/* * linux/fs/ufs/truncate.c * * Copyright (C) 1998 * Daniel Pirkl * Charles University, Faculty of Mathematics and Physics * * from * * linux/fs/ext2/truncate.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/truncate.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ /* * Real random numbers for secure rm added 94/02/18 * Idea from Pierre del Perugia */ /* * Adoptation to use page cache and UFS2 write support by * Evgeniy Dushistov , 2006-2007 */ #include #include #include #include #include #include #include #include #include #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" /* * Secure deletion currently doesn't work. It interacts very badly * with buffers shared with memory mappings, and for that reason * can't be done in the truncate() routines. It should instead be * done separately in "release()" before calling the truncate routines * that will release the actual file blocks. * * Linus */ #define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift) #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) static int ufs_trunc_direct(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block * sb; struct ufs_sb_private_info * uspi; void *p; u64 frag1, frag2, frag3, frag4, block1, block2; unsigned frag_to_free, free_count; unsigned i, tmp; int retry; UFSD("ENTER: ino %lu\n", inode->i_ino); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; frag_to_free = 0; free_count = 0; retry = 0; frag1 = DIRECT_FRAGMENT; frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); frag3 = frag4 & ~uspi->s_fpbmask; block1 = block2 = 0; if (frag2 > frag3) { frag2 = frag4; frag3 = frag4 = 0; } else if (frag2 < frag3) { block1 = ufs_fragstoblks (frag2); block2 = ufs_fragstoblks (frag3); } UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," " frag3 %llu, frag4 %llu\n", inode->i_ino, (unsigned long long)frag1, (unsigned long long)frag2, (unsigned long long)block1, (unsigned long long)block2, (unsigned long long)frag3, (unsigned long long)frag4); if (frag1 >= frag2) goto next1; /* * Free first free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic (sb, "ufs_trunc_direct", "internal error"); frag2 -= frag1; frag1 = ufs_fragnum (frag1); ufs_free_fragments(inode, tmp + frag1, frag2); mark_inode_dirty(inode); frag_to_free = tmp + frag1; next1: /* * Free whole blocks */ for (i = block1 ; i < block2; i++) { p = ufs_get_direct_data_ptr(uspi, ufsi, i); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp) continue; write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); if (free_count == 0) { frag_to_free = tmp; free_count = uspi->s_fpb; } else if (free_count > 0 && frag_to_free == tmp - free_count) free_count += uspi->s_fpb; else { ufs_free_blocks (inode, frag_to_free, free_count); frag_to_free = tmp; free_count = uspi->s_fpb; } mark_inode_dirty(inode); } if (free_count > 0) ufs_free_blocks (inode, frag_to_free, free_count); if (frag3 >= frag4) goto next3; /* * Free last free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic(sb, "ufs_truncate_direct", "internal error"); frag4 = ufs_fragnum (frag4); write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); ufs_free_fragments (inode, tmp, frag4); mark_inode_dirty(inode); next3: UFSD("EXIT: ino %lu\n", inode->i_ino); return retry; } static int ufs_trunc_indirect(struct inode *inode, u64 offset, void *p) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_buffer_head * ind_ubh; void *ind; u64 tmp, indirect_block, i, frag_to_free; unsigned free_count; int retry; UFSD("ENTER: ino %lu, offset %llu, p: %p\n", inode->i_ino, (unsigned long long)offset, p); BUG_ON(!p); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; frag_to_free = 0; free_count = 0; retry = 0; tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp) return 0; ind_ubh = ubh_bread(sb, tmp, uspi->s_bsize); if (tmp != ufs_data_ptr_to_cpu(sb, p)) { ubh_brelse (ind_ubh); return 1; } if (!ind_ubh) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); return 0; } indirect_block = (DIRECT_BLOCK > offset) ? (DIRECT_BLOCK - offset) : 0; for (i = indirect_block; i < uspi->s_apb; i++) { ind = ubh_get_data_ptr(uspi, ind_ubh, i); tmp = ufs_data_ptr_to_cpu(sb, ind); if (!tmp) continue; write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, ind); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_mark_buffer_dirty(ind_ubh); if (free_count == 0) { frag_to_free = tmp; free_count = uspi->s_fpb; } else if (free_count > 0 && frag_to_free == tmp - free_count) free_count += uspi->s_fpb; else { ufs_free_blocks (inode, frag_to_free, free_count); frag_to_free = tmp; free_count = uspi->s_fpb; } mark_inode_dirty(inode); } if (free_count > 0) { ufs_free_blocks (inode, frag_to_free, free_count); } for (i = 0; i < uspi->s_apb; i++) if (!ufs_is_data_ptr_zero(uspi, ubh_get_data_ptr(uspi, ind_ubh, i))) break; if (i >= uspi->s_apb) { tmp = ufs_data_ptr_to_cpu(sb, p); write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_bforget(ind_ubh); ufs_free_blocks (inode, tmp, uspi->s_fpb); mark_inode_dirty(inode); ind_ubh = NULL; } if (IS_SYNC(inode) && ind_ubh && ubh_buffer_dirty(ind_ubh)) ubh_sync_block(ind_ubh); ubh_brelse (ind_ubh); UFSD("EXIT: ino %lu\n", inode->i_ino); return retry; } static int ufs_trunc_dindirect(struct inode *inode, u64 offset, void *p) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_buffer_head *dind_bh; u64 i, tmp, dindirect_block; void *dind; int retry = 0; UFSD("ENTER: ino %lu\n", inode->i_ino); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; dindirect_block = (DIRECT_BLOCK > offset) ? ((DIRECT_BLOCK - offset) >> uspi->s_apbshift) : 0; retry = 0; tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp) return 0; dind_bh = ubh_bread(sb, tmp, uspi->s_bsize); if (tmp != ufs_data_ptr_to_cpu(sb, p)) { ubh_brelse (dind_bh); return 1; } if (!dind_bh) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); return 0; } for (i = dindirect_block ; i < uspi->s_apb ; i++) { dind = ubh_get_data_ptr(uspi, dind_bh, i); tmp = ufs_data_ptr_to_cpu(sb, dind); if (!tmp) continue; retry |= ufs_trunc_indirect (inode, offset + (i << uspi->s_apbshift), dind); ubh_mark_buffer_dirty(dind_bh); } for (i = 0; i < uspi->s_apb; i++) if (!ufs_is_data_ptr_zero(uspi, ubh_get_data_ptr(uspi, dind_bh, i))) break; if (i >= uspi->s_apb) { tmp = ufs_data_ptr_to_cpu(sb, p); write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_bforget(dind_bh); ufs_free_blocks(inode, tmp, uspi->s_fpb); mark_inode_dirty(inode); dind_bh = NULL; } if (IS_SYNC(inode) && dind_bh && ubh_buffer_dirty(dind_bh)) ubh_sync_block(dind_bh); ubh_brelse (dind_bh); UFSD("EXIT: ino %lu\n", inode->i_ino); return retry; } static int ufs_trunc_tindirect(struct inode *inode) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct ufs_inode_info *ufsi = UFS_I(inode); struct ufs_buffer_head * tind_bh; u64 tindirect_block, tmp, i; void *tind, *p; int retry; UFSD("ENTER: ino %lu\n", inode->i_ino); retry = 0; tindirect_block = (DIRECT_BLOCK > (UFS_NDADDR + uspi->s_apb + uspi->s_2apb)) ? ((DIRECT_BLOCK - UFS_NDADDR - uspi->s_apb - uspi->s_2apb) >> uspi->s_2apbshift) : 0; p = ufs_get_direct_data_ptr(uspi, ufsi, UFS_TIND_BLOCK); if (!(tmp = ufs_data_ptr_to_cpu(sb, p))) return 0; tind_bh = ubh_bread (sb, tmp, uspi->s_bsize); if (tmp != ufs_data_ptr_to_cpu(sb, p)) { ubh_brelse (tind_bh); return 1; } if (!tind_bh) { write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); return 0; } for (i = tindirect_block ; i < uspi->s_apb ; i++) { tind = ubh_get_data_ptr(uspi, tind_bh, i); retry |= ufs_trunc_dindirect(inode, UFS_NDADDR + uspi->s_apb + ((i + 1) << uspi->s_2apbshift), tind); ubh_mark_buffer_dirty(tind_bh); } for (i = 0; i < uspi->s_apb; i++) if (!ufs_is_data_ptr_zero(uspi, ubh_get_data_ptr(uspi, tind_bh, i))) break; if (i >= uspi->s_apb) { tmp = ufs_data_ptr_to_cpu(sb, p); write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); ubh_bforget(tind_bh); ufs_free_blocks(inode, tmp, uspi->s_fpb); mark_inode_dirty(inode); tind_bh = NULL; } if (IS_SYNC(inode) && tind_bh && ubh_buffer_dirty(tind_bh)) ubh_sync_block(tind_bh); ubh_brelse (tind_bh); UFSD("EXIT: ino %lu\n", inode->i_ino); return retry; } static int ufs_alloc_lastblock(struct inode *inode, loff_t size) { int err = 0; struct super_block *sb = inode->i_sb; struct address_space *mapping = inode->i_mapping; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned i, end; sector_t lastfrag; struct page *lastpage; struct buffer_head *bh; u64 phys64; lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; if (!lastfrag) goto out; lastfrag--; lastpage = ufs_get_locked_page(mapping, lastfrag >> (PAGE_CACHE_SHIFT - inode->i_blkbits)); if (IS_ERR(lastpage)) { err = -EIO; goto out; } end = lastfrag & ((1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1); bh = page_buffers(lastpage); for (i = 0; i < end; ++i) bh = bh->b_this_page; err = ufs_getfrag_block(inode, lastfrag, bh, 1); if (unlikely(err)) goto out_unlock; if (buffer_new(bh)) { clear_buffer_new(bh); unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); /* * we do not zeroize fragment, because of * if it maped to hole, it already contains zeroes */ set_buffer_uptodate(bh); mark_buffer_dirty(bh); set_page_dirty(lastpage); } if (lastfrag >= UFS_IND_FRAGMENT) { end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; phys64 = bh->b_blocknr + 1; for (i = 0; i < end; ++i) { bh = sb_getblk(sb, i + phys64); lock_buffer(bh); memset(bh->b_data, 0, sb->s_blocksize); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); sync_dirty_buffer(bh); brelse(bh); } } out_unlock: ufs_put_locked_page(lastpage); out: return err; } static void __ufs_truncate_blocks(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int retry; mutex_lock(&ufsi->truncate_mutex); while (1) { retry = ufs_trunc_direct(inode); retry |= ufs_trunc_indirect(inode, UFS_IND_BLOCK, ufs_get_direct_data_ptr(uspi, ufsi, UFS_IND_BLOCK)); retry |= ufs_trunc_dindirect(inode, UFS_IND_BLOCK + uspi->s_apb, ufs_get_direct_data_ptr(uspi, ufsi, UFS_DIND_BLOCK)); retry |= ufs_trunc_tindirect (inode); if (!retry) break; if (IS_SYNC(inode) && (inode->i_state & I_DIRTY)) ufs_sync_inode (inode); yield(); } ufsi->i_lastfrag = DIRECT_FRAGMENT; mutex_unlock(&ufsi->truncate_mutex); } int ufs_truncate(struct inode *inode, loff_t size) { int err = 0; UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", inode->i_ino, (unsigned long long)size, (unsigned long long)i_size_read(inode)); if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return -EINVAL; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; err = ufs_alloc_lastblock(inode, size); if (err) goto out; block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); truncate_setsize(inode, size); __ufs_truncate_blocks(inode); inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(inode); out: UFSD("EXIT: err %d\n", err); return err; } void ufs_truncate_blocks(struct inode *inode) { if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; __ufs_truncate_blocks(inode); } int ufs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); unsigned int ia_valid = attr->ia_valid; int error; error = inode_change_ok(inode, attr); if (error) return error; if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { error = ufs_truncate(inode, attr->ia_size); if (error) return error; } setattr_copy(inode, attr); mark_inode_dirty(inode); return 0; } const struct inode_operations ufs_file_inode_operations = { .setattr = ufs_setattr, };