/****************************************************************************** * * Copyright(c) 2003 - 2009 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include "iwl-eeprom.h" #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-io.h" #include "iwl-helpers.h" #include "iwl-calib.h" #include "iwl-sta.h" static int iwl4965_send_tx_power(struct iwl_priv *priv); static int iwl4965_hw_get_temperature(const struct iwl_priv *priv); /* Highest firmware API version supported */ #define IWL4965_UCODE_API_MAX 2 /* Lowest firmware API version supported */ #define IWL4965_UCODE_API_MIN 2 #define IWL4965_FW_PRE "iwlwifi-4965-" #define _IWL4965_MODULE_FIRMWARE(api) IWL4965_FW_PRE #api ".ucode" #define IWL4965_MODULE_FIRMWARE(api) _IWL4965_MODULE_FIRMWARE(api) /* module parameters */ static struct iwl_mod_params iwl4965_mod_params = { .num_of_queues = IWL49_NUM_QUEUES, .num_of_ampdu_queues = IWL49_NUM_AMPDU_QUEUES, .amsdu_size_8K = 1, .restart_fw = 1, /* the rest are 0 by default */ }; /* check contents of special bootstrap uCode SRAM */ static int iwl4965_verify_bsm(struct iwl_priv *priv) { __le32 *image = priv->ucode_boot.v_addr; u32 len = priv->ucode_boot.len; u32 reg; u32 val; IWL_DEBUG_INFO(priv, "Begin verify bsm\n"); /* verify BSM SRAM contents */ val = iwl_read_prph(priv, BSM_WR_DWCOUNT_REG); for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len; reg += sizeof(u32), image++) { val = iwl_read_prph(priv, reg); if (val != le32_to_cpu(*image)) { IWL_ERR(priv, "BSM uCode verification failed at " "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n", BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND, len, val, le32_to_cpu(*image)); return -EIO; } } IWL_DEBUG_INFO(priv, "BSM bootstrap uCode image OK\n"); return 0; } /** * iwl4965_load_bsm - Load bootstrap instructions * * BSM operation: * * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program * in special SRAM that does not power down during RFKILL. When powering back * up after power-saving sleeps (or during initial uCode load), the BSM loads * the bootstrap program into the on-board processor, and starts it. * * The bootstrap program loads (via DMA) instructions and data for a new * program from host DRAM locations indicated by the host driver in the * BSM_DRAM_* registers. Once the new program is loaded, it starts * automatically. * * When initializing the NIC, the host driver points the BSM to the * "initialize" uCode image. This uCode sets up some internal data, then * notifies host via "initialize alive" that it is complete. * * The host then replaces the BSM_DRAM_* pointer values to point to the * normal runtime uCode instructions and a backup uCode data cache buffer * (filled initially with starting data values for the on-board processor), * then triggers the "initialize" uCode to load and launch the runtime uCode, * which begins normal operation. * * When doing a power-save shutdown, runtime uCode saves data SRAM into * the backup data cache in DRAM before SRAM is powered down. * * When powering back up, the BSM loads the bootstrap program. This reloads * the runtime uCode instructions and the backup data cache into SRAM, * and re-launches the runtime uCode from where it left off. */ static int iwl4965_load_bsm(struct iwl_priv *priv) { __le32 *image = priv->ucode_boot.v_addr; u32 len = priv->ucode_boot.len; dma_addr_t pinst; dma_addr_t pdata; u32 inst_len; u32 data_len; int i; u32 done; u32 reg_offset; int ret; IWL_DEBUG_INFO(priv, "Begin load bsm\n"); priv->ucode_type = UCODE_INIT; /* make sure bootstrap program is no larger than BSM's SRAM size */ if (len > IWL49_MAX_BSM_SIZE) return -EINVAL; /* Tell bootstrap uCode where to find the "Initialize" uCode * in host DRAM ... host DRAM physical address bits 35:4 for 4965. * NOTE: iwl_init_alive_start() will replace these values, * after the "initialize" uCode has run, to point to * runtime/protocol instructions and backup data cache. */ pinst = priv->ucode_init.p_addr >> 4; pdata = priv->ucode_init_data.p_addr >> 4; inst_len = priv->ucode_init.len; data_len = priv->ucode_init_data.len; iwl_write_prph(priv, BSM_DRAM_INST_PTR_REG, pinst); iwl_write_prph(priv, BSM_DRAM_DATA_PTR_REG, pdata); iwl_write_prph(priv, BSM_DRAM_INST_BYTECOUNT_REG, inst_len); iwl_write_prph(priv, BSM_DRAM_DATA_BYTECOUNT_REG, data_len); /* Fill BSM memory with bootstrap instructions */ for (reg_offset = BSM_SRAM_LOWER_BOUND; reg_offset < BSM_SRAM_LOWER_BOUND + len; reg_offset += sizeof(u32), image++) _iwl_write_prph(priv, reg_offset, le32_to_cpu(*image)); ret = iwl4965_verify_bsm(priv); if (ret) return ret; /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */ iwl_write_prph(priv, BSM_WR_MEM_SRC_REG, 0x0); iwl_write_prph(priv, BSM_WR_MEM_DST_REG, IWL49_RTC_INST_LOWER_BOUND); iwl_write_prph(priv, BSM_WR_DWCOUNT_REG, len / sizeof(u32)); /* Load bootstrap code into instruction SRAM now, * to prepare to load "initialize" uCode */ iwl_write_prph(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START); /* Wait for load of bootstrap uCode to finish */ for (i = 0; i < 100; i++) { done = iwl_read_prph(priv, BSM_WR_CTRL_REG); if (!(done & BSM_WR_CTRL_REG_BIT_START)) break; udelay(10); } if (i < 100) IWL_DEBUG_INFO(priv, "BSM write complete, poll %d iterations\n", i); else { IWL_ERR(priv, "BSM write did not complete!\n"); return -EIO; } /* Enable future boot loads whenever power management unit triggers it * (e.g. when powering back up after power-save shutdown) */ iwl_write_prph(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN); return 0; } /** * iwl4965_set_ucode_ptrs - Set uCode address location * * Tell initialization uCode where to find runtime uCode. * * BSM registers initially contain pointers to initialization uCode. * We need to replace them to load runtime uCode inst and data, * and to save runtime data when powering down. */ static int iwl4965_set_ucode_ptrs(struct iwl_priv *priv) { dma_addr_t pinst; dma_addr_t pdata; int ret = 0; /* bits 35:4 for 4965 */ pinst = priv->ucode_code.p_addr >> 4; pdata = priv->ucode_data_backup.p_addr >> 4; /* Tell bootstrap uCode where to find image to load */ iwl_write_prph(priv, BSM_DRAM_INST_PTR_REG, pinst); iwl_write_prph(priv, BSM_DRAM_DATA_PTR_REG, pdata); iwl_write_prph(priv, BSM_DRAM_DATA_BYTECOUNT_REG, priv->ucode_data.len); /* Inst byte count must be last to set up, bit 31 signals uCode * that all new ptr/size info is in place */ iwl_write_prph(priv, BSM_DRAM_INST_BYTECOUNT_REG, priv->ucode_code.len | BSM_DRAM_INST_LOAD); IWL_DEBUG_INFO(priv, "Runtime uCode pointers are set.\n"); return ret; } /** * iwl4965_init_alive_start - Called after REPLY_ALIVE notification received * * Called after REPLY_ALIVE notification received from "initialize" uCode. * * The 4965 "initialize" ALIVE reply contains calibration data for: * Voltage, temperature, and MIMO tx gain correction, now stored in priv * (3945 does not contain this data). * * Tell "initialize" uCode to go ahead and load the runtime uCode. */ static void iwl4965_init_alive_start(struct iwl_priv *priv) { int ret; /* Check alive response for "valid" sign from uCode */ if (priv->card_alive_init.is_valid != UCODE_VALID_OK) { /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ IWL_DEBUG_INFO(priv, "Initialize Alive failed.\n"); goto restart; } /* Bootstrap uCode has loaded initialize uCode ... verify inst image. * This is a paranoid check, because we would not have gotten the * "initialize" alive if code weren't properly loaded. */ if (iwl_verify_ucode(priv)) { /* Runtime instruction load was bad; * take it all the way back down so we can try again */ IWL_DEBUG_INFO(priv, "Bad \"initialize\" uCode load.\n"); goto restart; } /* Calculate temperature */ priv->temperature = iwl4965_hw_get_temperature(priv); /* Send pointers to protocol/runtime uCode image ... init code will * load and launch runtime uCode, which will send us another "Alive" * notification. */ IWL_DEBUG_INFO(priv, "Initialization Alive received.\n"); if (iwl4965_set_ucode_ptrs(priv)) { /* Runtime instruction load won't happen; * take it all the way back down so we can try again */ IWL_DEBUG_INFO(priv, "Couldn't set up uCode pointers.\n"); goto restart; } priv->ucode_type = UCODE_RT; if (test_bit(STATUS_RT_UCODE_ALIVE, &priv->status)) { IWL_WARN(priv, "Runtime uCode already alive? " "Waiting for alive anyway\n"); clear_bit(STATUS_RT_UCODE_ALIVE, &priv->status); } ret = wait_event_interruptible_timeout( priv->wait_command_queue, test_bit(STATUS_RT_UCODE_ALIVE, &priv->status), UCODE_ALIVE_TIMEOUT); if (!ret) { /* FIXME: if STATUS_RT_UCODE_ALIVE timeout * go back to restart the download Init uCode again * this might cause to trap in the restart loop */ priv->ucode_type = UCODE_NONE; if (!test_bit(STATUS_RT_UCODE_ALIVE, &priv->status)) { IWL_ERR(priv, "Runtime timeout after %dms\n", jiffies_to_msecs(UCODE_ALIVE_TIMEOUT)); goto restart; } } return; restart: queue_work(priv->workqueue, &priv->restart); } static bool is_fat_channel(__le32 rxon_flags) { int chan_mod = le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >> RXON_FLG_CHANNEL_MODE_POS; return ((chan_mod == CHANNEL_MODE_PURE_40) || (chan_mod == CHANNEL_MODE_MIXED)); } /* * EEPROM handlers */ static u16 iwl4965_eeprom_calib_version(struct iwl_priv *priv) { return iwl_eeprom_query16(priv, EEPROM_4965_CALIB_VERSION_OFFSET); } /* * Activate/Deactivate Tx DMA/FIFO channels according tx fifos mask * must be called under priv->lock and mac access */ static void iwl4965_txq_set_sched(struct iwl_priv *priv, u32 mask) { iwl_write_prph(priv, IWL49_SCD_TXFACT, mask); } static int iwl4965_apm_init(struct iwl_priv *priv) { int ret = 0; iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* disable L0s without affecting L1 :don't wait for ICH L0s bug W/A) */ iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* set "initialization complete" bit to move adapter * D0U* --> D0A* state */ iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* wait for clock stabilization */ ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO(priv, "Failed to init the card\n"); goto out; } /* enable DMA */ iwl_write_prph(priv, APMG_CLK_CTRL_REG, APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT); udelay(20); /* disable L1-Active */ iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); out: return ret; } static void iwl4965_nic_config(struct iwl_priv *priv) { unsigned long flags; u16 radio_cfg; u16 lctl; spin_lock_irqsave(&priv->lock, flags); lctl = iwl_pcie_link_ctl(priv); /* HW bug W/A - negligible power consumption */ /* L1-ASPM is enabled by BIOS */ if ((lctl & PCI_CFG_LINK_CTRL_VAL_L1_EN) == PCI_CFG_LINK_CTRL_VAL_L1_EN) /* L1-ASPM enabled: disable L0S */ iwl_set_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); else /* L1-ASPM disabled: enable L0S */ iwl_clear_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG); /* write radio config values to register */ if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX) iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, EEPROM_RF_CFG_TYPE_MSK(radio_cfg) | EEPROM_RF_CFG_STEP_MSK(radio_cfg) | EEPROM_RF_CFG_DASH_MSK(radio_cfg)); /* set CSR_HW_CONFIG_REG for uCode use */ iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | CSR_HW_IF_CONFIG_REG_BIT_MAC_SI); priv->calib_info = (struct iwl_eeprom_calib_info *) iwl_eeprom_query_addr(priv, EEPROM_4965_CALIB_TXPOWER_OFFSET); spin_unlock_irqrestore(&priv->lock, flags); } static int iwl4965_apm_stop_master(struct iwl_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); /* set stop master bit */ iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); iwl_poll_direct_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); spin_unlock_irqrestore(&priv->lock, flags); IWL_DEBUG_INFO(priv, "stop master\n"); return 0; } static void iwl4965_apm_stop(struct iwl_priv *priv) { unsigned long flags; iwl4965_apm_stop_master(priv); spin_lock_irqsave(&priv->lock, flags); iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* clear "init complete" move adapter D0A* --> D0U state */ iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); spin_unlock_irqrestore(&priv->lock, flags); } static int iwl4965_apm_reset(struct iwl_priv *priv) { int ret = 0; iwl4965_apm_stop_master(priv); iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* FIXME: put here L1A -L0S w/a */ iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) goto out; udelay(10); /* Enable DMA and BSM Clock */ iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT); udelay(10); /* disable L1A */ iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); clear_bit(STATUS_HCMD_ACTIVE, &priv->status); wake_up_interruptible(&priv->wait_command_queue); out: return ret; } /* Reset differential Rx gains in NIC to prepare for chain noise calibration. * Called after every association, but this runs only once! * ... once chain noise is calibrated the first time, it's good forever. */ static void iwl4965_chain_noise_reset(struct iwl_priv *priv) { struct iwl_chain_noise_data *data = &(priv->chain_noise_data); if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) { struct iwl_calib_diff_gain_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IWL_PHY_CALIBRATE_DIFF_GAIN_CMD; cmd.diff_gain_a = 0; cmd.diff_gain_b = 0; cmd.diff_gain_c = 0; if (iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, sizeof(cmd), &cmd)) IWL_ERR(priv, "Could not send REPLY_PHY_CALIBRATION_CMD\n"); data->state = IWL_CHAIN_NOISE_ACCUMULATE; IWL_DEBUG_CALIB(priv, "Run chain_noise_calibrate\n"); } } static void iwl4965_gain_computation(struct iwl_priv *priv, u32 *average_noise, u16 min_average_noise_antenna_i, u32 min_average_noise) { int i, ret; struct iwl_chain_noise_data *data = &priv->chain_noise_data; data->delta_gain_code[min_average_noise_antenna_i] = 0; for (i = 0; i < NUM_RX_CHAINS; i++) { s32 delta_g = 0; if (!(data->disconn_array[i]) && (data->delta_gain_code[i] == CHAIN_NOISE_DELTA_GAIN_INIT_VAL)) { delta_g = average_noise[i] - min_average_noise; data->delta_gain_code[i] = (u8)((delta_g * 10) / 15); data->delta_gain_code[i] = min(data->delta_gain_code[i], (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); data->delta_gain_code[i] = (data->delta_gain_code[i] | (1 << 2)); } else { data->delta_gain_code[i] = 0; } } IWL_DEBUG_CALIB(priv, "delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0], data->delta_gain_code[1], data->delta_gain_code[2]); /* Differential gain gets sent to uCode only once */ if (!data->radio_write) { struct iwl_calib_diff_gain_cmd cmd; data->radio_write = 1; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IWL_PHY_CALIBRATE_DIFF_GAIN_CMD; cmd.diff_gain_a = data->delta_gain_code[0]; cmd.diff_gain_b = data->delta_gain_code[1]; cmd.diff_gain_c = data->delta_gain_code[2]; ret = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, sizeof(cmd), &cmd); if (ret) IWL_DEBUG_CALIB(priv, "fail sending cmd " "REPLY_PHY_CALIBRATION_CMD \n"); /* TODO we might want recalculate * rx_chain in rxon cmd */ /* Mark so we run this algo only once! */ data->state = IWL_CHAIN_NOISE_CALIBRATED; } data->chain_noise_a = 0; data->chain_noise_b = 0; data->chain_noise_c = 0; data->chain_signal_a = 0; data->chain_signal_b = 0; data->chain_signal_c = 0; data->beacon_count = 0; } static void iwl4965_rts_tx_cmd_flag(struct ieee80211_tx_info *info, __le32 *tx_flags) { if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) { *tx_flags |= TX_CMD_FLG_RTS_MSK; *tx_flags &= ~TX_CMD_FLG_CTS_MSK; } else if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { *tx_flags &= ~TX_CMD_FLG_RTS_MSK; *tx_flags |= TX_CMD_FLG_CTS_MSK; } } static void iwl4965_bg_txpower_work(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, txpower_work); /* If a scan happened to start before we got here * then just return; the statistics notification will * kick off another scheduled work to compensate for * any temperature delta we missed here. */ if (test_bit(STATUS_EXIT_PENDING, &priv->status) || test_bit(STATUS_SCANNING, &priv->status)) return; mutex_lock(&priv->mutex); /* Regardless of if we are associated, we must reconfigure the * TX power since frames can be sent on non-radar channels while * not associated */ iwl4965_send_tx_power(priv); /* Update last_temperature to keep is_calib_needed from running * when it isn't needed... */ priv->last_temperature = priv->temperature; mutex_unlock(&priv->mutex); } /* * Acquire priv->lock before calling this function ! */ static void iwl4965_set_wr_ptrs(struct iwl_priv *priv, int txq_id, u32 index) { iwl_write_direct32(priv, HBUS_TARG_WRPTR, (index & 0xff) | (txq_id << 8)); iwl_write_prph(priv, IWL49_SCD_QUEUE_RDPTR(txq_id), index); } /** * iwl4965_tx_queue_set_status - (optionally) start Tx/Cmd queue * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed * @scd_retry: (1) Indicates queue will be used in aggregation mode * * NOTE: Acquire priv->lock before calling this function ! */ static void iwl4965_tx_queue_set_status(struct iwl_priv *priv, struct iwl_tx_queue *txq, int tx_fifo_id, int scd_retry) { int txq_id = txq->q.id; /* Find out whether to activate Tx queue */ int active = test_bit(txq_id, &priv->txq_ctx_active_msk) ? 1 : 0; /* Set up and activate */ iwl_write_prph(priv, IWL49_SCD_QUEUE_STATUS_BITS(txq_id), (active << IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (tx_fifo_id << IWL49_SCD_QUEUE_STTS_REG_POS_TXF) | (scd_retry << IWL49_SCD_QUEUE_STTS_REG_POS_WSL) | (scd_retry << IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK) | IWL49_SCD_QUEUE_STTS_REG_MSK); txq->sched_retry = scd_retry; IWL_DEBUG_INFO(priv, "%s %s Queue %d on AC %d\n", active ? "Activate" : "Deactivate", scd_retry ? "BA" : "AC", txq_id, tx_fifo_id); } static const u16 default_queue_to_tx_fifo[] = { IWL_TX_FIFO_AC3, IWL_TX_FIFO_AC2, IWL_TX_FIFO_AC1, IWL_TX_FIFO_AC0, IWL49_CMD_FIFO_NUM, IWL_TX_FIFO_HCCA_1, IWL_TX_FIFO_HCCA_2 }; static int iwl4965_alive_notify(struct iwl_priv *priv) { u32 a; unsigned long flags; int i, chan; u32 reg_val; spin_lock_irqsave(&priv->lock, flags); /* Clear 4965's internal Tx Scheduler data base */ priv->scd_base_addr = iwl_read_prph(priv, IWL49_SCD_SRAM_BASE_ADDR); a = priv->scd_base_addr + IWL49_SCD_CONTEXT_DATA_OFFSET; for (; a < priv->scd_base_addr + IWL49_SCD_TX_STTS_BITMAP_OFFSET; a += 4) iwl_write_targ_mem(priv, a, 0); for (; a < priv->scd_base_addr + IWL49_SCD_TRANSLATE_TBL_OFFSET; a += 4) iwl_write_targ_mem(priv, a, 0); for (; a < sizeof(u16) * priv->hw_params.max_txq_num; a += 4) iwl_write_targ_mem(priv, a, 0); /* Tel 4965 where to find Tx byte count tables */ iwl_write_prph(priv, IWL49_SCD_DRAM_BASE_ADDR, priv->scd_bc_tbls.dma >> 10); /* Enable DMA channel */ for (chan = 0; chan < FH49_TCSR_CHNL_NUM ; chan++) iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(chan), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); /* Update FH chicken bits */ reg_val = iwl_read_direct32(priv, FH_TX_CHICKEN_BITS_REG); iwl_write_direct32(priv, FH_TX_CHICKEN_BITS_REG, reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); /* Disable chain mode for all queues */ iwl_write_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, 0); /* Initialize each Tx queue (including the command queue) */ for (i = 0; i < priv->hw_params.max_txq_num; i++) { /* TFD circular buffer read/write indexes */ iwl_write_prph(priv, IWL49_SCD_QUEUE_RDPTR(i), 0); iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8)); /* Max Tx Window size for Scheduler-ACK mode */ iwl_write_targ_mem(priv, priv->scd_base_addr + IWL49_SCD_CONTEXT_QUEUE_OFFSET(i), (SCD_WIN_SIZE << IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) & IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK); /* Frame limit */ iwl_write_targ_mem(priv, priv->scd_base_addr + IWL49_SCD_CONTEXT_QUEUE_OFFSET(i) + sizeof(u32), (SCD_FRAME_LIMIT << IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK); } iwl_write_prph(priv, IWL49_SCD_INTERRUPT_MASK, (1 << priv->hw_params.max_txq_num) - 1); /* Activate all Tx DMA/FIFO channels */ priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 6)); iwl4965_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0); /* Map each Tx/cmd queue to its corresponding fifo */ for (i = 0; i < ARRAY_SIZE(default_queue_to_tx_fifo); i++) { int ac = default_queue_to_tx_fifo[i]; iwl_txq_ctx_activate(priv, i); iwl4965_tx_queue_set_status(priv, &priv->txq[i], ac, 0); } spin_unlock_irqrestore(&priv->lock, flags); return 0; } static struct iwl_sensitivity_ranges iwl4965_sensitivity = { .min_nrg_cck = 97, .max_nrg_cck = 0, /* not used, set to 0 */ .auto_corr_min_ofdm = 85, .auto_corr_min_ofdm_mrc = 170, .auto_corr_min_ofdm_x1 = 105, .auto_corr_min_ofdm_mrc_x1 = 220, .auto_corr_max_ofdm = 120, .auto_corr_max_ofdm_mrc = 210, .auto_corr_max_ofdm_x1 = 140, .auto_corr_max_ofdm_mrc_x1 = 270, .auto_corr_min_cck = 125, .auto_corr_max_cck = 200, .auto_corr_min_cck_mrc = 200, .auto_corr_max_cck_mrc = 400, .nrg_th_cck = 100, .nrg_th_ofdm = 100, }; static void iwl4965_set_ct_threshold(struct iwl_priv *priv) { /* want Kelvin */ priv->hw_params.ct_kill_threshold = CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD); } /** * iwl4965_hw_set_hw_params * * Called when initializing driver */ static int iwl4965_hw_set_hw_params(struct iwl_priv *priv) { if ((priv->cfg->mod_params->num_of_queues > IWL49_NUM_QUEUES) || (priv->cfg->mod_params->num_of_queues < IWL_MIN_NUM_QUEUES)) { IWL_ERR(priv, "invalid queues_num, should be between %d and %d\n", IWL_MIN_NUM_QUEUES, IWL49_NUM_QUEUES); return -EINVAL; } priv->hw_params.max_txq_num = priv->cfg->mod_params->num_of_queues; priv->hw_params.dma_chnl_num = FH49_TCSR_CHNL_NUM; priv->hw_params.scd_bc_tbls_size = IWL49_NUM_QUEUES * sizeof(struct iwl4965_scd_bc_tbl); priv->hw_params.tfd_size = sizeof(struct iwl_tfd); priv->hw_params.max_stations = IWL4965_STATION_COUNT; priv->hw_params.bcast_sta_id = IWL4965_BROADCAST_ID; priv->hw_params.max_data_size = IWL49_RTC_DATA_SIZE; priv->hw_params.max_inst_size = IWL49_RTC_INST_SIZE; priv->hw_params.max_bsm_size = BSM_SRAM_SIZE; priv->hw_params.fat_channel = BIT(IEEE80211_BAND_5GHZ); priv->hw_params.rx_wrt_ptr_reg = FH_RSCSR_CHNL0_WPTR; priv->hw_params.tx_chains_num = 2; priv->hw_params.rx_chains_num = 2; priv->hw_params.valid_tx_ant = ANT_A | ANT_B; priv->hw_params.valid_rx_ant = ANT_A | ANT_B; if (priv->cfg->ops->lib->temp_ops.set_ct_kill) priv->cfg->ops->lib->temp_ops.set_ct_kill(priv); priv->hw_params.sens = &iwl4965_sensitivity; return 0; } static s32 iwl4965_math_div_round(s32 num, s32 denom, s32 *res) { s32 sign = 1; if (num < 0) { sign = -sign; num = -num; } if (denom < 0) { sign = -sign; denom = -denom; } *res = 1; *res = ((num * 2 + denom) / (denom * 2)) * sign; return 1; } /** * iwl4965_get_voltage_compensation - Power supply voltage comp for txpower * * Determines power supply voltage compensation for txpower calculations. * Returns number of 1/2-dB steps to subtract from gain table index, * to compensate for difference between power supply voltage during * factory measurements, vs. current power supply voltage. * * Voltage indication is higher for lower voltage. * Lower voltage requires more gain (lower gain table index). */ static s32 iwl4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage) { s32 comp = 0; if ((TX_POWER_IWL_ILLEGAL_VOLTAGE == eeprom_voltage) || (TX_POWER_IWL_ILLEGAL_VOLTAGE == current_voltage)) return 0; iwl4965_math_div_round(current_voltage - eeprom_voltage, TX_POWER_IWL_VOLTAGE_CODES_PER_03V, &comp); if (current_voltage > eeprom_voltage) comp *= 2; if ((comp < -2) || (comp > 2)) comp = 0; return comp; } static s32 iwl4965_get_tx_atten_grp(u16 channel) { if (channel >= CALIB_IWL_TX_ATTEN_GR5_FCH && channel <= CALIB_IWL_TX_ATTEN_GR5_LCH) return CALIB_CH_GROUP_5; if (channel >= CALIB_IWL_TX_ATTEN_GR1_FCH && channel <= CALIB_IWL_TX_ATTEN_GR1_LCH) return CALIB_CH_GROUP_1; if (channel >= CALIB_IWL_TX_ATTEN_GR2_FCH && channel <= CALIB_IWL_TX_ATTEN_GR2_LCH) return CALIB_CH_GROUP_2; if (channel >= CALIB_IWL_TX_ATTEN_GR3_FCH && channel <= CALIB_IWL_TX_ATTEN_GR3_LCH) return CALIB_CH_GROUP_3; if (channel >= CALIB_IWL_TX_ATTEN_GR4_FCH && channel <= CALIB_IWL_TX_ATTEN_GR4_LCH) return CALIB_CH_GROUP_4; return -1; } static u32 iwl4965_get_sub_band(const struct iwl_priv *priv, u32 channel) { s32 b = -1; for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) { if (priv->calib_info->band_info[b].ch_from == 0) continue; if ((channel >= priv->calib_info->band_info[b].ch_from) && (channel <= priv->calib_info->band_info[b].ch_to)) break; } return b; } static s32 iwl4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2) { s32 val; if (x2 == x1) return y1; else { iwl4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val); return val + y2; } } /** * iwl4965_interpolate_chan - Interpolate factory measurements for one channel * * Interpolates factory measurements from the two sample channels within a * sub-band, to apply to channel of interest. Interpolation is proportional to * differences in channel frequencies, which is proportional to differences * in channel number. */ static int iwl4965_interpolate_chan(struct iwl_priv *priv, u32 channel, struct iwl_eeprom_calib_ch_info *chan_info) { s32 s = -1; u32 c; u32 m; const struct iwl_eeprom_calib_measure *m1; const struct iwl_eeprom_calib_measure *m2; struct iwl_eeprom_calib_measure *omeas; u32 ch_i1; u32 ch_i2; s = iwl4965_get_sub_band(priv, channel); if (s >= EEPROM_TX_POWER_BANDS) { IWL_ERR(priv, "Tx Power can not find channel %d\n", channel); return -1; } ch_i1 = priv->calib_info->band_info[s].ch1.ch_num; ch_i2 = priv->calib_info->band_info[s].ch2.ch_num; chan_info->ch_num = (u8) channel; IWL_DEBUG_TXPOWER(priv, "channel %d subband %d factory cal ch %d & %d\n", channel, s, ch_i1, ch_i2); for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) { for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) { m1 = &(priv->calib_info->band_info[s].ch1. measurements[c][m]); m2 = &(priv->calib_info->band_info[s].ch2. measurements[c][m]); omeas = &(chan_info->measurements[c][m]); omeas->actual_pow = (u8) iwl4965_interpolate_value(channel, ch_i1, m1->actual_pow, ch_i2, m2->actual_pow); omeas->gain_idx = (u8) iwl4965_interpolate_value(channel, ch_i1, m1->gain_idx, ch_i2, m2->gain_idx); omeas->temperature = (u8) iwl4965_interpolate_value(channel, ch_i1, m1->temperature, ch_i2, m2->temperature); omeas->pa_det = (s8) iwl4965_interpolate_value(channel, ch_i1, m1->pa_det, ch_i2, m2->pa_det); IWL_DEBUG_TXPOWER(priv, "chain %d meas %d AP1=%d AP2=%d AP=%d\n", c, m, m1->actual_pow, m2->actual_pow, omeas->actual_pow); IWL_DEBUG_TXPOWER(priv, "chain %d meas %d NI1=%d NI2=%d NI=%d\n", c, m, m1->gain_idx, m2->gain_idx, omeas->gain_idx); IWL_DEBUG_TXPOWER(priv, "chain %d meas %d PA1=%d PA2=%d PA=%d\n", c, m, m1->pa_det, m2->pa_det, omeas->pa_det); IWL_DEBUG_TXPOWER(priv, "chain %d meas %d T1=%d T2=%d T=%d\n", c, m, m1->temperature, m2->temperature, omeas->temperature); } } return 0; } /* bit-rate-dependent table to prevent Tx distortion, in half-dB units, * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */ static s32 back_off_table[] = { 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */ 10 /* CCK */ }; /* Thermal compensation values for txpower for various frequency ranges ... * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */ static struct iwl4965_txpower_comp_entry { s32 degrees_per_05db_a; s32 degrees_per_05db_a_denom; } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = { {9, 2}, /* group 0 5.2, ch 34-43 */ {4, 1}, /* group 1 5.2, ch 44-70 */ {4, 1}, /* group 2 5.2, ch 71-124 */ {4, 1}, /* group 3 5.2, ch 125-200 */ {3, 1} /* group 4 2.4, ch all */ }; static s32 get_min_power_index(s32 rate_power_index, u32 band) { if (!band) { if ((rate_power_index & 7) <= 4) return MIN_TX_GAIN_INDEX_52GHZ_EXT; } return MIN_TX_GAIN_INDEX; } struct gain_entry { u8 dsp; u8 radio; }; static const struct gain_entry gain_table[2][108] = { /* 5.2GHz power gain index table */ { {123, 0x3F}, /* highest txpower */ {117, 0x3F}, {110, 0x3F}, {104, 0x3F}, {98, 0x3F}, {110, 0x3E}, {104, 0x3E}, {98, 0x3E}, {110, 0x3D}, {104, 0x3D}, {98, 0x3D}, {110, 0x3C}, {104, 0x3C}, {98, 0x3C}, {110, 0x3B}, {104, 0x3B}, {98, 0x3B}, {110, 0x3A}, {104, 0x3A}, {98, 0x3A}, {110, 0x39}, {104, 0x39}, {98, 0x39}, {110, 0x38}, {104, 0x38}, {98, 0x38}, {110, 0x37}, {104, 0x37}, {98, 0x37}, {110, 0x36}, {104, 0x36}, {98, 0x36}, {110, 0x35}, {104, 0x35}, {98, 0x35}, {110, 0x34}, {104, 0x34}, {98, 0x34}, {110, 0x33}, {104, 0x33}, {98, 0x33}, {110, 0x32}, {104, 0x32}, {98, 0x32}, {110, 0x31}, {104, 0x31}, {98, 0x31}, {110, 0x30}, {104, 0x30}, {98, 0x30}, {110, 0x25}, {104, 0x25}, {98, 0x25}, {110, 0x24}, {104, 0x24}, {98, 0x24}, {110, 0x23}, {104, 0x23}, {98, 0x23}, {110, 0x22}, {104, 0x18}, {98, 0x18}, {110, 0x17}, {104, 0x17}, {98, 0x17}, {110, 0x16}, {104, 0x16}, {98, 0x16}, {110, 0x15}, {104, 0x15}, {98, 0x15}, {110, 0x14}, {104, 0x14}, {98, 0x14}, {110, 0x13}, {104, 0x13}, {98, 0x13}, {110, 0x12}, {104, 0x08}, {98, 0x08}, {110, 0x07}, {104, 0x07}, {98, 0x07}, {110, 0x06}, {104, 0x06}, {98, 0x06}, {110, 0x05}, {104, 0x05}, {98, 0x05}, {110, 0x04}, {104, 0x04}, {98, 0x04}, {110, 0x03}, {104, 0x03}, {98, 0x03}, {110, 0x02}, {104, 0x02}, {98, 0x02}, {110, 0x01}, {104, 0x01}, {98, 0x01}, {110, 0x00}, {104, 0x00}, {98, 0x00}, {93, 0x00}, {88, 0x00}, {83, 0x00}, {78, 0x00}, }, /* 2.4GHz power gain index table */ { {110, 0x3f}, /* highest txpower */ {104, 0x3f}, {98, 0x3f}, {110, 0x3e}, {104, 0x3e}, {98, 0x3e}, {110, 0x3d}, {104, 0x3d}, {98, 0x3d}, {110, 0x3c}, {104, 0x3c}, {98, 0x3c}, {110, 0x3b}, {104, 0x3b}, {98, 0x3b}, {110, 0x3a}, {104, 0x3a}, {98, 0x3a}, {110, 0x39}, {104, 0x39}, {98, 0x39}, {110, 0x38}, {104, 0x38}, {98, 0x38}, {110, 0x37}, {104, 0x37}, {98, 0x37}, {110, 0x36}, {104, 0x36}, {98, 0x36}, {110, 0x35}, {104, 0x35}, {98, 0x35}, {110, 0x34}, {104, 0x34}, {98, 0x34}, {110, 0x33}, {104, 0x33}, {98, 0x33}, {110, 0x32}, {104, 0x32}, {98, 0x32}, {110, 0x31}, {104, 0x31}, {98, 0x31}, {110, 0x30}, {104, 0x30}, {98, 0x30}, {110, 0x6}, {104, 0x6}, {98, 0x6}, {110, 0x5}, {104, 0x5}, {98, 0x5}, {110, 0x4}, {104, 0x4}, {98, 0x4}, {110, 0x3}, {104, 0x3}, {98, 0x3}, {110, 0x2}, {104, 0x2}, {98, 0x2}, {110, 0x1}, {104, 0x1}, {98, 0x1}, {110, 0x0}, {104, 0x0}, {98, 0x0}, {97, 0}, {96, 0}, {95, 0}, {94, 0}, {93, 0}, {92, 0}, {91, 0}, {90, 0}, {89, 0}, {88, 0}, {87, 0}, {86, 0}, {85, 0}, {84, 0}, {83, 0}, {82, 0}, {81, 0}, {80, 0}, {79, 0}, {78, 0}, {77, 0}, {76, 0}, {75, 0}, {74, 0}, {73, 0}, {72, 0}, {71, 0}, {70, 0}, {69, 0}, {68, 0}, {67, 0}, {66, 0}, {65, 0}, {64, 0}, {63, 0}, {62, 0}, {61, 0}, {60, 0}, {59, 0}, } }; static int iwl4965_fill_txpower_tbl(struct iwl_priv *priv, u8 band, u16 channel, u8 is_fat, u8 ctrl_chan_high, struct iwl4965_tx_power_db *tx_power_tbl) { u8 saturation_power; s32 target_power; s32 user_target_power; s32 power_limit; s32 current_temp; s32 reg_limit; s32 current_regulatory; s32 txatten_grp = CALIB_CH_GROUP_MAX; int i; int c; const struct iwl_channel_info *ch_info = NULL; struct iwl_eeprom_calib_ch_info ch_eeprom_info; const struct iwl_eeprom_calib_measure *measurement; s16 voltage; s32 init_voltage; s32 voltage_compensation; s32 degrees_per_05db_num; s32 degrees_per_05db_denom; s32 factory_temp; s32 temperature_comp[2]; s32 factory_gain_index[2]; s32 factory_actual_pwr[2]; s32 power_index; /* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units * are used for indexing into txpower table) */ user_target_power = 2 * priv->tx_power_user_lmt; /* Get current (RXON) channel, band, width */ IWL_DEBUG_TXPOWER(priv, "chan %d band %d is_fat %d\n", channel, band, is_fat); ch_info = iwl_get_channel_info(priv, priv->band, channel); if (!is_channel_valid(ch_info)) return -EINVAL; /* get txatten group, used to select 1) thermal txpower adjustment * and 2) mimo txpower balance between Tx chains. */ txatten_grp = iwl4965_get_tx_atten_grp(channel); if (txatten_grp < 0) { IWL_ERR(priv, "Can't find txatten group for channel %d.\n", channel); return -EINVAL; } IWL_DEBUG_TXPOWER(priv, "channel %d belongs to txatten group %d\n", channel, txatten_grp); if (is_fat) { if (ctrl_chan_high) channel -= 2; else channel += 2; } /* hardware txpower limits ... * saturation (clipping distortion) txpowers are in half-dBm */ if (band) saturation_power = priv->calib_info->saturation_power24; else saturation_power = priv->calib_info->saturation_power52; if (saturation_power < IWL_TX_POWER_SATURATION_MIN || saturation_power > IWL_TX_POWER_SATURATION_MAX) { if (band) saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_24; else saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_52; } /* regulatory txpower limits ... reg_limit values are in half-dBm, * max_power_avg values are in dBm, convert * 2 */ if (is_fat) reg_limit = ch_info->fat_max_power_avg * 2; else reg_limit = ch_info->max_power_avg * 2; if ((reg_limit < IWL_TX_POWER_REGULATORY_MIN) || (reg_limit > IWL_TX_POWER_REGULATORY_MAX)) { if (band) reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_24; else reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_52; } /* Interpolate txpower calibration values for this channel, * based on factory calibration tests on spaced channels. */ iwl4965_interpolate_chan(priv, channel, &ch_eeprom_info); /* calculate tx gain adjustment based on power supply voltage */ voltage = priv->calib_info->voltage; init_voltage = (s32)le32_to_cpu(priv->card_alive_init.voltage); voltage_compensation = iwl4965_get_voltage_compensation(voltage, init_voltage); IWL_DEBUG_TXPOWER(priv, "curr volt %d eeprom volt %d volt comp %d\n", init_voltage, voltage, voltage_compensation); /* get current temperature (Celsius) */ current_temp = max(priv->temperature, IWL_TX_POWER_TEMPERATURE_MIN); current_temp = min(priv->temperature, IWL_TX_POWER_TEMPERATURE_MAX); current_temp = KELVIN_TO_CELSIUS(current_temp); /* select thermal txpower adjustment params, based on channel group * (same frequency group used for mimo txatten adjustment) */ degrees_per_05db_num = tx_power_cmp_tble[txatten_grp].degrees_per_05db_a; degrees_per_05db_denom = tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom; /* get per-chain txpower values from factory measurements */ for (c = 0; c < 2; c++) { measurement = &ch_eeprom_info.measurements[c][1]; /* txgain adjustment (in half-dB steps) based on difference * between factory and current temperature */ factory_temp = measurement->temperature; iwl4965_math_div_round((current_temp - factory_temp) * degrees_per_05db_denom, degrees_per_05db_num, &temperature_comp[c]); factory_gain_index[c] = measurement->gain_idx; factory_actual_pwr[c] = measurement->actual_pow; IWL_DEBUG_TXPOWER(priv, "chain = %d\n", c); IWL_DEBUG_TXPOWER(priv, "fctry tmp %d, " "curr tmp %d, comp %d steps\n", factory_temp, current_temp, temperature_comp[c]); IWL_DEBUG_TXPOWER(priv, "fctry idx %d, fctry pwr %d\n", factory_gain_index[c], factory_actual_pwr[c]); } /* for each of 33 bit-rates (including 1 for CCK) */ for (i = 0; i < POWER_TABLE_NUM_ENTRIES; i++) { u8 is_mimo_rate; union iwl4965_tx_power_dual_stream tx_power; /* for mimo, reduce each chain's txpower by half * (3dB, 6 steps), so total output power is regulatory * compliant. */ if (i & 0x8) { current_regulatory = reg_limit - IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION; is_mimo_rate = 1; } else { current_regulatory = reg_limit; is_mimo_rate = 0; } /* find txpower limit, either hardware or regulatory */ power_limit = saturation_power - back_off_table[i]; if (power_limit > current_regulatory) power_limit = current_regulatory; /* reduce user's txpower request if necessary * for this rate on this channel */ target_power = user_target_power; if (target_power > power_limit) target_power = power_limit; IWL_DEBUG_TXPOWER(priv, "rate %d sat %d reg %d usr %d tgt %d\n", i, saturation_power - back_off_table[i], current_regulatory, user_target_power, target_power); /* for each of 2 Tx chains (radio transmitters) */ for (c = 0; c < 2; c++) { s32 atten_value; if (is_mimo_rate) atten_value = (s32)le32_to_cpu(priv->card_alive_init. tx_atten[txatten_grp][c]); else atten_value = 0; /* calculate index; higher index means lower txpower */ power_index = (u8) (factory_gain_index[c] - (target_power - factory_actual_pwr[c]) - temperature_comp[c] - voltage_compensation + atten_value); /* IWL_DEBUG_TXPOWER(priv, "calculated txpower index %d\n", power_index); */ if (power_index < get_min_power_index(i, band)) power_index = get_min_power_index(i, band); /* adjust 5 GHz index to support negative indexes */ if (!band) power_index += 9; /* CCK, rate 32, reduce txpower for CCK */ if (i == POWER_TABLE_CCK_ENTRY) power_index += IWL_TX_POWER_CCK_COMPENSATION_C_STEP; /* stay within the table! */ if (power_index > 107) { IWL_WARN(priv, "txpower index %d > 107\n", power_index); power_index = 107; } if (power_index < 0) { IWL_WARN(priv, "txpower index %d < 0\n", power_index); power_index = 0; } /* fill txpower command for this rate/chain */ tx_power.s.radio_tx_gain[c] = gain_table[band][power_index].radio; tx_power.s.dsp_predis_atten[c] = gain_table[band][power_index].dsp; IWL_DEBUG_TXPOWER(priv, "chain %d mimo %d index %d " "gain 0x%02x dsp %d\n", c, atten_value, power_index, tx_power.s.radio_tx_gain[c], tx_power.s.dsp_predis_atten[c]); } /* for each chain */ tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw); } /* for each rate */ return 0; } /** * iwl4965_send_tx_power - Configure the TXPOWER level user limit * * Uses the active RXON for channel, band, and characteristics (fat, high) * The power limit is taken from priv->tx_power_user_lmt. */ static int iwl4965_send_tx_power(struct iwl_priv *priv) { struct iwl4965_txpowertable_cmd cmd = { 0 }; int ret; u8 band = 0; bool is_fat = false; u8 ctrl_chan_high = 0; if (test_bit(STATUS_SCANNING, &priv->status)) { /* If this gets hit a lot, switch it to a BUG() and catch * the stack trace to find out who is calling this during * a scan. */ IWL_WARN(priv, "TX Power requested while scanning!\n"); return -EAGAIN; } band = priv->band == IEEE80211_BAND_2GHZ; is_fat = is_fat_channel(priv->active_rxon.flags); if (is_fat && (priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK)) ctrl_chan_high = 1; cmd.band = band; cmd.channel = priv->active_rxon.channel; ret = iwl4965_fill_txpower_tbl(priv, band, le16_to_cpu(priv->active_rxon.channel), is_fat, ctrl_chan_high, &cmd.tx_power); if (ret) goto out; ret = iwl_send_cmd_pdu(priv, REPLY_TX_PWR_TABLE_CMD, sizeof(cmd), &cmd); out: return ret; } static int iwl4965_send_rxon_assoc(struct iwl_priv *priv) { int ret = 0; struct iwl4965_rxon_assoc_cmd rxon_assoc; const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon; const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon; if ((rxon1->flags == rxon2->flags) && (rxon1->filter_flags == rxon2->filter_flags) && (rxon1->cck_basic_rates == rxon2->cck_basic_rates) && (rxon1->ofdm_ht_single_stream_basic_rates == rxon2->ofdm_ht_single_stream_basic_rates) && (rxon1->ofdm_ht_dual_stream_basic_rates == rxon2->ofdm_ht_dual_stream_basic_rates) && (rxon1->rx_chain == rxon2->rx_chain) && (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) { IWL_DEBUG_INFO(priv, "Using current RXON_ASSOC. Not resending.\n"); return 0; } rxon_assoc.flags = priv->staging_rxon.flags; rxon_assoc.filter_flags = priv->staging_rxon.filter_flags; rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates; rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates; rxon_assoc.reserved = 0; rxon_assoc.ofdm_ht_single_stream_basic_rates = priv->staging_rxon.ofdm_ht_single_stream_basic_rates; rxon_assoc.ofdm_ht_dual_stream_basic_rates = priv->staging_rxon.ofdm_ht_dual_stream_basic_rates; rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain; ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC, sizeof(rxon_assoc), &rxon_assoc, NULL); if (ret) return ret; return ret; } #ifdef IEEE80211_CONF_CHANNEL_SWITCH static int iwl4965_hw_channel_switch(struct iwl_priv *priv, u16 channel) { int rc; u8 band = 0; bool is_fat = false; u8 ctrl_chan_high = 0; struct iwl4965_channel_switch_cmd cmd = { 0 }; const struct iwl_channel_info *ch_info; band = priv->band == IEEE80211_BAND_2GHZ; ch_info = iwl_get_channel_info(priv, priv->band, channel); is_fat = is_fat_channel(priv->staging_rxon.flags); if (is_fat && (priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK)) ctrl_chan_high = 1; cmd.band = band; cmd.expect_beacon = 0; cmd.channel = cpu_to_le16(channel); cmd.rxon_flags = priv->active_rxon.flags; cmd.rxon_filter_flags = priv->active_rxon.filter_flags; cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time); if (ch_info) cmd.expect_beacon = is_channel_radar(ch_info); else cmd.expect_beacon = 1; rc = iwl4965_fill_txpower_tbl(priv, band, channel, is_fat, ctrl_chan_high, &cmd.tx_power); if (rc) { IWL_DEBUG_11H(priv, "error:%d fill txpower_tbl\n", rc); return rc; } rc = iwl_send_cmd_pdu(priv, REPLY_CHANNEL_SWITCH, sizeof(cmd), &cmd); return rc; } #endif /** * iwl4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array */ static void iwl4965_txq_update_byte_cnt_tbl(struct iwl_priv *priv, struct iwl_tx_queue *txq, u16 byte_cnt) { struct iwl4965_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr; int txq_id = txq->q.id; int write_ptr = txq->q.write_ptr; int len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; __le16 bc_ent; WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX); bc_ent = cpu_to_le16(len & 0xFFF); /* Set up byte count within first 256 entries */ scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; /* If within first 64 entries, duplicate at end */ if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id]. tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; } /** * sign_extend - Sign extend a value using specified bit as sign-bit * * Example: sign_extend(9, 3) would return -7 as bit3 of 1001b is 1 * and bit0..2 is 001b which when sign extended to 1111111111111001b is -7. * * @param oper value to sign extend * @param index 0 based bit index (0<=index<32) to sign bit */ static s32 sign_extend(u32 oper, int index) { u8 shift = 31 - index; return (s32)(oper << shift) >> shift; } /** * iwl4965_hw_get_temperature - return the calibrated temperature (in Kelvin) * @statistics: Provides the temperature reading from the uCode * * A return of <0 indicates bogus data in the statistics */ static int iwl4965_hw_get_temperature(const struct iwl_priv *priv) { s32 temperature; s32 vt; s32 R1, R2, R3; u32 R4; if (test_bit(STATUS_TEMPERATURE, &priv->status) && (priv->statistics.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK)) { IWL_DEBUG_TEMP(priv, "Running FAT temperature calibration\n"); R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[1]); R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[1]); R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[1]); R4 = le32_to_cpu(priv->card_alive_init.therm_r4[1]); } else { IWL_DEBUG_TEMP(priv, "Running temperature calibration\n"); R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[0]); R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[0]); R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[0]); R4 = le32_to_cpu(priv->card_alive_init.therm_r4[0]); } /* * Temperature is only 23 bits, so sign extend out to 32. * * NOTE If we haven't received a statistics notification yet * with an updated temperature, use R4 provided to us in the * "initialize" ALIVE response. */ if (!test_bit(STATUS_TEMPERATURE, &priv->status)) vt = sign_extend(R4, 23); else vt = sign_extend( le32_to_cpu(priv->statistics.general.temperature), 23); IWL_DEBUG_TEMP(priv, "Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt); if (R3 == R1) { IWL_ERR(priv, "Calibration conflict R1 == R3\n"); return -1; } /* Calculate temperature in degrees Kelvin, adjust by 97%. * Add offset to center the adjustment around 0 degrees Centigrade. */ temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2); temperature /= (R3 - R1); temperature = (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET; IWL_DEBUG_TEMP(priv, "Calibrated temperature: %dK, %dC\n", temperature, KELVIN_TO_CELSIUS(temperature)); return temperature; } /* Adjust Txpower only if temperature variance is greater than threshold. */ #define IWL_TEMPERATURE_THRESHOLD 3 /** * iwl4965_is_temp_calib_needed - determines if new calibration is needed * * If the temperature changed has changed sufficiently, then a recalibration * is needed. * * Assumes caller will replace priv->last_temperature once calibration * executed. */ static int iwl4965_is_temp_calib_needed(struct iwl_priv *priv) { int temp_diff; if (!test_bit(STATUS_STATISTICS, &priv->status)) { IWL_DEBUG_TEMP(priv, "Temperature not updated -- no statistics.\n"); return 0; } temp_diff = priv->temperature - priv->last_temperature; /* get absolute value */ if (temp_diff < 0) { IWL_DEBUG_POWER(priv, "Getting cooler, delta %d, \n", temp_diff); temp_diff = -temp_diff; } else if (temp_diff == 0) IWL_DEBUG_POWER(priv, "Same temp, \n"); else IWL_DEBUG_POWER(priv, "Getting warmer, delta %d, \n", temp_diff); if (temp_diff < IWL_TEMPERATURE_THRESHOLD) { IWL_DEBUG_POWER(priv, "Thermal txpower calib not needed\n"); return 0; } IWL_DEBUG_POWER(priv, "Thermal txpower calib needed\n"); return 1; } static void iwl4965_temperature_calib(struct iwl_priv *priv) { s32 temp; temp = iwl4965_hw_get_temperature(priv); if (temp < 0) return; if (priv->temperature != temp) { if (priv->temperature) IWL_DEBUG_TEMP(priv, "Temperature changed " "from %dC to %dC\n", KELVIN_TO_CELSIUS(priv->temperature), KELVIN_TO_CELSIUS(temp)); else IWL_DEBUG_TEMP(priv, "Temperature " "initialized to %dC\n", KELVIN_TO_CELSIUS(temp)); } priv->temperature = temp; set_bit(STATUS_TEMPERATURE, &priv->status); if (!priv->disable_tx_power_cal && unlikely(!test_bit(STATUS_SCANNING, &priv->status)) && iwl4965_is_temp_calib_needed(priv)) queue_work(priv->workqueue, &priv->txpower_work); } /** * iwl4965_tx_queue_stop_scheduler - Stop queue, but keep configuration */ static void iwl4965_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id) { /* Simply stop the queue, but don't change any configuration; * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */ iwl_write_prph(priv, IWL49_SCD_QUEUE_STATUS_BITS(txq_id), (0 << IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE)| (1 << IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); } /** * txq_id must be greater than IWL49_FIRST_AMPDU_QUEUE * priv->lock must be held by the caller */ static int iwl4965_txq_agg_disable(struct iwl_priv *priv, u16 txq_id, u16 ssn_idx, u8 tx_fifo) { if ((IWL49_FIRST_AMPDU_QUEUE > txq_id) || (IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES <= txq_id)) { IWL_WARN(priv, "queue number out of range: %d, must be %d to %d\n", txq_id, IWL49_FIRST_AMPDU_QUEUE, IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES - 1); return -EINVAL; } iwl4965_tx_queue_stop_scheduler(priv, txq_id); iwl_clear_bits_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, (1 << txq_id)); priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff); priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff); /* supposes that ssn_idx is valid (!= 0xFFF) */ iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx); iwl_clear_bits_prph(priv, IWL49_SCD_INTERRUPT_MASK, (1 << txq_id)); iwl_txq_ctx_deactivate(priv, txq_id); iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0); return 0; } /** * iwl4965_tx_queue_set_q2ratid - Map unique receiver/tid combination to a queue */ static int iwl4965_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid, u16 txq_id) { u32 tbl_dw_addr; u32 tbl_dw; u16 scd_q2ratid; scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK; tbl_dw_addr = priv->scd_base_addr + IWL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id); tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr); if (txq_id & 0x1) tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF); else tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000); iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw); return 0; } /** * iwl4965_tx_queue_agg_enable - Set up & enable aggregation for selected queue * * NOTE: txq_id must be greater than IWL49_FIRST_AMPDU_QUEUE, * i.e. it must be one of the higher queues used for aggregation */ static int iwl4965_txq_agg_enable(struct iwl_priv *priv, int txq_id, int tx_fifo, int sta_id, int tid, u16 ssn_idx) { unsigned long flags; u16 ra_tid; if ((IWL49_FIRST_AMPDU_QUEUE > txq_id) || (IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES <= txq_id)) { IWL_WARN(priv, "queue number out of range: %d, must be %d to %d\n", txq_id, IWL49_FIRST_AMPDU_QUEUE, IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES - 1); return -EINVAL; } ra_tid = BUILD_RAxTID(sta_id, tid); /* Modify device's station table to Tx this TID */ iwl_sta_tx_modify_enable_tid(priv, sta_id, tid); spin_lock_irqsave(&priv->lock, flags); /* Stop this Tx queue before configuring it */ iwl4965_tx_queue_stop_scheduler(priv, txq_id); /* Map receiver-address / traffic-ID to this queue */ iwl4965_tx_queue_set_q2ratid(priv, ra_tid, txq_id); /* Set this queue as a chain-building queue */ iwl_set_bits_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, (1 << txq_id)); /* Place first TFD at index corresponding to start sequence number. * Assumes that ssn_idx is valid (!= 0xFFF) */ priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff); priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff); iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx); /* Set up Tx window size and frame limit for this queue */ iwl_write_targ_mem(priv, priv->scd_base_addr + IWL49_SCD_CONTEXT_QUEUE_OFFSET(txq_id), (SCD_WIN_SIZE << IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) & IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK); iwl_write_targ_mem(priv, priv->scd_base_addr + IWL49_SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32), (SCD_FRAME_LIMIT << IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK); iwl_set_bits_prph(priv, IWL49_SCD_INTERRUPT_MASK, (1 << txq_id)); /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */ iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static u16 iwl4965_get_hcmd_size(u8 cmd_id, u16 len) { switch (cmd_id) { case REPLY_RXON: return (u16) sizeof(struct iwl4965_rxon_cmd); default: return len; } } static u16 iwl4965_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data) { struct iwl4965_addsta_cmd *addsta = (struct iwl4965_addsta_cmd *)data; addsta->mode = cmd->mode; memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify)); memcpy(&addsta->key, &cmd->key, sizeof(struct iwl4965_keyinfo)); addsta->station_flags = cmd->station_flags; addsta->station_flags_msk = cmd->station_flags_msk; addsta->tid_disable_tx = cmd->tid_disable_tx; addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid; addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid; addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn; addsta->reserved1 = cpu_to_le16(0); addsta->reserved2 = cpu_to_le32(0); return (u16)sizeof(struct iwl4965_addsta_cmd); } static inline u32 iwl4965_get_scd_ssn(struct iwl4965_tx_resp *tx_resp) { return le32_to_cpup(&tx_resp->u.status + tx_resp->frame_count) & MAX_SN; } /** * iwl4965_tx_status_reply_tx - Handle Tx response for frames in aggregation queue */ static int iwl4965_tx_status_reply_tx(struct iwl_priv *priv, struct iwl_ht_agg *agg, struct iwl4965_tx_resp *tx_resp, int txq_id, u16 start_idx) { u16 status; struct agg_tx_status *frame_status = tx_resp->u.agg_status; struct ieee80211_tx_info *info = NULL; struct ieee80211_hdr *hdr = NULL; u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags); int i, sh, idx; u16 seq; if (agg->wait_for_ba) IWL_DEBUG_TX_REPLY(priv, "got tx response w/o block-ack\n"); agg->frame_count = tx_resp->frame_count; agg->start_idx = start_idx; agg->rate_n_flags = rate_n_flags; agg->bitmap = 0; /* num frames attempted by Tx command */ if (agg->frame_count == 1) { /* Only one frame was attempted; no block-ack will arrive */ status = le16_to_cpu(frame_status[0].status); idx = start_idx; /* FIXME: code repetition */ IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, StartIdx=%d idx=%d\n", agg->frame_count, agg->start_idx, idx); info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]); info->status.rates[0].count = tx_resp->failure_frame + 1; info->flags &= ~IEEE80211_TX_CTL_AMPDU; info->flags |= iwl_is_tx_success(status) ? IEEE80211_TX_STAT_ACK : 0; iwl_hwrate_to_tx_control(priv, rate_n_flags, info); /* FIXME: code repetition end */ IWL_DEBUG_TX_REPLY(priv, "1 Frame 0x%x failure :%d\n", status & 0xff, tx_resp->failure_frame); IWL_DEBUG_TX_REPLY(priv, "Rate Info rate_n_flags=%x\n", rate_n_flags); agg->wait_for_ba = 0; } else { /* Two or more frames were attempted; expect block-ack */ u64 bitmap = 0; int start = agg->start_idx; /* Construct bit-map of pending frames within Tx window */ for (i = 0; i < agg->frame_count; i++) { u16 sc; status = le16_to_cpu(frame_status[i].status); seq = le16_to_cpu(frame_status[i].sequence); idx = SEQ_TO_INDEX(seq); txq_id = SEQ_TO_QUEUE(seq); if (status & (AGG_TX_STATE_FEW_BYTES_MSK | AGG_TX_STATE_ABORT_MSK)) continue; IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, txq_id=%d idx=%d\n", agg->frame_count, txq_id, idx); hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx); sc = le16_to_cpu(hdr->seq_ctrl); if (idx != (SEQ_TO_SN(sc) & 0xff)) { IWL_ERR(priv, "BUG_ON idx doesn't match seq control" " idx=%d, seq_idx=%d, seq=%d\n", idx, SEQ_TO_SN(sc), hdr->seq_ctrl); return -1; } IWL_DEBUG_TX_REPLY(priv, "AGG Frame i=%d idx %d seq=%d\n", i, idx, SEQ_TO_SN(sc)); sh = idx - start; if (sh > 64) { sh = (start - idx) + 0xff; bitmap = bitmap << sh; sh = 0; start = idx; } else if (sh < -64) sh = 0xff - (start - idx); else if (sh < 0) { sh = start - idx; start = idx; bitmap = bitmap << sh; sh = 0; } bitmap |= 1ULL << sh; IWL_DEBUG_TX_REPLY(priv, "start=%d bitmap=0x%llx\n", start, (unsigned long long)bitmap); } agg->bitmap = bitmap; agg->start_idx = start; IWL_DEBUG_TX_REPLY(priv, "Frames %d start_idx=%d bitmap=0x%llx\n", agg->frame_count, agg->start_idx, (unsigned long long)agg->bitmap); if (bitmap) agg->wait_for_ba = 1; } return 0; } /** * iwl4965_rx_reply_tx - Handle standard (non-aggregation) Tx response */ static void iwl4965_rx_reply_tx(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data; u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int index = SEQ_TO_INDEX(sequence); struct iwl_tx_queue *txq = &priv->txq[txq_id]; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info; struct iwl4965_tx_resp *tx_resp = (void *)&pkt->u.raw[0]; u32 status = le32_to_cpu(tx_resp->u.status); int tid = MAX_TID_COUNT; int sta_id; int freed; u8 *qc = NULL; if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) { IWL_ERR(priv, "Read index for DMA queue txq_id (%d) index %d " "is out of range [0-%d] %d %d\n", txq_id, index, txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr); return; } info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]); memset(&info->status, 0, sizeof(info->status)); hdr = iwl_tx_queue_get_hdr(priv, txq_id, index); if (ieee80211_is_data_qos(hdr->frame_control)) { qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } sta_id = iwl_get_ra_sta_id(priv, hdr); if (txq->sched_retry && unlikely(sta_id == IWL_INVALID_STATION)) { IWL_ERR(priv, "Station not known\n"); return; } if (txq->sched_retry) { const u32 scd_ssn = iwl4965_get_scd_ssn(tx_resp); struct iwl_ht_agg *agg = NULL; WARN_ON(!qc); agg = &priv->stations[sta_id].tid[tid].agg; iwl4965_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index); /* check if BAR is needed */ if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status)) info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; if (txq->q.read_ptr != (scd_ssn & 0xff)) { index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd); IWL_DEBUG_TX_REPLY(priv, "Retry scheduler reclaim scd_ssn " "%d index %d\n", scd_ssn , index); freed = iwl_tx_queue_reclaim(priv, txq_id, index); priv->stations[sta_id].tid[tid].tfds_in_queue -= freed; if (priv->mac80211_registered && (iwl_queue_space(&txq->q) > txq->q.low_mark) && (agg->state != IWL_EMPTYING_HW_QUEUE_DELBA)) { if (agg->state == IWL_AGG_OFF) iwl_wake_queue(priv, txq_id); else iwl_wake_queue(priv, txq->swq_id); } } } else { info->status.rates[0].count = tx_resp->failure_frame + 1; info->flags |= iwl_is_tx_success(status) ? IEEE80211_TX_STAT_ACK : 0; iwl_hwrate_to_tx_control(priv, le32_to_cpu(tx_resp->rate_n_flags), info); IWL_DEBUG_TX_REPLY(priv, "TXQ %d status %s (0x%08x) " "rate_n_flags 0x%x retries %d\n", txq_id, iwl_get_tx_fail_reason(status), status, le32_to_cpu(tx_resp->rate_n_flags), tx_resp->failure_frame); freed = iwl_tx_queue_reclaim(priv, txq_id, index); if (qc && likely(sta_id != IWL_INVALID_STATION)) priv->stations[sta_id].tid[tid].tfds_in_queue -= freed; if (priv->mac80211_registered && (iwl_queue_space(&txq->q) > txq->q.low_mark)) iwl_wake_queue(priv, txq_id); } if (qc && likely(sta_id != IWL_INVALID_STATION)) iwl_txq_check_empty(priv, sta_id, tid, txq_id); if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK)) IWL_ERR(priv, "TODO: Implement Tx ABORT REQUIRED!!!\n"); } static int iwl4965_calc_rssi(struct iwl_priv *priv, struct iwl_rx_phy_res *rx_resp) { /* data from PHY/DSP regarding signal strength, etc., * contents are always there, not configurable by host. */ struct iwl4965_rx_non_cfg_phy *ncphy = (struct iwl4965_rx_non_cfg_phy *)rx_resp->non_cfg_phy_buf; u32 agc = (le16_to_cpu(ncphy->agc_info) & IWL49_AGC_DB_MASK) >> IWL49_AGC_DB_POS; u32 valid_antennae = (le16_to_cpu(rx_resp->phy_flags) & IWL49_RX_PHY_FLAGS_ANTENNAE_MASK) >> IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET; u8 max_rssi = 0; u32 i; /* Find max rssi among 3 possible receivers. * These values are measured by the digital signal processor (DSP). * They should stay fairly constant even as the signal strength varies, * if the radio's automatic gain control (AGC) is working right. * AGC value (see below) will provide the "interesting" info. */ for (i = 0; i < 3; i++) if (valid_antennae & (1 << i)) max_rssi = max(ncphy->rssi_info[i << 1], max_rssi); IWL_DEBUG_STATS(priv, "Rssi In A %d B %d C %d Max %d AGC dB %d\n", ncphy->rssi_info[0], ncphy->rssi_info[2], ncphy->rssi_info[4], max_rssi, agc); /* dBm = max_rssi dB - agc dB - constant. * Higher AGC (higher radio gain) means lower signal. */ return max_rssi - agc - IWL49_RSSI_OFFSET; } /* Set up 4965-specific Rx frame reply handlers */ static void iwl4965_rx_handler_setup(struct iwl_priv *priv) { /* Legacy Rx frames */ priv->rx_handlers[REPLY_RX] = iwl_rx_reply_rx; /* Tx response */ priv->rx_handlers[REPLY_TX] = iwl4965_rx_reply_tx; } static void iwl4965_setup_deferred_work(struct iwl_priv *priv) { INIT_WORK(&priv->txpower_work, iwl4965_bg_txpower_work); } static void iwl4965_cancel_deferred_work(struct iwl_priv *priv) { cancel_work_sync(&priv->txpower_work); } #define IWL4965_UCODE_GET(item) \ static u32 iwl4965_ucode_get_##item(const struct iwl_ucode_header *ucode,\ u32 api_ver) \ { \ return le32_to_cpu(ucode->u.v1.item); \ } static u32 iwl4965_ucode_get_header_size(u32 api_ver) { return UCODE_HEADER_SIZE(1); } static u32 iwl4965_ucode_get_build(const struct iwl_ucode_header *ucode, u32 api_ver) { return 0; } static u8 *iwl4965_ucode_get_data(const struct iwl_ucode_header *ucode, u32 api_ver) { return (u8 *) ucode->u.v1.data; } IWL4965_UCODE_GET(inst_size); IWL4965_UCODE_GET(data_size); IWL4965_UCODE_GET(init_size); IWL4965_UCODE_GET(init_data_size); IWL4965_UCODE_GET(boot_size); static struct iwl_hcmd_ops iwl4965_hcmd = { .rxon_assoc = iwl4965_send_rxon_assoc, .commit_rxon = iwl_commit_rxon, .set_rxon_chain = iwl_set_rxon_chain, }; static struct iwl_ucode_ops iwl4965_ucode = { .get_header_size = iwl4965_ucode_get_header_size, .get_build = iwl4965_ucode_get_build, .get_inst_size = iwl4965_ucode_get_inst_size, .get_data_size = iwl4965_ucode_get_data_size, .get_init_size = iwl4965_ucode_get_init_size, .get_init_data_size = iwl4965_ucode_get_init_data_size, .get_boot_size = iwl4965_ucode_get_boot_size, .get_data = iwl4965_ucode_get_data, }; static struct iwl_hcmd_utils_ops iwl4965_hcmd_utils = { .get_hcmd_size = iwl4965_get_hcmd_size, .build_addsta_hcmd = iwl4965_build_addsta_hcmd, .chain_noise_reset = iwl4965_chain_noise_reset, .gain_computation = iwl4965_gain_computation, .rts_tx_cmd_flag = iwl4965_rts_tx_cmd_flag, .calc_rssi = iwl4965_calc_rssi, }; static struct iwl_lib_ops iwl4965_lib = { .set_hw_params = iwl4965_hw_set_hw_params, .txq_update_byte_cnt_tbl = iwl4965_txq_update_byte_cnt_tbl, .txq_set_sched = iwl4965_txq_set_sched, .txq_agg_enable = iwl4965_txq_agg_enable, .txq_agg_disable = iwl4965_txq_agg_disable, .txq_attach_buf_to_tfd = iwl_hw_txq_attach_buf_to_tfd, .txq_free_tfd = iwl_hw_txq_free_tfd, .txq_init = iwl_hw_tx_queue_init, .rx_handler_setup = iwl4965_rx_handler_setup, .setup_deferred_work = iwl4965_setup_deferred_work, .cancel_deferred_work = iwl4965_cancel_deferred_work, .is_valid_rtc_data_addr = iwl4965_hw_valid_rtc_data_addr, .alive_notify = iwl4965_alive_notify, .init_alive_start = iwl4965_init_alive_start, .load_ucode = iwl4965_load_bsm, .apm_ops = { .init = iwl4965_apm_init, .reset = iwl4965_apm_reset, .stop = iwl4965_apm_stop, .config = iwl4965_nic_config, .set_pwr_src = iwl_set_pwr_src, }, .eeprom_ops = { .regulatory_bands = { EEPROM_REGULATORY_BAND_1_CHANNELS, EEPROM_REGULATORY_BAND_2_CHANNELS, EEPROM_REGULATORY_BAND_3_CHANNELS, EEPROM_REGULATORY_BAND_4_CHANNELS, EEPROM_REGULATORY_BAND_5_CHANNELS, EEPROM_4965_REGULATORY_BAND_24_FAT_CHANNELS, EEPROM_4965_REGULATORY_BAND_52_FAT_CHANNELS }, .verify_signature = iwlcore_eeprom_verify_signature, .acquire_semaphore = iwlcore_eeprom_acquire_semaphore, .release_semaphore = iwlcore_eeprom_release_semaphore, .calib_version = iwl4965_eeprom_calib_version, .query_addr = iwlcore_eeprom_query_addr, }, .send_tx_power = iwl4965_send_tx_power, .update_chain_flags = iwl_update_chain_flags, .post_associate = iwl_post_associate, .config_ap = iwl_config_ap, .isr = iwl_isr_legacy, .temp_ops = { .temperature = iwl4965_temperature_calib, .set_ct_kill = iwl4965_set_ct_threshold, }, }; static struct iwl_ops iwl4965_ops = { .ucode = &iwl4965_ucode, .lib = &iwl4965_lib, .hcmd = &iwl4965_hcmd, .utils = &iwl4965_hcmd_utils, }; struct iwl_cfg iwl4965_agn_cfg = { .name = "4965AGN", .fw_name_pre = IWL4965_FW_PRE, .ucode_api_max = IWL4965_UCODE_API_MAX, .ucode_api_min = IWL4965_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N, .eeprom_size = IWL4965_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_4965_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION, .ops = &iwl4965_ops, .mod_params = &iwl4965_mod_params, .use_isr_legacy = true }; /* Module firmware */ MODULE_FIRMWARE(IWL4965_MODULE_FIRMWARE(IWL4965_UCODE_API_MAX)); module_param_named(antenna, iwl4965_mod_params.antenna, int, 0444); MODULE_PARM_DESC(antenna, "select antenna (1=Main, 2=Aux, default 0 [both])"); module_param_named(swcrypto, iwl4965_mod_params.sw_crypto, int, 0444); MODULE_PARM_DESC(swcrypto, "using crypto in software (default 0 [hardware])"); module_param_named( disable_hw_scan, iwl4965_mod_params.disable_hw_scan, int, 0444); MODULE_PARM_DESC(disable_hw_scan, "disable hardware scanning (default 0)"); module_param_named(queues_num, iwl4965_mod_params.num_of_queues, int, 0444); MODULE_PARM_DESC(queues_num, "number of hw queues."); /* 11n */ module_param_named(11n_disable, iwl4965_mod_params.disable_11n, int, 0444); MODULE_PARM_DESC(11n_disable, "disable 11n functionality"); module_param_named(amsdu_size_8K, iwl4965_mod_params.amsdu_size_8K, int, 0444); MODULE_PARM_DESC(amsdu_size_8K, "enable 8K amsdu size"); module_param_named(fw_restart4965, iwl4965_mod_params.restart_fw, int, 0444); MODULE_PARM_DESC(fw_restart4965, "restart firmware in case of error");