/* MN10300 Low level time management * * Copyright (C) 2007-2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * - Derived from arch/i386/kernel/time.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/profile.h> #include <linux/cnt32_to_63.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <asm/irq.h> #include <asm/div64.h> #include <asm/processor.h> #include <asm/intctl-regs.h> #include <asm/rtc.h> #include "internal.h" static unsigned long mn10300_last_tsc; /* time-stamp counter at last time * interrupt occurred */ static unsigned long sched_clock_multiplier; /* * scheduler clock - returns current time in nanosec units. */ unsigned long long sched_clock(void) { union { unsigned long long ll; unsigned l[2]; } tsc64, result; unsigned long tmp; unsigned product[3]; /* 96-bit intermediate value */ /* cnt32_to_63() is not safe with preemption */ preempt_disable(); /* expand the tsc to 64-bits. * - sched_clock() must be called once a minute or better or the * following will go horribly wrong - see cnt32_to_63() */ tsc64.ll = cnt32_to_63(get_cycles()) & 0x7fffffffffffffffULL; preempt_enable(); /* scale the 64-bit TSC value to a nanosecond value via a 96-bit * intermediate */ asm("mulu %2,%0,%3,%0 \n" /* LSW * mult -> 0:%3:%0 */ "mulu %2,%1,%2,%1 \n" /* MSW * mult -> %2:%1:0 */ "add %3,%1 \n" "addc 0,%2 \n" /* result in %2:%1:%0 */ : "=r"(product[0]), "=r"(product[1]), "=r"(product[2]), "=r"(tmp) : "0"(tsc64.l[0]), "1"(tsc64.l[1]), "2"(sched_clock_multiplier) : "cc"); result.l[0] = product[1] << 16 | product[0] >> 16; result.l[1] = product[2] << 16 | product[1] >> 16; return result.ll; } /* * initialise the scheduler clock */ static void __init mn10300_sched_clock_init(void) { sched_clock_multiplier = __muldiv64u(NSEC_PER_SEC, 1 << 16, MN10300_TSCCLK); } /** * local_timer_interrupt - Local timer interrupt handler * * Handle local timer interrupts for this CPU. They may have been propagated * to this CPU from the CPU that actually gets them by way of an IPI. */ irqreturn_t local_timer_interrupt(void) { profile_tick(CPU_PROFILING); update_process_times(user_mode(get_irq_regs())); return IRQ_HANDLED; } /* * initialise the various timers used by the main part of the kernel */ void __init time_init(void) { /* we need the prescalar running to be able to use IOCLK/8 * - IOCLK runs at 1/4 (ST5 open) or 1/8 (ST5 closed) internal CPU clock * - IOCLK runs at Fosc rate (crystal speed) */ TMPSCNT |= TMPSCNT_ENABLE; init_clocksource(); printk(KERN_INFO "timestamp counter I/O clock running at %lu.%02lu" " (calibrated against RTC)\n", MN10300_TSCCLK / 1000000, (MN10300_TSCCLK / 10000) % 100); mn10300_last_tsc = read_timestamp_counter(); init_clockevents(); #ifdef CONFIG_MN10300_WD_TIMER /* start the watchdog timer */ watchdog_go(); #endif mn10300_sched_clock_init(); }