].anp; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].atap[k] > PAGE_SIZE)) goto out; sg_set_buf(&sg[k], memcpy(axbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].assoc + temp, template[i].atap[k]), template[i].atap[k]); if (diff_dst) sg_set_buf(&sgout[k], axbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].atap[k]); temp += template[i].atap[k]; } for (k = 0, temp = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, template[i].input + temp, template[i].tap[k]); sg_set_buf(&sg[template[i].anp + k], q, template[i].tap[k]); if (diff_dst) { q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memset(q, 0, template[i].tap[k]); sg_set_buf(&sgout[template[i].anp + k], q, template[i].tap[k]); } n = template[i].tap[k]; if (k == template[i].np - 1 && enc) n += authsize; if (offset_in_page(q) + n < PAGE_SIZE) q[n] = 0; temp += template[i].tap[k]; } ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n", d, authsize, j, algo); goto out; } if (enc) { if (WARN_ON(sg[template[i].anp + k - 1].offset + sg[template[i].anp + k - 1].length + authsize > PAGE_SIZE)) { ret = -EINVAL; goto out; } if (diff_dst) sgout[template[i].anp + k - 1].length += authsize; sg[template[i].anp + k - 1].length += authsize; } aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); aead_request_set_ad(req, template[i].alen); ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n", d, e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EINPROGRESS: case -EBUSY: wait_for_completion(&result.completion); reinit_completion(&result.completion); ret = result.err; if (!ret) break; case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } ret = -EINVAL; for (k = 0, temp = 0; k < template[i].np; k++) { if (diff_dst) q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); else q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); n = template[i].tap[k]; if (k == template[i].np - 1) n += enc ? authsize : -authsize; if (memcmp(q, template[i].result + temp, n)) { pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n", d, j, e, k, algo); hexdump(q, n); goto out; } q += n; if (k == template[i].np - 1 && !enc) { if (!diff_dst && memcmp(q, template[i].input + temp + n, authsize)) n = authsize; else n = 0; } else { for (n = 0; offset_in_page(q + n) && q[n]; n++) ; } if (n) { pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n", d, j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } ret = 0; out: aead_request_free(req); kfree(sg); out_nosg: if (diff_dst) testmgr_free_buf(xoutbuf); out_nooutbuf: testmgr_free_buf(axbuf); out_noaxbuf: testmgr_free_buf(xbuf); out_noxbuf: kfree(key); kfree(iv); return ret; } static int test_aead(struct crypto_aead *tfm, int enc, struct aead_testvec *template, unsigned int tcount) { unsigned int alignmask; int ret; /* test 'dst == src' case */ ret = __test_aead(tfm, enc, template, tcount, false, 0); if (ret) return ret; /* test 'dst != src' case */ ret = __test_aead(tfm, enc, template, tcount, true, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_aead(tfm, enc, template, tcount, true, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_aead(tfm, enc, template, tcount, true, alignmask + 1); if (ret) return ret; } return 0; } static int test_cipher(struct crypto_cipher *tfm, int enc, struct cipher_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); unsigned int i, j, k; char *q; const char *e; void *data; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; j++; ret = -EINVAL; if (WARN_ON(template[i].ilen > PAGE_SIZE)) goto out; data = xbuf[0]; memcpy(data, template[i].input, template[i].ilen); crypto_cipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_cipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: cipher: setkey failed " "on test %d for %s: flags=%x\n", j, algo, crypto_cipher_get_flags(tfm)); goto out; } else if (ret) continue; for (k = 0; k < template[i].ilen; k += crypto_cipher_blocksize(tfm)) { if (enc) crypto_cipher_encrypt_one(tfm, data + k, data + k); else crypto_cipher_decrypt_one(tfm, data + k, data + k); } q = data; if (memcmp(q, template[i].result, template[i].rlen)) { printk(KERN_ERR "alg: cipher: Test %d failed " "on %s for %s\n", j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } ret = 0; out: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int __test_skcipher(struct crypto_skcipher *tfm, int enc, struct cipher_testvec *template, unsigned int tcount, const bool diff_dst, const int align_offset) { const char *algo = crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); unsigned int i, j, k, n, temp; char *q; struct skcipher_request *req; struct scatterlist sg[8]; struct scatterlist sgout[8]; const char *e, *d; struct tcrypt_result result; void *data; char iv[MAX_IVLEN]; char *xbuf[XBUFSIZE]; char *xoutbuf[XBUFSIZE]; int ret = -ENOMEM; unsigned int ivsize = crypto_skcipher_ivsize(tfm); if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (diff_dst && testmgr_alloc_buf(xoutbuf)) goto out_nooutbuf; if (diff_dst) d = "-ddst"; else d = ""; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; init_completion(&result.completion); req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: skcipher%s: Failed to allocate request for %s\n", d, algo); goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &result); j = 0; for (i = 0; i < tcount; i++) { if (template[i].np && !template[i].also_non_np) continue; if (template[i].iv) memcpy(iv, template[i].iv, ivsize); else memset(iv, 0, MAX_IVLEN); j++; ret = -EINVAL; if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE)) goto out; data = xbuf[0]; data += align_offset; memcpy(data, template[i].input, template[i].ilen); crypto_skcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_skcipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n", d, j, algo, crypto_skcipher_get_flags(tfm)); goto out; } else if (ret) continue; sg_init_one(&sg[0], data, template[i].ilen); if (diff_dst) { data = xoutbuf[0]; data += align_offset; sg_init_one(&sgout[0], data, template[i].ilen); } skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); ret = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: wait_for_completion(&result.completion); reinit_completion(&result.completion); ret = result.err; if (!ret) break; /* fall through */ default: pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } q = data; if (memcmp(q, template[i].result, template[i].rlen)) { pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n", d, j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } if (template[i].iv_out && memcmp(iv, template[i].iv_out, crypto_skcipher_ivsize(tfm))) { pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n", d, j, e, algo); hexdump(iv, crypto_skcipher_ivsize(tfm)); ret = -EINVAL; goto out; } } j = 0; for (i = 0; i < tcount; i++) { /* alignment tests are only done with continuous buffers */ if (align_offset != 0) break; if (!template[i].np) continue; if (template[i].iv) memcpy(iv, template[i].iv, ivsize); else memset(iv, 0, MAX_IVLEN); j++; crypto_skcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_skcipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n", d, j, algo, crypto_skcipher_get_flags(tfm)); goto out; } else if (ret) continue; temp = 0; ret = -EINVAL; sg_init_table(sg, template[i].np); if (diff_dst) sg_init_table(sgout, template[i].np); for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, template[i].input + temp, template[i].tap[k]); if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE) q[template[i].tap[k]] = 0; sg_set_buf(&sg[k], q, template[i].tap[k]); if (diff_dst) { q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); sg_set_buf(&sgout[k], q, template[i].tap[k]); memset(q, 0, template[i].tap[k]); if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE) q[template[i].tap[k]] = 0; } temp += template[i].tap[k]; } skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg, template[i].ilen, iv); ret = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: wait_for_completion(&result.completion); reinit_completion(&result.completion); ret = result.err; if (!ret) break; /* fall through */ default: pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n", d, e, j, algo, -ret); goto out; } temp = 0; ret = -EINVAL; for (k = 0; k < template[i].np; k++) { if (diff_dst) q = xoutbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); else q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); if (memcmp(q, template[i].result + temp, template[i].tap[k])) { pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n", d, j, e, k, algo); hexdump(q, template[i].tap[k]); goto out; } q += template[i].tap[k]; for (n = 0; offset_in_page(q + n) && q[n]; n++) ; if (n) { pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n", d, j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } ret = 0; out: skcipher_request_free(req); if (diff_dst) testmgr_free_buf(xoutbuf); out_nooutbuf: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_skcipher(struct crypto_skcipher *tfm, int enc, struct cipher_testvec *template, unsigned int tcount) { unsigned int alignmask; int ret; /* test 'dst == src' case */ ret = __test_skcipher(tfm, enc, template, tcount, false, 0); if (ret) return ret; /* test 'dst != src' case */ ret = __test_skcipher(tfm, enc, template, tcount, true, 0); if (ret) return ret; /* test unaligned buffers, check with one byte offset */ ret = __test_skcipher(tfm, enc, template, tcount, true, 1); if (ret) return ret; alignmask = crypto_tfm_alg_alignmask(&tfm->base); if (alignmask) { /* Check if alignment mask for tfm is correctly set. */ ret = __test_skcipher(tfm, enc, template, tcount, true, alignmask + 1); if (ret) return ret; } return 0; } static int test_comp(struct crypto_comp *tfm, struct comp_testvec *ctemplate, struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); unsigned int i; char result[COMP_BUF_SIZE]; int ret; for (i = 0; i < ctcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(result, 0, sizeof (result)); ilen = ctemplate[i].inlen; ret = crypto_comp_compress(tfm, ctemplate[i].input, ilen, result, &dlen); if (ret) { printk(KERN_ERR "alg: comp: compression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != ctemplate[i].outlen) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(result, ctemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s\n", i + 1, algo); hexdump(result, dlen); ret = -EINVAL; goto out; } } for (i = 0; i < dtcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(result, 0, sizeof (result)); ilen = dtemplate[i].inlen; ret = crypto_comp_decompress(tfm, dtemplate[i].input, ilen, result, &dlen); if (ret) { printk(KERN_ERR "alg: comp: decompression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != dtemplate[i].outlen) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(result, dtemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s\n", i + 1, algo); hexdump(result, dlen); ret = -EINVAL; goto out; } } ret = 0; out: return ret; } static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); int err = 0, i, j, seedsize; u8 *seed; char result[32]; seedsize = crypto_rng_seedsize(tfm); seed = kmalloc(seedsize, GFP_KERNEL); if (!seed) { printk(KERN_ERR "alg: cprng: Failed to allocate seed space " "for %s\n", algo); return -ENOMEM; } for (i = 0; i < tcount; i++) { memset(result, 0, 32); memcpy(seed, template[i].v, template[i].vlen); memcpy(seed + template[i].vlen, template[i].key, template[i].klen); memcpy(seed + template[i].vlen + template[i].klen, template[i].dt, template[i].dtlen); err = crypto_rng_reset(tfm, seed, seedsize); if (err) { printk(KERN_ERR "alg: cprng: Failed to reset rng " "for %s\n", algo); goto out; } for (j = 0; j < template[i].loops; j++) { err = crypto_rng_get_bytes(tfm, result, template[i].rlen); if (err < 0) { printk(KERN_ERR "alg: cprng: Failed to obtain " "the correct amount of random data for " "%s (requested %d)\n", algo, template[i].rlen); goto out; } } err = memcmp(result, template[i].result, template[i].rlen); if (err) { printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", i, algo); hexdump(result, template[i].rlen); err = -EINVAL; goto out; } } out: kfree(seed); return err; } static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_aead *tfm; int err = 0; tfm = crypto_alloc_aead(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: aead: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.aead.enc.vecs) { err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs, desc->suite.aead.enc.count); if (err) goto out; } if (!err && desc->suite.aead.dec.vecs) err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs, desc->suite.aead.dec.count); out: crypto_free_aead(tfm); return err; } static int alg_test_cipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_cipher *tfm; int err = 0; tfm = crypto_alloc_cipher(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: cipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.cipher.enc.vecs) { err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs, desc->suite.cipher.enc.count); if (err) goto out; } if (desc->suite.cipher.dec.vecs) err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs, desc->suite.cipher.dec.count); out: crypto_free_cipher(tfm); return err; } static int alg_test_skcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_skcipher *tfm; int err = 0; tfm = crypto_alloc_skcipher(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: skcipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.cipher.enc.vecs) { err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs, desc->suite.cipher.enc.count); if (err) goto out; } if (desc->suite.cipher.dec.vecs) err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs, desc->suite.cipher.dec.count); out: crypto_free_skcipher(tfm); return err; } static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_comp *tfm; int err; tfm = crypto_alloc_comp(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: comp: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_comp(tfm, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_comp(tfm); return err; } static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_ahash *tfm; int err; tfm = crypto_alloc_ahash(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: hash: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_hash(tfm, desc->suite.hash.vecs, desc->suite.hash.count, true); if (!err) err = test_hash(tfm, desc->suite.hash.vecs, desc->suite.hash.count, false); crypto_free_ahash(tfm); return err; } static int alg_test_crc32c(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_shash *tfm; u32 val; int err; err = alg_test_hash(desc, driver, type, mask); if (err) goto out; tfm = crypto_alloc_shash(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); err = PTR_ERR(tfm); goto out; } do { SHASH_DESC_ON_STACK(shash, tfm); u32 *ctx = (u32 *)shash_desc_ctx(shash); shash->tfm = tfm; shash->flags = 0; *ctx = le32_to_cpu(420553207); err = crypto_shash_final(shash, (u8 *)&val); if (err) { printk(KERN_ERR "alg: crc32c: Operation failed for " "%s: %d\n", driver, err); break; } if (val != ~420553207) { printk(KERN_ERR "alg: crc32c: Test failed for %s: " "%d\n", driver, val); err = -EINVAL; } } while (0); crypto_free_shash(tfm); out: return err; } static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_rng *rng; int err; rng = crypto_alloc_rng(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(rng)) { printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(rng)); return PTR_ERR(rng); } err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); crypto_free_rng(rng); return err; } static int drbg_cavs_test(struct drbg_testvec *test, int pr, const char *driver, u32 type, u32 mask) { int ret = -EAGAIN; struct crypto_rng *drng; struct drbg_test_data test_data; struct drbg_string addtl, pers, testentropy; unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); if (!buf) return -ENOMEM; drng = crypto_alloc_rng(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(drng)) { printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " "%s\n", driver); kzfree(buf); return -ENOMEM; } test_data.testentropy = &testentropy; drbg_string_fill(&testentropy, test->entropy, test->entropylen); drbg_string_fill(&pers, test->pers, test->perslen); ret = crypto_drbg_reset_test(drng, &pers, &test_data); if (ret) { printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); goto outbuf; } drbg_string_fill(&addtl, test->addtla, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entpra, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } drbg_string_fill(&addtl, test->addtlb, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entprb, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } ret = memcmp(test->expected, buf, test->expectedlen); outbuf: crypto_free_rng(drng); kzfree(buf); return ret; } static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { int err = 0; int pr = 0; int i = 0; struct drbg_testvec *template = desc->suite.drbg.vecs; unsigned int tcount = desc->suite.drbg.count; if (0 == memcmp(driver, "drbg_pr_", 8)) pr = 1; for (i = 0; i < tcount; i++) { err = drbg_cavs_test(&template[i], pr, driver, type, mask); if (err) { printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", i, driver); err = -EINVAL; break; } } return err; } static int do_test_rsa(struct crypto_akcipher *tfm, struct akcipher_testvec *vecs) { struct akcipher_request *req; void *outbuf_enc = NULL; void *outbuf_dec = NULL; struct tcrypt_result result; unsigned int out_len_max, out_len = 0; int err = -ENOMEM; struct scatterlist src, dst, src_tab[2]; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) return err; init_completion(&result.completion); if (vecs->public_key_vec) err = crypto_akcipher_set_pub_key(tfm, vecs->key, vecs->key_len); else err = crypto_akcipher_set_priv_key(tfm, vecs->key, vecs->key_len); if (err) goto free_req; out_len_max = crypto_akcipher_maxsize(tfm); outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_enc) goto free_req; sg_init_table(src_tab, 2); sg_set_buf(&src_tab[0], vecs->m, 8); sg_set_buf(&src_tab[1], vecs->m + 8, vecs->m_size - 8); sg_init_one(&dst, outbuf_enc, out_len_max); akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size, out_len_max); akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &result); /* Run RSA encrypt - c = m^e mod n;*/ err = wait_async_op(&result, crypto_akcipher_encrypt(req)); if (err) { pr_err("alg: rsa: encrypt test failed. err %d\n", err); goto free_all; } if (req->dst_len != vecs->c_size) { pr_err("alg: rsa: encrypt test failed. Invalid output len\n"); err = -EINVAL; goto free_all; } /* verify that encrypted message is equal to expected */ if (memcmp(vecs->c, sg_virt(req->dst), vecs->c_size)) { pr_err("alg: rsa: encrypt test failed. Invalid output\n"); err = -EINVAL; goto free_all; } /* Don't invoke decrypt for vectors with public key */ if (vecs->public_key_vec) { err = 0; goto free_all; } outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_dec) { err = -ENOMEM; goto free_all; } sg_init_one(&src, vecs->c, vecs->c_size); sg_init_one(&dst, outbuf_dec, out_len_max); init_completion(&result.completion); akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max); /* Run RSA decrypt - m = c^d mod n;*/ err = wait_async_op(&result, crypto_akcipher_decrypt(req)); if (err) { pr_err("alg: rsa: decrypt test failed. err %d\n", err); goto free_all; } out_len = req->dst_len; if (out_len != vecs->m_size) { pr_err("alg: rsa: decrypt test failed. Invalid output len\n"); err = -EINVAL; goto free_all; } /* verify that decrypted message is equal to the original msg */ if (memcmp(vecs->m, outbuf_dec, vecs->m_size)) { pr_err("alg: rsa: decrypt test failed. Invalid output\n"); err = -EINVAL; } free_all: kfree(outbuf_dec); kfree(outbuf_enc); free_req: akcipher_request_free(req); return err; } static int test_rsa(struct crypto_akcipher *tfm, struct akcipher_testvec *vecs, unsigned int tcount) { int ret, i; for (i = 0; i < tcount; i++) { ret = do_test_rsa(tfm, vecs++); if (ret) { pr_err("alg: rsa: test failed on vector %d, err=%d\n", i + 1, ret); return ret; } } return 0; } static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, struct akcipher_testvec *vecs, unsigned int tcount) { if (strncmp(alg, "rsa", 3) == 0) return test_rsa(tfm, vecs, tcount); return 0; } static int alg_test_akcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_akcipher *tfm; int err = 0; tfm = crypto_alloc_akcipher(driver, type | CRYPTO_ALG_INTERNAL, mask); if (IS_ERR(tfm)) { pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.akcipher.vecs) err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, desc->suite.akcipher.count); crypto_free_akcipher(tfm); return err; } static int alg_test_null(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { return 0; } /* Please keep this list sorted by algorithm name. */ static const struct alg_test_desc alg_test_descs[] = { { .alg = "__cbc-cast5-avx", .test = alg_test_null, }, { .alg = "__cbc-cast6-avx", .test = alg_test_null, }, { .alg = "__cbc-serpent-avx", .test = alg_test_null, }, { .alg = "__cbc-serpent-avx2", .test = alg_test_null, }, { .alg = "__cbc-serpent-sse2", .test = alg_test_null, }, { .alg = "__cbc-twofish-avx", .test = alg_test_null, }, { .alg = "__driver-cbc-aes-aesni", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "__driver-cbc-camellia-aesni", .test = alg_test_null, }, { .alg = "__driver-cbc-camellia-aesni-avx2", .test = alg_test_null, }, { .alg = "__driver-cbc-cast5-avx", .test = alg_test_null, }, { .alg = "__driver-cbc-cast6-avx", .test = alg_test_null, }, { .alg = "__driver-cbc-serpent-avx", .test = alg_test_null, }, { .alg = "__driver-cbc-serpent-avx2", .test = alg_test_null, }, { .alg = "__driver-cbc-serpent-sse2", .test = alg_test_null, }, { .alg = "__driver-cbc-twofish-avx", .test = alg_test_null, }, { .alg = "__driver-ecb-aes-aesni", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "__driver-ecb-camellia-aesni", .test = alg_test_null, }, { .alg = "__driver-ecb-camellia-aesni-avx2", .test = alg_test_null, }, { .alg = "__driver-ecb-cast5-avx", .test = alg_test_null, }, { .alg = "__driver-ecb-cast6-avx", .test = alg_test_null, }, { .alg = "__driver-ecb-serpent-avx", .test = alg_test_null, }, { .alg = "__driver-ecb-serpent-avx2", .test = alg_test_null, }, { .alg = "__driver-ecb-serpent-sse2", .test = alg_test_null, }, { .alg = "__driver-ecb-twofish-avx", .test = alg_test_null, }, { .alg = "__driver-gcm-aes-aesni", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "__ghash-pclmulqdqni", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ansi_cprng", .test = alg_test_cprng, .suite = { .cprng = { .vecs = ansi_cprng_aes_tv_template, .count = ANSI_CPRNG_AES_TEST_VECTORS } } }, { .alg = "authenc(hmac(md5),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_md5_ecb_cipher_null_enc_tv_template, .count = HMAC_MD5_ECB_CIPHER_NULL_ENC_TEST_VECTORS }, .dec = { .vecs = hmac_md5_ecb_cipher_null_dec_tv_template, .count = HMAC_MD5_ECB_CIPHER_NULL_DEC_TEST_VECTORS } } } }, { .alg = "authenc(hmac(sha1),cbc(aes))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha1_aes_cbc_enc_tv_temp, .count = HMAC_SHA1_AES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha1),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha1_des_cbc_enc_tv_temp, .count = HMAC_SHA1_DES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha1),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha1_des3_ede_cbc_enc_tv_temp, .count = HMAC_SHA1_DES3_EDE_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha1),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha1),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha1_ecb_cipher_null_enc_tv_temp, .count = HMAC_SHA1_ECB_CIPHER_NULL_ENC_TEST_VEC }, .dec = { .vecs = hmac_sha1_ecb_cipher_null_dec_tv_temp, .count = HMAC_SHA1_ECB_CIPHER_NULL_DEC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha224),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha224_des_cbc_enc_tv_temp, .count = HMAC_SHA224_DES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha224),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha224_des3_ede_cbc_enc_tv_temp, .count = HMAC_SHA224_DES3_EDE_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha256),cbc(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha256_aes_cbc_enc_tv_temp, .count = HMAC_SHA256_AES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha256),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha256_des_cbc_enc_tv_temp, .count = HMAC_SHA256_DES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha256),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha256_des3_ede_cbc_enc_tv_temp, .count = HMAC_SHA256_DES3_EDE_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha256),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha384_des_cbc_enc_tv_temp, .count = HMAC_SHA384_DES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha384),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha384_des3_ede_cbc_enc_tv_temp, .count = HMAC_SHA384_DES3_EDE_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha384),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),cbc(aes))", .fips_allowed = 1, .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha512_aes_cbc_enc_tv_temp, .count = HMAC_SHA512_AES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha512),cbc(des))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = hmac_sha512_des_cbc_enc_tv_temp, .count = HMAC_SHA512_DES_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha512),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = hmac_sha512_des3_ede_cbc_enc_tv_temp, .count = HMAC_SHA512_DES3_EDE_CBC_ENC_TEST_VEC } } } }, { .alg = "authenc(hmac(sha512),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cbc(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_cbc_enc_tv_template, .count = AES_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = aes_cbc_dec_tv_template, .count = AES_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(anubis)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = anubis_cbc_enc_tv_template, .count = ANUBIS_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = anubis_cbc_dec_tv_template, .count = ANUBIS_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = bf_cbc_enc_tv_template, .count = BF_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = bf_cbc_dec_tv_template, .count = BF_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_cbc_enc_tv_template, .count = CAMELLIA_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_cbc_dec_tv_template, .count = CAMELLIA_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(cast5)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast5_cbc_enc_tv_template, .count = CAST5_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = cast5_cbc_dec_tv_template, .count = CAST5_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_cbc_enc_tv_template, .count = CAST6_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_cbc_dec_tv_template, .count = CAST6_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(des)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = des_cbc_enc_tv_template, .count = DES_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = des_cbc_dec_tv_template, .count = DES_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = des3_ede_cbc_enc_tv_template, .count = DES3_EDE_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = des3_ede_cbc_dec_tv_template, .count = DES3_EDE_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_cbc_enc_tv_template, .count = SERPENT_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_cbc_dec_tv_template, .count = SERPENT_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_cbc_enc_tv_template, .count = TF_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = tf_cbc_dec_tv_template, .count = TF_CBC_DEC_TEST_VECTORS } } } }, { .alg = "ccm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_ccm_enc_tv_template, .count = AES_CCM_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ccm_dec_tv_template, .count = AES_CCM_DEC_TEST_VECTORS } } } }, { .alg = "chacha20", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = chacha20_enc_tv_template, .count = CHACHA20_ENC_TEST_VECTORS }, .dec = { .vecs = chacha20_enc_tv_template, .count = CHACHA20_ENC_TEST_VECTORS }, } } }, { .alg = "cmac(aes)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = { .vecs = aes_cmac128_tv_template, .count = CMAC_AES_TEST_VECTORS } } }, { .alg = "cmac(des3_ede)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = { .vecs = des3_ede_cmac64_tv_template, .count = CMAC_DES3_EDE_TEST_VECTORS } } }, { .alg = "compress_null", .test = alg_test_null, }, { .alg = "crc32", .test = alg_test_hash, .suite = { .hash = { .vecs = crc32_tv_template, .count = CRC32_TEST_VECTORS } } }, { .alg = "crc32c", .test = alg_test_crc32c, .fips_allowed = 1, .suite = { .hash = { .vecs = crc32c_tv_template, .count = CRC32C_TEST_VECTORS } } }, { .alg = "crct10dif", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = crct10dif_tv_template, .count = CRCT10DIF_TEST_VECTORS } } }, { .alg = "cryptd(__driver-cbc-aes-aesni)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cryptd(__driver-cbc-camellia-aesni)", .test = alg_test_null, }, { .alg = "cryptd(__driver-cbc-camellia-aesni-avx2)", .test = alg_test_null, }, { .alg = "cryptd(__driver-cbc-serpent-avx2)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-aes-aesni)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cryptd(__driver-ecb-camellia-aesni)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-camellia-aesni-avx2)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-cast5-avx)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-cast6-avx)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-serpent-avx)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-serpent-avx2)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-serpent-sse2)", .test = alg_test_null, }, { .alg = "cryptd(__driver-ecb-twofish-avx)", .test = alg_test_null, }, { .alg = "cryptd(__driver-gcm-aes-aesni)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "cryptd(__ghash-pclmulqdqni)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ctr(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_ctr_enc_tv_template, .count = AES_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ctr_dec_tv_template, .count = AES_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = bf_ctr_enc_tv_template, .count = BF_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = bf_ctr_dec_tv_template, .count = BF_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_ctr_enc_tv_template, .count = CAMELLIA_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_ctr_dec_tv_template, .count = CAMELLIA_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(cast5)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast5_ctr_enc_tv_template, .count = CAST5_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = cast5_ctr_dec_tv_template, .count = CAST5_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_ctr_enc_tv_template, .count = CAST6_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_ctr_dec_tv_template, .count = CAST6_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(des)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = des_ctr_enc_tv_template, .count = DES_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = des_ctr_dec_tv_template, .count = DES_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(des3_ede)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = des3_ede_ctr_enc_tv_template, .count = DES3_EDE_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = des3_ede_ctr_dec_tv_template, .count = DES3_EDE_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_ctr_enc_tv_template, .count = SERPENT_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_ctr_dec_tv_template, .count = SERPENT_CTR_DEC_TEST_VECTORS } } } }, { .alg = "ctr(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_ctr_enc_tv_template, .count = TF_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = tf_ctr_dec_tv_template, .count = TF_CTR_DEC_TEST_VECTORS } } } }, { .alg = "cts(cbc(aes))", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cts_mode_enc_tv_template, .count = CTS_MODE_ENC_TEST_VECTORS }, .dec = { .vecs = cts_mode_dec_tv_template, .count = CTS_MODE_DEC_TEST_VECTORS } } } }, { .alg = "deflate", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = { .vecs = deflate_comp_tv_template, .count = DEFLATE_COMP_TEST_VECTORS }, .decomp = { .vecs = deflate_decomp_tv_template, .count = DEFLATE_DECOMP_TEST_VECTORS } } } }, { .alg = "digest_null", .test = alg_test_null, }, { .alg = "drbg_nopr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_nopr_ctr_aes128_tv_template, .count = ARRAY_SIZE(drbg_nopr_ctr_aes128_tv_template) } } }, { .alg = "drbg_nopr_ctr_aes192", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_nopr_ctr_aes192_tv_template, .count = ARRAY_SIZE(drbg_nopr_ctr_aes192_tv_template) } } }, { .alg = "drbg_nopr_ctr_aes256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_nopr_ctr_aes256_tv_template, .count = ARRAY_SIZE(drbg_nopr_ctr_aes256_tv_template) } } }, { /* * There is no need to specifically test the DRBG with every * backend cipher -- covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_nopr_hmac_sha256_tv_template, .count = ARRAY_SIZE(drbg_nopr_hmac_sha256_tv_template) } } }, { /* covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_nopr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_nopr_sha256_tv_template, .count = ARRAY_SIZE(drbg_nopr_sha256_tv_template) } } }, { /* covered by drbg_nopr_sha256 test */ .alg = "drbg_nopr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_pr_ctr_aes128_tv_template, .count = ARRAY_SIZE(drbg_pr_ctr_aes128_tv_template) } } }, { /* covered by drbg_pr_ctr_aes128 test */ .alg = "drbg_pr_ctr_aes192", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes256", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_pr_hmac_sha256_tv_template, .count = ARRAY_SIZE(drbg_pr_hmac_sha256_tv_template) } } }, { /* covered by drbg_pr_hmac_sha256 test */ .alg = "drbg_pr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_pr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = { .vecs = drbg_pr_sha256_tv_template, .count = ARRAY_SIZE(drbg_pr_sha256_tv_template) } } }, { /* covered by drbg_pr_sha256 test */ .alg = "drbg_pr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "ecb(__aes-aesni)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ecb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_enc_tv_template, .count = AES_ENC_TEST_VECTORS }, .dec = { .vecs = aes_dec_tv_template, .count = AES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(anubis)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = anubis_enc_tv_template, .count = ANUBIS_ENC_TEST_VECTORS }, .dec = { .vecs = anubis_dec_tv_template, .count = ANUBIS_DEC_TEST_VECTORS } } } }, { .alg = "ecb(arc4)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = arc4_enc_tv_template, .count = ARC4_ENC_TEST_VECTORS }, .dec = { .vecs = arc4_dec_tv_template, .count = ARC4_DEC_TEST_VECTORS } } } }, { .alg = "ecb(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = bf_enc_tv_template, .count = BF_ENC_TEST_VECTORS }, .dec = { .vecs = bf_dec_tv_template, .count = BF_DEC_TEST_VECTORS } } } }, { .alg = "ecb(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_enc_tv_template, .count = CAMELLIA_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_dec_tv_template, .count = CAMELLIA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(cast5)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast5_enc_tv_template, .count = CAST5_ENC_TEST_VECTORS }, .dec = { .vecs = cast5_dec_tv_template, .count = CAST5_DEC_TEST_VECTORS } } } }, { .alg = "ecb(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_enc_tv_template, .count = CAST6_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_dec_tv_template, .count = CAST6_DEC_TEST_VECTORS } } } }, { .alg = "ecb(cipher_null)", .test = alg_test_null, }, { .alg = "ecb(des)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = des_enc_tv_template, .count = DES_ENC_TEST_VECTORS }, .dec = { .vecs = des_dec_tv_template, .count = DES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = des3_ede_enc_tv_template, .count = DES3_EDE_ENC_TEST_VECTORS }, .dec = { .vecs = des3_ede_dec_tv_template, .count = DES3_EDE_DEC_TEST_VECTORS } } } }, { .alg = "ecb(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = fcrypt_pcbc_enc_tv_template, .count = 1 }, .dec = { .vecs = fcrypt_pcbc_dec_tv_template, .count = 1 } } } }, { .alg = "ecb(khazad)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = khazad_enc_tv_template, .count = KHAZAD_ENC_TEST_VECTORS }, .dec = { .vecs = khazad_dec_tv_template, .count = KHAZAD_DEC_TEST_VECTORS } } } }, { .alg = "ecb(seed)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = seed_enc_tv_template, .count = SEED_ENC_TEST_VECTORS }, .dec = { .vecs = seed_dec_tv_template, .count = SEED_DEC_TEST_VECTORS } } } }, { .alg = "ecb(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_enc_tv_template, .count = SERPENT_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_dec_tv_template, .count = SERPENT_DEC_TEST_VECTORS } } } }, { .alg = "ecb(tea)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tea_enc_tv_template, .count = TEA_ENC_TEST_VECTORS }, .dec = { .vecs = tea_dec_tv_template, .count = TEA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(tnepres)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tnepres_enc_tv_template, .count = TNEPRES_ENC_TEST_VECTORS }, .dec = { .vecs = tnepres_dec_tv_template, .count = TNEPRES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_enc_tv_template, .count = TF_ENC_TEST_VECTORS }, .dec = { .vecs = tf_dec_tv_template, .count = TF_DEC_TEST_VECTORS } } } }, { .alg = "ecb(xeta)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = xeta_enc_tv_template, .count = XETA_ENC_TEST_VECTORS }, .dec = { .vecs = xeta_dec_tv_template, .count = XETA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(xtea)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = xtea_enc_tv_template, .count = XTEA_ENC_TEST_VECTORS }, .dec = { .vecs = xtea_dec_tv_template, .count = XTEA_DEC_TEST_VECTORS } } } }, { .alg = "gcm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_gcm_enc_tv_template, .count = AES_GCM_ENC_TEST_VECTORS }, .dec = { .vecs = aes_gcm_dec_tv_template, .count = AES_GCM_DEC_TEST_VECTORS } } } }, { .alg = "ghash", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = ghash_tv_template, .count = GHASH_TEST_VECTORS } } }, { .alg = "hmac(crc32)", .test = alg_test_hash, .suite = { .hash = { .vecs = bfin_crc_tv_template, .count = BFIN_CRC_TEST_VECTORS } } }, { .alg = "hmac(md5)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_md5_tv_template, .count = HMAC_MD5_TEST_VECTORS } } }, { .alg = "hmac(rmd128)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_rmd128_tv_template, .count = HMAC_RMD128_TEST_VECTORS } } }, { .alg = "hmac(rmd160)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_rmd160_tv_template, .count = HMAC_RMD160_TEST_VECTORS } } }, { .alg = "hmac(sha1)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha1_tv_template, .count = HMAC_SHA1_TEST_VECTORS } } }, { .alg = "hmac(sha224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha224_tv_template, .count = HMAC_SHA224_TEST_VECTORS } } }, { .alg = "hmac(sha256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha256_tv_template, .count = HMAC_SHA256_TEST_VECTORS } } }, { .alg = "hmac(sha384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha384_tv_template, .count = HMAC_SHA384_TEST_VECTORS } } }, { .alg = "hmac(sha512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha512_tv_template, .count = HMAC_SHA512_TEST_VECTORS } } }, { .alg = "jitterentropy_rng", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "kw(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_kw_enc_tv_template, .count = ARRAY_SIZE(aes_kw_enc_tv_template) }, .dec = { .vecs = aes_kw_dec_tv_template, .count = ARRAY_SIZE(aes_kw_dec_tv_template) } } } }, { .alg = "lrw(aes)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = aes_lrw_enc_tv_template, .count = AES_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = aes_lrw_dec_tv_template, .count = AES_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lrw(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_lrw_enc_tv_template, .count = CAMELLIA_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_lrw_dec_tv_template, .count = CAMELLIA_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lrw(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_lrw_enc_tv_template, .count = CAST6_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_lrw_dec_tv_template, .count = CAST6_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lrw(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_lrw_enc_tv_template, .count = SERPENT_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_lrw_dec_tv_template, .count = SERPENT_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lrw(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_lrw_enc_tv_template, .count = TF_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = tf_lrw_dec_tv_template, .count = TF_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lz4", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = { .vecs = lz4_comp_tv_template, .count = LZ4_COMP_TEST_VECTORS }, .decomp = { .vecs = lz4_decomp_tv_template, .count = LZ4_DECOMP_TEST_VECTORS } } } }, { .alg = "lz4hc", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = { .vecs = lz4hc_comp_tv_template, .count = LZ4HC_COMP_TEST_VECTORS }, .decomp = { .vecs = lz4hc_decomp_tv_template, .count = LZ4HC_DECOMP_TEST_VECTORS } } } }, { .alg = "lzo", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = { .vecs = lzo_comp_tv_template, .count = LZO_COMP_TEST_VECTORS }, .decomp = { .vecs = lzo_decomp_tv_template, .count = LZO_DECOMP_TEST_VECTORS } } } }, { .alg = "md4", .test = alg_test_hash, .suite = { .hash = { .vecs = md4_tv_template, .count = MD4_TEST_VECTORS } } }, { .alg = "md5", .test = alg_test_hash, .suite = { .hash = { .vecs = md5_tv_template, .count = MD5_TEST_VECTORS } } }, { .alg = "michael_mic", .test = alg_test_hash, .suite = { .hash = { .vecs = michael_mic_tv_template, .count = MICHAEL_MIC_TEST_VECTORS } } }, { .alg = "ofb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_ofb_enc_tv_template, .count = AES_OFB_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ofb_dec_tv_template, .count = AES_OFB_DEC_TEST_VECTORS } } } }, { .alg = "pcbc(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = fcrypt_pcbc_enc_tv_template, .count = FCRYPT_ENC_TEST_VECTORS }, .dec = { .vecs = fcrypt_pcbc_dec_tv_template, .count = FCRYPT_DEC_TEST_VECTORS } } } }, { .alg = "poly1305", .test = alg_test_hash, .suite = { .hash = { .vecs = poly1305_tv_template, .count = POLY1305_TEST_VECTORS } } }, { .alg = "rfc3686(ctr(aes))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_ctr_rfc3686_enc_tv_template, .count = AES_CTR_3686_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ctr_rfc3686_dec_tv_template, .count = AES_CTR_3686_DEC_TEST_VECTORS } } } }, { .alg = "rfc4106(gcm(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_gcm_rfc4106_enc_tv_template, .count = AES_GCM_4106_ENC_TEST_VECTORS }, .dec = { .vecs = aes_gcm_rfc4106_dec_tv_template, .count = AES_GCM_4106_DEC_TEST_VECTORS } } } }, { .alg = "rfc4309(ccm(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_ccm_rfc4309_enc_tv_template, .count = AES_CCM_4309_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ccm_rfc4309_dec_tv_template, .count = AES_CCM_4309_DEC_TEST_VECTORS } } } }, { .alg = "rfc4543(gcm(aes))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = aes_gcm_rfc4543_enc_tv_template, .count = AES_GCM_4543_ENC_TEST_VECTORS }, .dec = { .vecs = aes_gcm_rfc4543_dec_tv_template, .count = AES_GCM_4543_DEC_TEST_VECTORS }, } } }, { .alg = "rfc7539(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = rfc7539_enc_tv_template, .count = RFC7539_ENC_TEST_VECTORS }, .dec = { .vecs = rfc7539_dec_tv_template, .count = RFC7539_DEC_TEST_VECTORS }, } } }, { .alg = "rfc7539esp(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = rfc7539esp_enc_tv_template, .count = RFC7539ESP_ENC_TEST_VECTORS }, .dec = { .vecs = rfc7539esp_dec_tv_template, .count = RFC7539ESP_DEC_TEST_VECTORS }, } } }, { .alg = "rmd128", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd128_tv_template, .count = RMD128_TEST_VECTORS } } }, { .alg = "rmd160", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd160_tv_template, .count = RMD160_TEST_VECTORS } } }, { .alg = "rmd256", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd256_tv_template, .count = RMD256_TEST_VECTORS } } }, { .alg = "rmd320", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd320_tv_template, .count = RMD320_TEST_VECTORS } } }, { .alg = "rsa", .test = alg_test_akcipher, .fips_allowed = 1, .suite = { .akcipher = { .vecs = rsa_tv_template, .count = RSA_TEST_VECTORS } } }, { .alg = "salsa20", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = salsa20_stream_enc_tv_template, .count = SALSA20_STREAM_ENC_TEST_VECTORS } } } }, { .alg = "sha1", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha1_tv_template, .count = SHA1_TEST_VECTORS } } }, { .alg = "sha224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha224_tv_template, .count = SHA224_TEST_VECTORS } } }, { .alg = "sha256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha256_tv_template, .count = SHA256_TEST_VECTORS } } }, { .alg = "sha384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha384_tv_template, .count = SHA384_TEST_VECTORS } } }, { .alg = "sha512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha512_tv_template, .count = SHA512_TEST_VECTORS } } }, { .alg = "tgr128", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr128_tv_template, .count = TGR128_TEST_VECTORS } } }, { .alg = "tgr160", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr160_tv_template, .count = TGR160_TEST_VECTORS } } }, { .alg = "tgr192", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr192_tv_template, .count = TGR192_TEST_VECTORS } } }, { .alg = "vmac(aes)", .test = alg_test_hash, .suite = { .hash = { .vecs = aes_vmac128_tv_template, .count = VMAC_AES_TEST_VECTORS } } }, { .alg = "wp256", .test = alg_test_hash, .suite = { .hash = { .vecs = wp256_tv_template, .count = WP256_TEST_VECTORS } } }, { .alg = "wp384", .test = alg_test_hash, .suite = { .hash = { .vecs = wp384_tv_template, .count = WP384_TEST_VECTORS } } }, { .alg = "wp512", .test = alg_test_hash, .suite = { .hash = { .vecs = wp512_tv_template, .count = WP512_TEST_VECTORS } } }, { .alg = "xcbc(aes)", .test = alg_test_hash, .suite = { .hash = { .vecs = aes_xcbc128_tv_template, .count = XCBC_AES_TEST_VECTORS } } }, { .alg = "xts(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_xts_enc_tv_template, .count = AES_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = aes_xts_dec_tv_template, .count = AES_XTS_DEC_TEST_VECTORS } } } }, { .alg = "xts(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_xts_enc_tv_template, .count = CAMELLIA_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_xts_dec_tv_template, .count = CAMELLIA_XTS_DEC_TEST_VECTORS } } } }, { .alg = "xts(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_xts_enc_tv_template, .count = CAST6_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_xts_dec_tv_template, .count = CAST6_XTS_DEC_TEST_VECTORS } } } }, { .alg = "xts(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_xts_enc_tv_template, .count = SERPENT_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_xts_dec_tv_template, .count = SERPENT_XTS_DEC_TEST_VECTORS } } } }, { .alg = "xts(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_xts_enc_tv_template, .count = TF_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = tf_xts_dec_tv_template, .count = TF_XTS_DEC_TEST_VECTORS } } } } }; static bool alg_test_descs_checked; static void alg_test_descs_check_order(void) { int i; /* only check once */ if (alg_test_descs_checked) return; alg_test_descs_checked = true; for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { int diff = strcmp(alg_test_descs[i - 1].alg, alg_test_descs[i].alg); if (WARN_ON(diff > 0)) { pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", alg_test_descs[i - 1].alg, alg_test_descs[i].alg); } if (WARN_ON(diff == 0)) { pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", alg_test_descs[i].alg); } } } static int alg_find_test(const char *alg) { int start = 0; int end = ARRAY_SIZE(alg_test_descs); while (start < end) { int i = (start + end) / 2; int diff = strcmp(alg_test_descs[i].alg, alg); if (diff > 0) { end = i; continue; } if (diff < 0) { start = i + 1; continue; } return i; } return -1; } int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { int i; int j; int rc; alg_test_descs_check_order(); if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { char nalg[CRYPTO_MAX_ALG_NAME]; if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= sizeof(nalg)) return -ENAMETOOLONG; i = alg_find_test(nalg); if (i < 0) goto notest; if (fips_enabled && !alg_test_descs[i].fips_allowed) goto non_fips_alg; rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); goto test_done; } i = alg_find_test(alg); j = alg_find_test(driver); if (i < 0 && j < 0) goto notest; if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) || (j >= 0 && !alg_test_descs[j].fips_allowed))) goto non_fips_alg; rc = 0; if (i >= 0) rc |= alg_test_descs[i].test(alg_test_descs + i, driver, type, mask); if (j >= 0 && j != i) rc |= alg_test_descs[j].test(alg_test_descs + j, driver, type, mask); test_done: if (fips_enabled && rc) panic("%s: %s alg self test failed in fips mode!\n", driver, alg); if (fips_enabled && !rc) pr_info("alg: self-tests for %s (%s) passed\n", driver, alg); return rc; notest: printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); return 0; non_fips_alg: return -EINVAL; } #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ EXPORT_SYMBOL_GPL(alg_test);