#ifndef _ASM_IA64_PROCESSOR_H #define _ASM_IA64_PROCESSOR_H /* * Copyright (C) 1998-2004 Hewlett-Packard Co * David Mosberger-Tang * Stephane Eranian * Copyright (C) 1999 Asit Mallick * Copyright (C) 1999 Don Dugger * * 11/24/98 S.Eranian added ia64_set_iva() * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support */ #include #include #include #include #include #define IA64_NUM_DBG_REGS 8 /* * Limits for PMC and PMD are set to less than maximum architected values * but should be sufficient for a while */ #define IA64_NUM_PMC_REGS 64 #define IA64_NUM_PMD_REGS 64 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) /* * TASK_SIZE really is a mis-named. It really is the maximum user * space address (plus one). On IA-64, there are five regions of 2TB * each (assuming 8KB page size), for a total of 8TB of user virtual * address space. */ #define TASK_SIZE (current->thread.task_size) /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define TASK_UNMAPPED_BASE (current->thread.map_base) #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration sync at ctx sw */ #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ #define IA64_THREAD_UAC_SHIFT 3 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) #define IA64_THREAD_FPEMU_SHIFT 6 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) /* * This shift should be large enough to be able to represent 1000000000/itc_freq with good * accuracy while being small enough to fit 10*1000000000< #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NUMA #include #endif /* like above but expressed as bitfields for more efficient access: */ struct ia64_psr { __u64 reserved0 : 1; __u64 be : 1; __u64 up : 1; __u64 ac : 1; __u64 mfl : 1; __u64 mfh : 1; __u64 reserved1 : 7; __u64 ic : 1; __u64 i : 1; __u64 pk : 1; __u64 reserved2 : 1; __u64 dt : 1; __u64 dfl : 1; __u64 dfh : 1; __u64 sp : 1; __u64 pp : 1; __u64 di : 1; __u64 si : 1; __u64 db : 1; __u64 lp : 1; __u64 tb : 1; __u64 rt : 1; __u64 reserved3 : 4; __u64 cpl : 2; __u64 is : 1; __u64 mc : 1; __u64 it : 1; __u64 id : 1; __u64 da : 1; __u64 dd : 1; __u64 ss : 1; __u64 ri : 2; __u64 ed : 1; __u64 bn : 1; __u64 reserved4 : 19; }; /* * CPU type, hardware bug flags, and per-CPU state. Frequently used * state comes earlier: */ struct cpuinfo_ia64 { __u32 softirq_pending; __u64 itm_delta; /* # of clock cycles between clock ticks */ __u64 itm_next; /* interval timer mask value to use for next clock tick */ __u64 nsec_per_cyc; /* (1000000000<thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 0; \ }) #define GET_UNALIGN_CTL(task,addr) \ ({ \ put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ (int __user *) (addr)); \ }) #define SET_FPEMU_CTL(task,value) \ ({ \ (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 0; \ }) #define GET_FPEMU_CTL(task,addr) \ ({ \ put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ (int __user *) (addr)); \ }) #ifdef CONFIG_IA32_SUPPORT struct desc_struct { unsigned int a, b; }; #define desc_empty(desc) (!((desc)->a + (desc)->b)) #define desc_equal(desc1, desc2) (((desc1)->a == (desc2)->a) && ((desc1)->b == (desc2)->b)) #define GDT_ENTRY_TLS_ENTRIES 3 #define GDT_ENTRY_TLS_MIN 6 #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES * 8) struct partial_page_list; #endif struct thread_struct { __u32 flags; /* various thread flags (see IA64_THREAD_*) */ /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ __u8 on_ustack; /* executing on user-stacks? */ __u8 pad[3]; __u64 ksp; /* kernel stack pointer */ __u64 map_base; /* base address for get_unmapped_area() */ __u64 task_size; /* limit for task size */ __u64 rbs_bot; /* the base address for the RBS */ int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ #ifdef CONFIG_IA32_SUPPORT __u64 eflag; /* IA32 EFLAGS reg */ __u64 fsr; /* IA32 floating pt status reg */ __u64 fcr; /* IA32 floating pt control reg */ __u64 fir; /* IA32 fp except. instr. reg */ __u64 fdr; /* IA32 fp except. data reg */ __u64 old_k1; /* old value of ar.k1 */ __u64 old_iob; /* old IOBase value */ struct partial_page_list *ppl; /* partial page list for 4K page size issue */ /* cached TLS descriptors. */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; # define INIT_THREAD_IA32 .eflag = 0, \ .fsr = 0, \ .fcr = 0x17800000037fULL, \ .fir = 0, \ .fdr = 0, \ .old_k1 = 0, \ .old_iob = 0, \ .ppl = NULL, #else # define INIT_THREAD_IA32 #endif /* CONFIG_IA32_SUPPORT */ #ifdef CONFIG_PERFMON __u64 pmcs[IA64_NUM_PMC_REGS]; __u64 pmds[IA64_NUM_PMD_REGS]; void *pfm_context; /* pointer to detailed PMU context */ unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ # define INIT_THREAD_PM .pmcs = {0UL, }, \ .pmds = {0UL, }, \ .pfm_context = NULL, \ .pfm_needs_checking = 0UL, #else # define INIT_THREAD_PM #endif __u64 dbr[IA64_NUM_DBG_REGS]; __u64 ibr[IA64_NUM_DBG_REGS]; struct ia64_fpreg fph[96]; /* saved/loaded on demand */ }; #define INIT_THREAD { \ .flags = 0, \ .on_ustack = 0, \ .ksp = 0, \ .map_base = DEFAULT_MAP_BASE, \ .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ .task_size = DEFAULT_TASK_SIZE, \ .last_fph_cpu = -1, \ INIT_THREAD_IA32 \ INIT_THREAD_PM \ .dbr = {0, }, \ .ibr = {0, }, \ .fph = {{{{0}}}, } \ } #define start_thread(regs,new_ip,new_sp) do { \ set_fs(USER_DS); \ regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ regs->cr_iip = new_ip; \ regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ regs->ar_rnat = 0; \ regs->ar_bspstore = current->thread.rbs_bot; \ regs->ar_fpsr = FPSR_DEFAULT; \ regs->loadrs = 0; \ regs->r8 = current->mm->dumpable; /* set "don't zap registers" flag */ \ regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ if (unlikely(!current->mm->dumpable)) { \ /* \ * Zap scratch regs to avoid leaking bits between processes with different \ * uid/privileges. \ */ \ regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ } \ } while (0) /* Forward declarations, a strange C thing... */ struct mm_struct; struct task_struct; /* * Free all resources held by a thread. This is called after the * parent of DEAD_TASK has collected the exit status of the task via * wait(). */ #define release_thread(dead_task) /* Prepare to copy thread state - unlazy all lazy status */ #define prepare_to_copy(tsk) do { } while (0) /* * This is the mechanism for creating a new kernel thread. * * NOTE 1: Only a kernel-only process (ie the swapper or direct * descendants who haven't done an "execve()") should use this: it * will work within a system call from a "real" process, but the * process memory space will not be free'd until both the parent and * the child have exited. * * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get * into trouble in init/main.c when the child thread returns to * do_basic_setup() and the timing is such that free_initmem() has * been called already. */ extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags); /* Get wait channel for task P. */ extern unsigned long get_wchan (struct task_struct *p); /* Return instruction pointer of blocked task TSK. */ #define KSTK_EIP(tsk) \ ({ \ struct pt_regs *_regs = task_pt_regs(tsk); \ _regs->cr_iip + ia64_psr(_regs)->ri; \ }) /* Return stack pointer of blocked task TSK. */ #define KSTK_ESP(tsk) ((tsk)->thread.ksp) extern void ia64_getreg_unknown_kr (void); extern void ia64_setreg_unknown_kr (void); #define ia64_get_kr(regnum) \ ({ \ unsigned long r = 0; \ \ switch (regnum) { \ case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ default: ia64_getreg_unknown_kr(); break; \ } \ r; \ }) #define ia64_set_kr(regnum, r) \ ({ \ switch (regnum) { \ case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ default: ia64_setreg_unknown_kr(); break; \ } \ }) /* * The following three macros can't be inline functions because we don't have struct * task_struct at this point. */ /* * Return TRUE if task T owns the fph partition of the CPU we're running on. * Must be called from code that has preemption disabled. */ #define ia64_is_local_fpu_owner(t) \ ({ \ struct task_struct *__ia64_islfo_task = (t); \ (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ }) /* * Mark task T as owning the fph partition of the CPU we're running on. * Must be called from code that has preemption disabled. */ #define ia64_set_local_fpu_owner(t) do { \ struct task_struct *__ia64_slfo_task = (t); \ __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ } while (0) /* Mark the fph partition of task T as being invalid on all CPUs. */ #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) extern void __ia64_init_fpu (void); extern void __ia64_save_fpu (struct ia64_fpreg *fph); extern void __ia64_load_fpu (struct ia64_fpreg *fph); extern void ia64_save_debug_regs (unsigned long *save_area); extern void ia64_load_debug_regs (unsigned long *save_area); #ifdef CONFIG_IA32_SUPPORT extern void ia32_save_state (struct task_struct *task); extern void ia32_load_state (struct task_struct *task); #endif #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) /* load fp 0.0 into fph */ static inline void ia64_init_fpu (void) { ia64_fph_enable(); __ia64_init_fpu(); ia64_fph_disable(); } /* save f32-f127 at FPH */ static inline void ia64_save_fpu (struct ia64_fpreg *fph) { ia64_fph_enable(); __ia64_save_fpu(fph); ia64_fph_disable(); } /* load f32-f127 from FPH */ static inline void ia64_load_fpu (struct ia64_fpreg *fph) { ia64_fph_enable(); __ia64_load_fpu(fph); ia64_fph_disable(); } static inline __u64 ia64_clear_ic (void) { __u64 psr; psr = ia64_getreg(_IA64_REG_PSR); ia64_stop(); ia64_rsm(IA64_PSR_I | IA64_PSR_IC); ia64_srlz_i(); return psr; } /* * Restore the psr. */ static inline void ia64_set_psr (__u64 psr) { ia64_stop(); ia64_setreg(_IA64_REG_PSR_L, psr); ia64_srlz_d(); } /* * Insert a translation into an instruction and/or data translation * register. */ static inline void ia64_itr (__u64 target_mask, __u64 tr_num, __u64 vmaddr, __u64 pte, __u64 log_page_size) { ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); ia64_setreg(_IA64_REG_CR_IFA, vmaddr); ia64_stop(); if (target_mask & 0x1) ia64_itri(tr_num, pte); if (target_mask & 0x2) ia64_itrd(tr_num, pte); } /* * Insert a translation into the instruction and/or data translation * cache. */ static inline void ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, __u64 log_page_size) { ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); ia64_setreg(_IA64_REG_CR_IFA, vmaddr); ia64_stop(); /* as per EAS2.6, itc must be the last instruction in an instruction group */ if (target_mask & 0x1) ia64_itci(pte); if (target_mask & 0x2) ia64_itcd(pte); } /* * Purge a range of addresses from instruction and/or data translation * register(s). */ static inline void ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) { if (target_mask & 0x1) ia64_ptri(vmaddr, (log_size << 2)); if (target_mask & 0x2) ia64_ptrd(vmaddr, (log_size << 2)); } /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ static inline void ia64_set_iva (void *ivt_addr) { ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); ia64_srlz_i(); } /* Set the page table address and control bits. */ static inline void ia64_set_pta (__u64 pta) { /* Note: srlz.i implies srlz.d */ ia64_setreg(_IA64_REG_CR_PTA, pta); ia64_srlz_i(); } static inline void ia64_eoi (void) { ia64_setreg(_IA64_REG_CR_EOI, 0); ia64_srlz_d(); } #define cpu_relax() ia64_hint(ia64_hint_pause) static inline void ia64_set_lrr0 (unsigned long val) { ia64_setreg(_IA64_REG_CR_LRR0, val); ia64_srlz_d(); } static inline void ia64_set_lrr1 (unsigned long val) { ia64_setreg(_IA64_REG_CR_LRR1, val); ia64_srlz_d(); } /* * Given the address to which a spill occurred, return the unat bit * number that corresponds to this address. */ static inline __u64 ia64_unat_pos (void *spill_addr) { return ((__u64) spill_addr >> 3) & 0x3f; } /* * Set the NaT bit of an integer register which was spilled at address * SPILL_ADDR. UNAT is the mask to be updated. */ static inline void ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) { __u64 bit = ia64_unat_pos(spill_addr); __u64 mask = 1UL << bit; *unat = (*unat & ~mask) | (nat << bit); } /* * Return saved PC of a blocked thread. * Note that the only way T can block is through a call to schedule() -> switch_to(). */ static inline unsigned long thread_saved_pc (struct task_struct *t) { struct unw_frame_info info; unsigned long ip; unw_init_from_blocked_task(&info, t); if (unw_unwind(&info) < 0) return 0; unw_get_ip(&info, &ip); return ip; } /* * Get the current instruction/program counter value. */ #define current_text_addr() \ ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) static inline __u64 ia64_get_ivr (void) { __u64 r; ia64_srlz_d(); r = ia64_getreg(_IA64_REG_CR_IVR); ia64_srlz_d(); return r; } static inline void ia64_set_dbr (__u64 regnum, __u64 value) { __ia64_set_dbr(regnum, value); #ifdef CONFIG_ITANIUM ia64_srlz_d(); #endif } static inline __u64 ia64_get_dbr (__u64 regnum) { __u64 retval; retval = __ia64_get_dbr(regnum); #ifdef CONFIG_ITANIUM ia64_srlz_d(); #endif return retval; } static inline __u64 ia64_rotr (__u64 w, __u64 n) { return (w >> n) | (w << (64 - n)); } #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) /* * Take a mapped kernel address and return the equivalent address * in the region 7 identity mapped virtual area. */ static inline void * ia64_imva (void *addr) { void *result; result = (void *) ia64_tpa(addr); return __va(result); } #define ARCH_HAS_PREFETCH #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #define PREFETCH_STRIDE L1_CACHE_BYTES static inline void prefetch (const void *x) { ia64_lfetch(ia64_lfhint_none, x); } static inline void prefetchw (const void *x) { ia64_lfetch_excl(ia64_lfhint_none, x); } #define spin_lock_prefetch(x) prefetchw(x) extern unsigned long boot_option_idle_override; #endif /* !__ASSEMBLY__ */ #endif /* _ASM_IA64_PROCESSOR_H */