/* * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross <ccross@google.com> * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/percpu.h> #include <linux/sched_clock.h> #include <linux/time.h> #include "timer-of.h" #ifdef CONFIG_ARM #include <asm/mach/time.h> #endif #define RTC_SECONDS 0x08 #define RTC_SHADOW_SECONDS 0x0c #define RTC_MILLISECONDS 0x10 #define TIMERUS_CNTR_1US 0x10 #define TIMERUS_USEC_CFG 0x14 #define TIMERUS_CNTR_FREEZE 0x4c #define TIMER_PTV 0x0 #define TIMER_PTV_EN BIT(31) #define TIMER_PTV_PER BIT(30) #define TIMER_PCR 0x4 #define TIMER_PCR_INTR_CLR BIT(30) #ifdef CONFIG_ARM #define TIMER_CPU0 0x50 /* TIMER3 */ #else #define TIMER_CPU0 0x90 /* TIMER10 */ #define TIMER10_IRQ_IDX 10 #define IRQ_IDX_FOR_CPU(cpu) (TIMER10_IRQ_IDX + cpu) #endif #define TIMER_BASE_FOR_CPU(cpu) (TIMER_CPU0 + (cpu) * 8) static u32 usec_config; static void __iomem *timer_reg_base; #ifdef CONFIG_ARM static void __iomem *rtc_base; static struct timespec64 persistent_ts; static u64 persistent_ms, last_persistent_ms; static struct delay_timer tegra_delay_timer; #endif static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel(TIMER_PTV_EN | ((cycles > 1) ? (cycles - 1) : 0), /* n+1 scheme */ reg_base + TIMER_PTV); return 0; } static int tegra_timer_shutdown(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel(0, reg_base + TIMER_PTV); return 0; } static int tegra_timer_set_periodic(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel(TIMER_PTV_EN | TIMER_PTV_PER | ((timer_of_rate(to_timer_of(evt)) / HZ) - 1), reg_base + TIMER_PTV); return 0; } static irqreturn_t tegra_timer_isr(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static void tegra_timer_suspend(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); } static void tegra_timer_resume(struct clock_event_device *evt) { writel(usec_config, timer_reg_base + TIMERUS_USEC_CFG); } #ifdef CONFIG_ARM64 static DEFINE_PER_CPU(struct timer_of, tegra_to) = { .flags = TIMER_OF_CLOCK | TIMER_OF_BASE, .clkevt = { .name = "tegra_timer", .rating = 460, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_state_shutdown = tegra_timer_shutdown, .set_state_periodic = tegra_timer_set_periodic, .set_state_oneshot = tegra_timer_shutdown, .tick_resume = tegra_timer_shutdown, .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, }, }; static int tegra_timer_setup(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); irq_force_affinity(to->clkevt.irq, cpumask_of(cpu)); enable_irq(to->clkevt.irq); clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 1, /* min */ 0x1fffffff); /* 29 bits */ return 0; } static int tegra_timer_stop(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); to->clkevt.set_state_shutdown(&to->clkevt); disable_irq_nosync(to->clkevt.irq); return 0; } #else /* CONFIG_ARM */ static struct timer_of tegra_to = { .flags = TIMER_OF_CLOCK | TIMER_OF_BASE | TIMER_OF_IRQ, .clkevt = { .name = "tegra_timer", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_DYNIRQ, .set_next_event = tegra_timer_set_next_event, .set_state_shutdown = tegra_timer_shutdown, .set_state_periodic = tegra_timer_set_periodic, .set_state_oneshot = tegra_timer_shutdown, .tick_resume = tegra_timer_shutdown, .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, .cpumask = cpu_possible_mask, }, .of_irq = { .index = 2, .flags = IRQF_TIMER | IRQF_TRIGGER_HIGH, .handler = tegra_timer_isr, }, }; static u64 notrace tegra_read_sched_clock(void) { return readl(timer_reg_base + TIMERUS_CNTR_1US); } static unsigned long tegra_delay_timer_read_counter_long(void) { return readl(timer_reg_base + TIMERUS_CNTR_1US); } /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static u64 tegra_rtc_read_ms(void) { u32 ms = readl(rtc_base + RTC_MILLISECONDS); u32 s = readl(rtc_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } /* * tegra_read_persistent_clock64 - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec64. * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static void tegra_read_persistent_clock64(struct timespec64 *ts) { u64 delta; last_persistent_ms = persistent_ms; persistent_ms = tegra_rtc_read_ms(); delta = persistent_ms - last_persistent_ms; timespec64_add_ns(&persistent_ts, delta * NSEC_PER_MSEC); *ts = persistent_ts; } #endif static int tegra_timer_common_init(struct device_node *np, struct timer_of *to) { int ret = 0; ret = timer_of_init(np, to); if (ret < 0) goto out; timer_reg_base = timer_of_base(to); /* * Configure microsecond timers to have 1MHz clock * Config register is 0xqqww, where qq is "dividend", ww is "divisor" * Uses n+1 scheme */ switch (timer_of_rate(to)) { case 12000000: usec_config = 0x000b; /* (11+1)/(0+1) */ break; case 12800000: usec_config = 0x043f; /* (63+1)/(4+1) */ break; case 13000000: usec_config = 0x000c; /* (12+1)/(0+1) */ break; case 16800000: usec_config = 0x0453; /* (83+1)/(4+1) */ break; case 19200000: usec_config = 0x045f; /* (95+1)/(4+1) */ break; case 26000000: usec_config = 0x0019; /* (25+1)/(0+1) */ break; case 38400000: usec_config = 0x04bf; /* (191+1)/(4+1) */ break; case 48000000: usec_config = 0x002f; /* (47+1)/(0+1) */ break; default: ret = -EINVAL; goto out; } writel(usec_config, timer_of_base(to) + TIMERUS_USEC_CFG); out: return ret; } #ifdef CONFIG_ARM64 static int __init tegra_init_timer(struct device_node *np) { int cpu, ret = 0; struct timer_of *to; to = this_cpu_ptr(&tegra_to); ret = tegra_timer_common_init(np, to); if (ret < 0) goto out; for_each_possible_cpu(cpu) { struct timer_of *cpu_to; cpu_to = per_cpu_ptr(&tegra_to, cpu); cpu_to->of_base.base = timer_reg_base + TIMER_BASE_FOR_CPU(cpu); cpu_to->of_clk.rate = timer_of_rate(to); cpu_to->clkevt.cpumask = cpumask_of(cpu); cpu_to->clkevt.irq = irq_of_parse_and_map(np, IRQ_IDX_FOR_CPU(cpu)); if (!cpu_to->clkevt.irq) { pr_err("%s: can't map IRQ for CPU%d\n", __func__, cpu); ret = -EINVAL; goto out; } irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN); ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, IRQF_TIMER | IRQF_NOBALANCING, cpu_to->clkevt.name, &cpu_to->clkevt); if (ret) { pr_err("%s: cannot setup irq %d for CPU%d\n", __func__, cpu_to->clkevt.irq, cpu); ret = -EINVAL; goto out_irq; } } cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING, "AP_TEGRA_TIMER_STARTING", tegra_timer_setup, tegra_timer_stop); return ret; out_irq: for_each_possible_cpu(cpu) { struct timer_of *cpu_to; cpu_to = per_cpu_ptr(&tegra_to, cpu); if (cpu_to->clkevt.irq) { free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt); irq_dispose_mapping(cpu_to->clkevt.irq); } } out: timer_of_cleanup(to); return ret; } #else /* CONFIG_ARM */ static int __init tegra_init_timer(struct device_node *np) { int ret = 0; ret = tegra_timer_common_init(np, &tegra_to); if (ret < 0) goto out; tegra_to.of_base.base = timer_reg_base + TIMER_BASE_FOR_CPU(0); tegra_to.of_clk.rate = 1000000; /* microsecond timer */ sched_clock_register(tegra_read_sched_clock, 32, timer_of_rate(&tegra_to)); ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", timer_of_rate(&tegra_to), 300, 32, clocksource_mmio_readl_up); if (ret) { pr_err("Failed to register clocksource\n"); goto out; } tegra_delay_timer.read_current_timer = tegra_delay_timer_read_counter_long; tegra_delay_timer.freq = timer_of_rate(&tegra_to); register_current_timer_delay(&tegra_delay_timer); clockevents_config_and_register(&tegra_to.clkevt, timer_of_rate(&tegra_to), 0x1, 0x1fffffff); return ret; out: timer_of_cleanup(&tegra_to); return ret; } static int __init tegra20_init_rtc(struct device_node *np) { struct clk *clk; rtc_base = of_iomap(np, 0); if (!rtc_base) { pr_err("Can't map RTC registers\n"); return -ENXIO; } /* * rtc registers are used by read_persistent_clock, keep the rtc clock * enabled */ clk = of_clk_get(np, 0); if (IS_ERR(clk)) pr_warn("Unable to get rtc-tegra clock\n"); else clk_prepare_enable(clk); return register_persistent_clock(tegra_read_persistent_clock64); } TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc); #endif TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra_init_timer); TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra_init_timer);