/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2011 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "mcdi.h" #include "workarounds.h" /************************************************************************** * * Type name strings * ************************************************************************** */ /* Loopback mode names (see LOOPBACK_MODE()) */ const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; const char *const efx_loopback_mode_names[] = { [LOOPBACK_NONE] = "NONE", [LOOPBACK_DATA] = "DATAPATH", [LOOPBACK_GMAC] = "GMAC", [LOOPBACK_XGMII] = "XGMII", [LOOPBACK_XGXS] = "XGXS", [LOOPBACK_XAUI] = "XAUI", [LOOPBACK_GMII] = "GMII", [LOOPBACK_SGMII] = "SGMII", [LOOPBACK_XGBR] = "XGBR", [LOOPBACK_XFI] = "XFI", [LOOPBACK_XAUI_FAR] = "XAUI_FAR", [LOOPBACK_GMII_FAR] = "GMII_FAR", [LOOPBACK_SGMII_FAR] = "SGMII_FAR", [LOOPBACK_XFI_FAR] = "XFI_FAR", [LOOPBACK_GPHY] = "GPHY", [LOOPBACK_PHYXS] = "PHYXS", [LOOPBACK_PCS] = "PCS", [LOOPBACK_PMAPMD] = "PMA/PMD", [LOOPBACK_XPORT] = "XPORT", [LOOPBACK_XGMII_WS] = "XGMII_WS", [LOOPBACK_XAUI_WS] = "XAUI_WS", [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", [LOOPBACK_GMII_WS] = "GMII_WS", [LOOPBACK_XFI_WS] = "XFI_WS", [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", [LOOPBACK_PHYXS_WS] = "PHYXS_WS", }; const unsigned int efx_reset_type_max = RESET_TYPE_MAX; const char *const efx_reset_type_names[] = { [RESET_TYPE_INVISIBLE] = "INVISIBLE", [RESET_TYPE_ALL] = "ALL", [RESET_TYPE_WORLD] = "WORLD", [RESET_TYPE_DISABLE] = "DISABLE", [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", [RESET_TYPE_INT_ERROR] = "INT_ERROR", [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", [RESET_TYPE_TX_SKIP] = "TX_SKIP", [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", }; #define EFX_MAX_MTU (9 * 1024) /* Reset workqueue. If any NIC has a hardware failure then a reset will be * queued onto this work queue. This is not a per-nic work queue, because * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. */ static struct workqueue_struct *reset_workqueue; /************************************************************************** * * Configurable values * *************************************************************************/ /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us * to control interrupt affinity separately for TX and RX. * * This is only used in MSI-X interrupt mode */ static unsigned int separate_tx_channels; module_param(separate_tx_channels, uint, 0444); MODULE_PARM_DESC(separate_tx_channels, "Use separate channels for TX and RX"); /* This is the weight assigned to each of the (per-channel) virtual * NAPI devices. */ static int napi_weight = 64; /* This is the time (in jiffies) between invocations of the hardware * monitor. On Falcon-based NICs, this will: * - Check the on-board hardware monitor; * - Poll the link state and reconfigure the hardware as necessary. */ static unsigned int efx_monitor_interval = 1 * HZ; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each core. */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); static int phy_flash_cfg; module_param(phy_flash_cfg, int, 0644); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); static unsigned irq_adapt_low_thresh = 8000; module_param(irq_adapt_low_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_low_thresh, "Threshold score for reducing IRQ moderation"); static unsigned irq_adapt_high_thresh = 16000; module_param(irq_adapt_high_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_high_thresh, "Threshold score for increasing IRQ moderation"); static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW); module_param(debug, uint, 0); MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq); static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq); static void efx_remove_channel(struct efx_channel *channel); static void efx_remove_channels(struct efx_nic *efx); static const struct efx_channel_type efx_default_channel_type; static void efx_remove_port(struct efx_nic *efx); static void efx_init_napi_channel(struct efx_channel *channel); static void efx_fini_napi(struct efx_nic *efx); static void efx_fini_napi_channel(struct efx_channel *channel); static void efx_fini_struct(struct efx_nic *efx); static void efx_start_all(struct efx_nic *efx); static void efx_stop_all(struct efx_nic *efx); #define EFX_ASSERT_RESET_SERIALISED(efx) \ do { \ if ((efx->state == STATE_RUNNING) || \ (efx->state == STATE_DISABLED)) \ ASSERT_RTNL(); \ } while (0) /************************************************************************** * * Event queue processing * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static int efx_process_channel(struct efx_channel *channel, int budget) { int spent; if (unlikely(!channel->enabled)) return 0; spent = efx_nic_process_eventq(channel, budget); if (spent && efx_channel_has_rx_queue(channel)) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); /* Deliver last RX packet. */ if (channel->rx_pkt) { __efx_rx_packet(channel, channel->rx_pkt); channel->rx_pkt = NULL; } if (rx_queue->enabled) { efx_rx_strategy(channel); efx_fast_push_rx_descriptors(rx_queue); } } return spent; } /* Mark channel as finished processing * * Note that since we will not receive further interrupts for this * channel before we finish processing and call the eventq_read_ack() * method, there is no need to use the interrupt hold-off timers. */ static inline void efx_channel_processed(struct efx_channel *channel) { /* The interrupt handler for this channel may set work_pending * as soon as we acknowledge the events we've seen. Make sure * it's cleared before then. */ channel->work_pending = false; smp_wmb(); efx_nic_eventq_read_ack(channel); } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by efx_process_channel(). */ static int efx_poll(struct napi_struct *napi, int budget) { struct efx_channel *channel = container_of(napi, struct efx_channel, napi_str); struct efx_nic *efx = channel->efx; int spent; netif_vdbg(efx, intr, efx->net_dev, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); spent = efx_process_channel(channel, budget); if (spent < budget) { if (efx_channel_has_rx_queue(channel) && efx->irq_rx_adaptive && unlikely(++channel->irq_count == 1000)) { if (unlikely(channel->irq_mod_score < irq_adapt_low_thresh)) { if (channel->irq_moderation > 1) { channel->irq_moderation -= 1; efx->type->push_irq_moderation(channel); } } else if (unlikely(channel->irq_mod_score > irq_adapt_high_thresh)) { if (channel->irq_moderation < efx->irq_rx_moderation) { channel->irq_moderation += 1; efx->type->push_irq_moderation(channel); } } channel->irq_count = 0; channel->irq_mod_score = 0; } efx_filter_rfs_expire(channel); /* There is no race here; although napi_disable() will * only wait for napi_complete(), this isn't a problem * since efx_channel_processed() will have no effect if * interrupts have already been disabled. */ napi_complete(napi); efx_channel_processed(channel); } return spent; } /* Process the eventq of the specified channel immediately on this CPU * * Disable hardware generated interrupts, wait for any existing * processing to finish, then directly poll (and ack ) the eventq. * Finally reenable NAPI and interrupts. * * This is for use only during a loopback self-test. It must not * deliver any packets up the stack as this can result in deadlock. */ void efx_process_channel_now(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; BUG_ON(channel->channel >= efx->n_channels); BUG_ON(!channel->enabled); BUG_ON(!efx->loopback_selftest); /* Disable interrupts and wait for ISRs to complete */ efx_nic_disable_interrupts(efx); if (efx->legacy_irq) { synchronize_irq(efx->legacy_irq); efx->legacy_irq_enabled = false; } if (channel->irq) synchronize_irq(channel->irq); /* Wait for any NAPI processing to complete */ napi_disable(&channel->napi_str); /* Poll the channel */ efx_process_channel(channel, channel->eventq_mask + 1); /* Ack the eventq. This may cause an interrupt to be generated * when they are reenabled */ efx_channel_processed(channel); napi_enable(&channel->napi_str); if (efx->legacy_irq) efx->legacy_irq_enabled = true; efx_nic_enable_interrupts(efx); } /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ static int efx_probe_eventq(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned long entries; netif_dbg(efx, probe, efx->net_dev, "chan %d create event queue\n", channel->channel); /* Build an event queue with room for one event per tx and rx buffer, * plus some extra for link state events and MCDI completions. */ entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; return efx_nic_probe_eventq(channel); } /* Prepare channel's event queue */ static void efx_init_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d init event queue\n", channel->channel); channel->eventq_read_ptr = 0; efx_nic_init_eventq(channel); } /* Enable event queue processing and NAPI */ static void efx_start_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, ifup, channel->efx->net_dev, "chan %d start event queue\n", channel->channel); /* The interrupt handler for this channel may set work_pending * as soon as we enable it. Make sure it's cleared before * then. Similarly, make sure it sees the enabled flag set. */ channel->work_pending = false; channel->enabled = true; smp_wmb(); napi_enable(&channel->napi_str); efx_nic_eventq_read_ack(channel); } /* Disable event queue processing and NAPI */ static void efx_stop_eventq(struct efx_channel *channel) { if (!channel->enabled) return; napi_disable(&channel->napi_str); channel->enabled = false; } static void efx_fini_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d fini event queue\n", channel->channel); efx_nic_fini_eventq(channel); } static void efx_remove_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d remove event queue\n", channel->channel); efx_nic_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ /* Allocate and initialise a channel structure. */ static struct efx_channel * efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) { struct efx_channel *channel; struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; int j; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->efx = efx; channel->channel = i; channel->type = &efx_default_channel_type; for (j = 0; j < EFX_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; tx_queue->efx = efx; tx_queue->queue = i * EFX_TXQ_TYPES + j; tx_queue->channel = channel; } rx_queue = &channel->rx_queue; rx_queue->efx = efx; setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, (unsigned long)rx_queue); return channel; } /* Allocate and initialise a channel structure, copying parameters * (but not resources) from an old channel structure. */ static struct efx_channel * efx_copy_channel(const struct efx_channel *old_channel) { struct efx_channel *channel; struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; int j; channel = kmalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; *channel = *old_channel; channel->napi_dev = NULL; memset(&channel->eventq, 0, sizeof(channel->eventq)); for (j = 0; j < EFX_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; if (tx_queue->channel) tx_queue->channel = channel; tx_queue->buffer = NULL; memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); } rx_queue = &channel->rx_queue; rx_queue->buffer = NULL; memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, (unsigned long)rx_queue); return channel; } static int efx_probe_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; netif_dbg(channel->efx, probe, channel->efx->net_dev, "creating channel %d\n", channel->channel); rc = channel->type->pre_probe(channel); if (rc) goto fail; rc = efx_probe_eventq(channel); if (rc) goto fail; efx_for_each_channel_tx_queue(tx_queue, channel) { rc = efx_probe_tx_queue(tx_queue); if (rc) goto fail; } efx_for_each_channel_rx_queue(rx_queue, channel) { rc = efx_probe_rx_queue(rx_queue); if (rc) goto fail; } channel->n_rx_frm_trunc = 0; return 0; fail: efx_remove_channel(channel); return rc; } static void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) { struct efx_nic *efx = channel->efx; const char *type; int number; number = channel->channel; if (efx->tx_channel_offset == 0) { type = ""; } else if (channel->channel < efx->tx_channel_offset) { type = "-rx"; } else { type = "-tx"; number -= efx->tx_channel_offset; } snprintf(buf, len, "%s%s-%d", efx->name, type, number); } static void efx_set_channel_names(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) channel->type->get_name(channel, efx->channel_name[channel->channel], sizeof(efx->channel_name[0])); } static int efx_probe_channels(struct efx_nic *efx) { struct efx_channel *channel; int rc; /* Restart special buffer allocation */ efx->next_buffer_table = 0; /* Probe channels in reverse, so that any 'extra' channels * use the start of the buffer table. This allows the traffic * channels to be resized without moving them or wasting the * entries before them. */ efx_for_each_channel_rev(channel, efx) { rc = efx_probe_channel(channel); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create channel %d\n", channel->channel); goto fail; } } efx_set_channel_names(efx); return 0; fail: efx_remove_channels(efx); return rc; } /* Channels are shutdown and reinitialised whilst the NIC is running * to propagate configuration changes (mtu, checksum offload), or * to clear hardware error conditions */ static void efx_start_datapath(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; struct efx_channel *channel; /* Calculate the rx buffer allocation parameters required to * support the current MTU, including padding for header * alignment and overruns. */ efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + efx->type->rx_buffer_hash_size + efx->type->rx_buffer_padding); efx->rx_buffer_order = get_order(efx->rx_buffer_len + sizeof(struct efx_rx_page_state)); /* Initialise the channels */ efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) efx_init_tx_queue(tx_queue); /* The rx buffer allocation strategy is MTU dependent */ efx_rx_strategy(channel); efx_for_each_channel_rx_queue(rx_queue, channel) { efx_init_rx_queue(rx_queue); efx_nic_generate_fill_event(rx_queue); } WARN_ON(channel->rx_pkt != NULL); efx_rx_strategy(channel); } if (netif_device_present(efx->net_dev)) netif_tx_wake_all_queues(efx->net_dev); } static void efx_stop_datapath(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; EFX_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->port_enabled); rc = efx_nic_flush_queues(efx); if (rc && EFX_WORKAROUND_7803(efx)) { /* Schedule a reset to recover from the flush failure. The * descriptor caches reference memory we're about to free, * but falcon_reconfigure_mac_wrapper() won't reconnect * the MACs because of the pending reset. */ netif_err(efx, drv, efx->net_dev, "Resetting to recover from flush failure\n"); efx_schedule_reset(efx, RESET_TYPE_ALL); } else if (rc) { netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); } else { netif_dbg(efx, drv, efx->net_dev, "successfully flushed all queues\n"); } efx_for_each_channel(channel, efx) { /* RX packet processing is pipelined, so wait for the * NAPI handler to complete. At least event queue 0 * might be kept active by non-data events, so don't * use napi_synchronize() but actually disable NAPI * temporarily. */ if (efx_channel_has_rx_queue(channel)) { efx_stop_eventq(channel); efx_start_eventq(channel); } efx_for_each_channel_rx_queue(rx_queue, channel) efx_fini_rx_queue(rx_queue); efx_for_each_possible_channel_tx_queue(tx_queue, channel) efx_fini_tx_queue(tx_queue); } } static void efx_remove_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; netif_dbg(channel->efx, drv, channel->efx->net_dev, "destroy chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); efx_for_each_possible_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); efx_remove_eventq(channel); } static void efx_remove_channels(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_remove_channel(channel); } int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) { struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; u32 old_rxq_entries, old_txq_entries; unsigned i, next_buffer_table = 0; int rc = 0; /* Not all channels should be reallocated. We must avoid * reallocating their buffer table entries. */ efx_for_each_channel(channel, efx) { struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; if (channel->type->copy) continue; next_buffer_table = max(next_buffer_table, channel->eventq.index + channel->eventq.entries); efx_for_each_channel_rx_queue(rx_queue, channel) next_buffer_table = max(next_buffer_table, rx_queue->rxd.index + rx_queue->rxd.entries); efx_for_each_channel_tx_queue(tx_queue, channel) next_buffer_table = max(next_buffer_table, tx_queue->txd.index + tx_queue->txd.entries); } efx_stop_all(efx); efx_stop_interrupts(efx, true); /* Clone channels (where possible) */ memset(other_channel, 0, sizeof(other_channel)); for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (channel->type->copy) channel = channel->type->copy(channel); if (!channel) { rc = -ENOMEM; goto out; } other_channel[i] = channel; } /* Swap entry counts and channel pointers */ old_rxq_entries = efx->rxq_entries; old_txq_entries = efx->txq_entries; efx->rxq_entries = rxq_entries; efx->txq_entries = txq_entries; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; efx->channel[i] = other_channel[i]; other_channel[i] = channel; } /* Restart buffer table allocation */ efx->next_buffer_table = next_buffer_table; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (!channel->type->copy) continue; rc = efx_probe_channel(channel); if (rc) goto rollback; efx_init_napi_channel(efx->channel[i]); } out: /* Destroy unused channel structures */ for (i = 0; i < efx->n_channels; i++) { channel = other_channel[i]; if (channel && channel->type->copy) { efx_fini_napi_channel(channel); efx_remove_channel(channel); kfree(channel); } } efx_start_interrupts(efx, true); efx_start_all(efx); return rc; rollback: /* Swap back */ efx->rxq_entries = old_rxq_entries; efx->txq_entries = old_txq_entries; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; efx->channel[i] = other_channel[i]; other_channel[i] = channel; } goto out; } void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) { mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); } static const struct efx_channel_type efx_default_channel_type = { .pre_probe = efx_channel_dummy_op_int, .get_name = efx_get_channel_name, .copy = efx_copy_channel, .keep_eventq = false, }; int efx_channel_dummy_op_int(struct efx_channel *channel) { return 0; } /************************************************************************** * * Port handling * **************************************************************************/ /* This ensures that the kernel is kept informed (via * netif_carrier_on/off) of the link status, and also maintains the * link status's stop on the port's TX queue. */ void efx_link_status_changed(struct efx_nic *efx) { struct efx_link_state *link_state = &efx->link_state; /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure * that no events are triggered between unregister_netdev() and the * driver unloading. A more general condition is that NETDEV_CHANGE * can only be generated between NETDEV_UP and NETDEV_DOWN */ if (!netif_running(efx->net_dev)) return; if (link_state->up != netif_carrier_ok(efx->net_dev)) { efx->n_link_state_changes++; if (link_state->up) netif_carrier_on(efx->net_dev); else netif_carrier_off(efx->net_dev); } /* Status message for kernel log */ if (link_state->up) netif_info(efx, link, efx->net_dev, "link up at %uMbps %s-duplex (MTU %d)%s\n", link_state->speed, link_state->fd ? "full" : "half", efx->net_dev->mtu, (efx->promiscuous ? " [PROMISC]" : "")); else netif_info(efx, link, efx->net_dev, "link down\n"); } void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) { efx->link_advertising = advertising; if (advertising) { if (advertising & ADVERTISED_Pause) efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); else efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); if (advertising & ADVERTISED_Asym_Pause) efx->wanted_fc ^= EFX_FC_TX; } } void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) { efx->wanted_fc = wanted_fc; if (efx->link_advertising) { if (wanted_fc & EFX_FC_RX) efx->link_advertising |= (ADVERTISED_Pause | ADVERTISED_Asym_Pause); else efx->link_advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (wanted_fc & EFX_FC_TX) efx->link_advertising ^= ADVERTISED_Asym_Pause; } } static void efx_fini_port(struct efx_nic *efx); /* Push loopback/power/transmit disable settings to the PHY, and reconfigure * the MAC appropriately. All other PHY configuration changes are pushed * through phy_op->set_settings(), and pushed asynchronously to the MAC * through efx_monitor(). * * Callers must hold the mac_lock */ int __efx_reconfigure_port(struct efx_nic *efx) { enum efx_phy_mode phy_mode; int rc; WARN_ON(!mutex_is_locked(&efx->mac_lock)); /* Serialise the promiscuous flag with efx_set_rx_mode. */ netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); /* Disable PHY transmit in mac level loopbacks */ phy_mode = efx->phy_mode; if (LOOPBACK_INTERNAL(efx)) efx->phy_mode |= PHY_MODE_TX_DISABLED; else efx->phy_mode &= ~PHY_MODE_TX_DISABLED; rc = efx->type->reconfigure_port(efx); if (rc) efx->phy_mode = phy_mode; return rc; } /* Reinitialise the MAC to pick up new PHY settings, even if the port is * disabled. */ int efx_reconfigure_port(struct efx_nic *efx) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); rc = __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); return rc; } /* Asynchronous work item for changing MAC promiscuity and multicast * hash. Avoid a drain/rx_ingress enable by reconfiguring the current * MAC directly. */ static void efx_mac_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); mutex_lock(&efx->mac_lock); if (efx->port_enabled) efx->type->reconfigure_mac(efx); mutex_unlock(&efx->mac_lock); } static int efx_probe_port(struct efx_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "create port\n"); if (phy_flash_cfg) efx->phy_mode = PHY_MODE_SPECIAL; /* Connect up MAC/PHY operations table */ rc = efx->type->probe_port(efx); if (rc) return rc; /* Initialise MAC address to permanent address */ memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN); return 0; } static int efx_init_port(struct efx_nic *efx) { int rc; netif_dbg(efx, drv, efx->net_dev, "init port\n"); mutex_lock(&efx->mac_lock); rc = efx->phy_op->init(efx); if (rc) goto fail1; efx->port_initialized = true; /* Reconfigure the MAC before creating dma queues (required for * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ efx->type->reconfigure_mac(efx); /* Ensure the PHY advertises the correct flow control settings */ rc = efx->phy_op->reconfigure(efx); if (rc) goto fail2; mutex_unlock(&efx->mac_lock); return 0; fail2: efx->phy_op->fini(efx); fail1: mutex_unlock(&efx->mac_lock); return rc; } static void efx_start_port(struct efx_nic *efx) { netif_dbg(efx, ifup, efx->net_dev, "start port\n"); BUG_ON(efx->port_enabled); mutex_lock(&efx->mac_lock); efx->port_enabled = true; /* efx_mac_work() might have been scheduled after efx_stop_port(), * and then cancelled by efx_flush_all() */ efx->type->reconfigure_mac(efx); mutex_unlock(&efx->mac_lock); } /* Prevent efx_mac_work() and efx_monitor() from working */ static void efx_stop_port(struct efx_nic *efx) { netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); mutex_lock(&efx->mac_lock); efx->port_enabled = false; mutex_unlock(&efx->mac_lock); /* Serialise against efx_set_multicast_list() */ netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); } static void efx_fini_port(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); if (!efx->port_initialized) return; efx->phy_op->fini(efx); efx->port_initialized = false; efx->link_state.up = false; efx_link_status_changed(efx); } static void efx_remove_port(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); efx->type->remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ /* This configures the PCI device to enable I/O and DMA. */ static int efx_init_io(struct efx_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; dma_addr_t dma_mask = efx->type->max_dma_mask; int rc; netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); rc = pci_enable_device(pci_dev); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to enable PCI device\n"); goto fail1; } pci_set_master(pci_dev); /* Set the PCI DMA mask. Try all possibilities from our * genuine mask down to 32 bits, because some architectures * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit * masks event though they reject 46 bit masks. */ while (dma_mask > 0x7fffffffUL) { if (pci_dma_supported(pci_dev, dma_mask)) { rc = pci_set_dma_mask(pci_dev, dma_mask); if (rc == 0) break; } dma_mask >>= 1; } if (rc) { netif_err(efx, probe, efx->net_dev, "could not find a suitable DMA mask\n"); goto fail2; } netif_dbg(efx, probe, efx->net_dev, "using DMA mask %llx\n", (unsigned long long) dma_mask); rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); if (rc) { /* pci_set_consistent_dma_mask() is not *allowed* to * fail with a mask that pci_set_dma_mask() accepted, * but just in case... */ netif_err(efx, probe, efx->net_dev, "failed to set consistent DMA mask\n"); goto fail2; } efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); if (rc) { netif_err(efx, probe, efx->net_dev, "request for memory BAR failed\n"); rc = -EIO; goto fail3; } efx->membase = ioremap_nocache(efx->membase_phys, efx->type->mem_map_size); if (!efx->membase) { netif_err(efx, probe, efx->net_dev, "could not map memory BAR at %llx+%x\n", (unsigned long long)efx->membase_phys, efx->type->mem_map_size); rc = -ENOMEM; goto fail4; } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %llx+%x (virtual %p)\n", (unsigned long long)efx->membase_phys, efx->type->mem_map_size, efx->membase); return 0; fail4: pci_release_region(efx->pci_dev, EFX_MEM_BAR); fail3: efx->membase_phys = 0; fail2: pci_disable_device(efx->pci_dev); fail1: return rc; } static void efx_fini_io(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); if (efx->membase) { iounmap(efx->membase); efx->membase = NULL; } if (efx->membase_phys) { pci_release_region(efx->pci_dev, EFX_MEM_BAR); efx->membase_phys = 0; } pci_disable_device(efx->pci_dev); } static unsigned int efx_wanted_parallelism(struct efx_nic *efx) { cpumask_var_t thread_mask; unsigned int count; int cpu; if (rss_cpus) { count = rss_cpus; } else { if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { netif_warn(efx, probe, efx->net_dev, "RSS disabled due to allocation failure\n"); return 1; } count = 0; for_each_online_cpu(cpu) { if (!cpumask_test_cpu(cpu, thread_mask)) { ++count; cpumask_or(thread_mask, thread_mask, topology_thread_cpumask(cpu)); } } free_cpumask_var(thread_mask); } /* If RSS is requested for the PF *and* VFs then we can't write RSS * table entries that are inaccessible to VFs */ if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && count > efx_vf_size(efx)) { netif_warn(efx, probe, efx->net_dev, "Reducing number of RSS channels from %u to %u for " "VF support. Increase vf-msix-limit to use more " "channels on the PF.\n", count, efx_vf_size(efx)); count = efx_vf_size(efx); } return count; } static int efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) { #ifdef CONFIG_RFS_ACCEL unsigned int i; int rc; efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); if (!efx->net_dev->rx_cpu_rmap) return -ENOMEM; for (i = 0; i < efx->n_rx_channels; i++) { rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, xentries[i].vector); if (rc) { free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; return rc; } } #endif return 0; } /* Probe the number and type of interrupts we are able to obtain, and * the resulting numbers of channels and RX queues. */ static int efx_probe_interrupts(struct efx_nic *efx) { unsigned int max_channels = min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS); unsigned int extra_channels = 0; unsigned int i, j; int rc; for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) if (efx->extra_channel_type[i]) ++extra_channels; if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { struct msix_entry xentries[EFX_MAX_CHANNELS]; unsigned int n_channels; n_channels = efx_wanted_parallelism(efx); if (separate_tx_channels) n_channels *= 2; n_channels += extra_channels; n_channels = min(n_channels, max_channels); for (i = 0; i < n_channels; i++) xentries[i].entry = i; rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); if (rc > 0) { netif_err(efx, drv, efx->net_dev, "WARNING: Insufficient MSI-X vectors" " available (%d < %u).\n", rc, n_channels); netif_err(efx, drv, efx->net_dev, "WARNING: Performance may be reduced.\n"); EFX_BUG_ON_PARANOID(rc >= n_channels); n_channels = rc; rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); } if (rc == 0) { efx->n_channels = n_channels; if (n_channels > extra_channels) n_channels -= extra_channels; if (separate_tx_channels) { efx->n_tx_channels = max(n_channels / 2, 1U); efx->n_rx_channels = max(n_channels - efx->n_tx_channels, 1U); } else { efx->n_tx_channels = n_channels; efx->n_rx_channels = n_channels; } rc = efx_init_rx_cpu_rmap(efx, xentries); if (rc) { pci_disable_msix(efx->pci_dev); return rc; } for (i = 0; i < efx->n_channels; i++) efx_get_channel(efx, i)->irq = xentries[i].vector; } else { /* Fall back to single channel MSI */ efx->interrupt_mode = EFX_INT_MODE_MSI; netif_err(efx, drv, efx->net_dev, "could not enable MSI-X\n"); } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EFX_INT_MODE_MSI) { efx->n_channels = 1; efx->n_rx_channels = 1; efx->n_tx_channels = 1; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; } else { netif_err(efx, drv, efx->net_dev, "could not enable MSI\n"); efx->interrupt_mode = EFX_INT_MODE_LEGACY; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->legacy_irq = efx->pci_dev->irq; } /* Assign extra channels if possible */ j = efx->n_channels; for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { if (!efx->extra_channel_type[i]) continue; if (efx->interrupt_mode != EFX_INT_MODE_MSIX || efx->n_channels <= extra_channels) { efx->extra_channel_type[i]->handle_no_channel(efx); } else { --j; efx_get_channel(efx, j)->type = efx->extra_channel_type[i]; } } /* RSS might be usable on VFs even if it is disabled on the PF */ efx->rss_spread = (efx->n_rx_channels > 1 ? efx->n_rx_channels : efx_vf_size(efx)); return 0; } /* Enable interrupts, then probe and start the event queues */ static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq) { struct efx_channel *channel; if (efx->legacy_irq) efx->legacy_irq_enabled = true; efx_nic_enable_interrupts(efx); efx_for_each_channel(channel, efx) { if (!channel->type->keep_eventq || !may_keep_eventq) efx_init_eventq(channel); efx_start_eventq(channel); } efx_mcdi_mode_event(efx); } static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq) { struct efx_channel *channel; efx_mcdi_mode_poll(efx); efx_nic_disable_interrupts(efx); if (efx->legacy_irq) { synchronize_irq(efx->legacy_irq); efx->legacy_irq_enabled = false; } efx_for_each_channel(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); efx_stop_eventq(channel); if (!channel->type->keep_eventq || !may_keep_eventq) efx_fini_eventq(channel); } } static void efx_remove_interrupts(struct efx_nic *efx) { struct efx_channel *channel; /* Remove MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } static void efx_set_channels(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; efx->tx_channel_offset = separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; /* We need to adjust the TX queue numbers if we have separate * RX-only and TX-only channels. */ efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) tx_queue->queue -= (efx->tx_channel_offset * EFX_TXQ_TYPES); } } static int efx_probe_nic(struct efx_nic *efx) { size_t i; int rc; netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = efx->type->probe(efx); if (rc) return rc; /* Determine the number of channels and queues by trying to hook * in MSI-X interrupts. */ rc = efx_probe_interrupts(efx); if (rc) goto fail; efx->type->dimension_resources(efx); if (efx->n_channels > 1) get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) efx->rx_indir_table[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); efx_set_channels(efx); netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); /* Initialise the interrupt moderation settings */ efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, true); return 0; fail: efx->type->remove(efx); return rc; } static void efx_remove_nic(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); efx_remove_interrupts(efx); efx->type->remove(efx); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int efx_probe_all(struct efx_nic *efx) { int rc; rc = efx_probe_nic(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); goto fail1; } rc = efx_probe_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create port\n"); goto fail2; } efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; rc = efx_probe_filters(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create filter tables\n"); goto fail3; } rc = efx_probe_channels(efx); if (rc) goto fail4; return 0; fail4: efx_remove_filters(efx); fail3: efx_remove_port(efx); fail2: efx_remove_nic(efx); fail1: return rc; } /* Called after previous invocation(s) of efx_stop_all, restarts the port, * kernel transmit queues and NAPI processing, and ensures that the port is * scheduled to be reconfigured. This function is safe to call multiple * times when the NIC is in any state. */ static void efx_start_all(struct efx_nic *efx) { EFX_ASSERT_RESET_SERIALISED(efx); /* Check that it is appropriate to restart the interface. All * of these flags are safe to read under just the rtnl lock */ if (efx->port_enabled) return; if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) return; if (!netif_running(efx->net_dev)) return; efx_start_port(efx); efx_start_datapath(efx); /* Start the hardware monitor if there is one. Otherwise (we're link * event driven), we have to poll the PHY because after an event queue * flush, we could have a missed a link state change */ if (efx->type->monitor != NULL) { queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } else { mutex_lock(&efx->mac_lock); if (efx->phy_op->poll(efx)) efx_link_status_changed(efx); mutex_unlock(&efx->mac_lock); } efx->type->start_stats(efx); } /* Flush all delayed work. Should only be called when no more delayed work * will be scheduled. This doesn't flush pending online resets (efx_reset), * since we're holding the rtnl_lock at this point. */ static void efx_flush_all(struct efx_nic *efx) { /* Make sure the hardware monitor and event self-test are stopped */ cancel_delayed_work_sync(&efx->monitor_work); efx_selftest_async_cancel(efx); /* Stop scheduled port reconfigurations */ cancel_work_sync(&efx->mac_work); } /* Quiesce hardware and software without bringing the link down. * Safe to call multiple times, when the nic and interface is in any * state. The caller is guaranteed to subsequently be in a position * to modify any hardware and software state they see fit without * taking locks. */ static void efx_stop_all(struct efx_nic *efx) { EFX_ASSERT_RESET_SERIALISED(efx); /* port_enabled can be read safely under the rtnl lock */ if (!efx->port_enabled) return; efx->type->stop_stats(efx); efx_stop_port(efx); /* Flush efx_mac_work(), refill_workqueue, monitor_work */ efx_flush_all(efx); /* Stop the kernel transmit interface late, so the watchdog * timer isn't ticking over the flush */ netif_tx_disable(efx->net_dev); efx_stop_datapath(efx); } static void efx_remove_all(struct efx_nic *efx) { efx_remove_channels(efx); efx_remove_filters(efx); efx_remove_port(efx); efx_remove_nic(efx); } /************************************************************************** * * Interrupt moderation * **************************************************************************/ static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) { if (usecs == 0) return 0; if (usecs * 1000 < quantum_ns) return 1; /* never round down to 0 */ return usecs * 1000 / quantum_ns; } /* Set interrupt moderation parameters */ int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, unsigned int rx_usecs, bool rx_adaptive, bool rx_may_override_tx) { struct efx_channel *channel; unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * efx->timer_quantum_ns, 1000); unsigned int tx_ticks; unsigned int rx_ticks; EFX_ASSERT_RESET_SERIALISED(efx); if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) return -EINVAL; tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && !rx_may_override_tx) { netif_err(efx, drv, efx->net_dev, "Channels are shared. " "RX and TX IRQ moderation must be equal\n"); return -EINVAL; } efx->irq_rx_adaptive = rx_adaptive; efx->irq_rx_moderation = rx_ticks; efx_for_each_channel(channel, efx) { if (efx_channel_has_rx_queue(channel)) channel->irq_moderation = rx_ticks; else if (efx_channel_has_tx_queues(channel)) channel->irq_moderation = tx_ticks; } return 0; } void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, unsigned int *rx_usecs, bool *rx_adaptive) { /* We must round up when converting ticks to microseconds * because we round down when converting the other way. */ *rx_adaptive = efx->irq_rx_adaptive; *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * efx->timer_quantum_ns, 1000); /* If channels are shared between RX and TX, so is IRQ * moderation. Otherwise, IRQ moderation is the same for all * TX channels and is not adaptive. */ if (efx->tx_channel_offset == 0) *tx_usecs = *rx_usecs; else *tx_usecs = DIV_ROUND_UP( efx->channel[efx->tx_channel_offset]->irq_moderation * efx->timer_quantum_ns, 1000); } /************************************************************************** * * Hardware monitor * **************************************************************************/ /* Run periodically off the general workqueue */ static void efx_monitor(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, monitor_work.work); netif_vdbg(efx, timer, efx->net_dev, "hardware monitor executing on CPU %d\n", raw_smp_processor_id()); BUG_ON(efx->type->monitor == NULL); /* If the mac_lock is already held then it is likely a port * reconfiguration is already in place, which will likely do * most of the work of monitor() anyway. */ if (mutex_trylock(&efx->mac_lock)) { if (efx->port_enabled) efx->type->monitor(efx); mutex_unlock(&efx->mac_lock); } queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct efx_nic *efx = netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(ifr); EFX_ASSERT_RESET_SERIALISED(efx); /* Convert phy_id from older PRTAD/DEVAD format */ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && (data->phy_id & 0xfc00) == 0x0400) data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; return mdio_mii_ioctl(&efx->mdio, data, cmd); } /************************************************************************** * * NAPI interface * **************************************************************************/ static void efx_init_napi_channel(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; channel->napi_dev = efx->net_dev; netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll, napi_weight); } static void efx_init_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_init_napi_channel(channel); } static void efx_fini_napi_channel(struct efx_channel *channel) { if (channel->napi_dev) netif_napi_del(&channel->napi_str); channel->napi_dev = NULL; } static void efx_fini_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_fini_napi_channel(channel); } /************************************************************************** * * Kernel netpoll interface * *************************************************************************/ #ifdef CONFIG_NET_POLL_CONTROLLER /* Although in the common case interrupts will be disabled, this is not * guaranteed. However, all our work happens inside the NAPI callback, * so no locking is required. */ static void efx_netpoll(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_schedule_channel(channel); } #endif /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ static int efx_net_open(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); EFX_ASSERT_RESET_SERIALISED(efx); netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", raw_smp_processor_id()); if (efx->state == STATE_DISABLED) return -EIO; if (efx->phy_mode & PHY_MODE_SPECIAL) return -EBUSY; if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) return -EIO; /* Notify the kernel of the link state polled during driver load, * before the monitor starts running */ efx_link_status_changed(efx); efx_start_all(efx); efx_selftest_async_start(efx); return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ static int efx_net_stop(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", raw_smp_processor_id()); if (efx->state != STATE_DISABLED) { /* Stop the device and flush all the channels */ efx_stop_all(efx); } return 0; } /* Context: process, dev_base_lock or RTNL held, non-blocking. */ static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_mac_stats *mac_stats = &efx->mac_stats; spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx); stats->rx_packets = mac_stats->rx_packets; stats->tx_packets = mac_stats->tx_packets; stats->rx_bytes = mac_stats->rx_bytes; stats->tx_bytes = mac_stats->tx_bytes; stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; stats->multicast = mac_stats->rx_multicast; stats->collisions = mac_stats->tx_collision; stats->rx_length_errors = (mac_stats->rx_gtjumbo + mac_stats->rx_length_error); stats->rx_crc_errors = mac_stats->rx_bad; stats->rx_frame_errors = mac_stats->rx_align_error; stats->rx_fifo_errors = mac_stats->rx_overflow; stats->rx_missed_errors = mac_stats->rx_missed; stats->tx_window_errors = mac_stats->tx_late_collision; stats->rx_errors = (stats->rx_length_errors + stats->rx_crc_errors + stats->rx_frame_errors + mac_stats->rx_symbol_error); stats->tx_errors = (stats->tx_window_errors + mac_stats->tx_bad); spin_unlock_bh(&efx->stats_lock); return stats; } /* Context: netif_tx_lock held, BHs disabled. */ static void efx_watchdog(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); netif_err(efx, tx_err, efx->net_dev, "TX stuck with port_enabled=%d: resetting channels\n", efx->port_enabled); efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); } /* Context: process, rtnl_lock() held. */ static int efx_change_mtu(struct net_device *net_dev, int new_mtu) { struct efx_nic *efx = netdev_priv(net_dev); EFX_ASSERT_RESET_SERIALISED(efx); if (new_mtu > EFX_MAX_MTU) return -EINVAL; efx_stop_all(efx); netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); mutex_lock(&efx->mac_lock); /* Reconfigure the MAC before enabling the dma queues so that * the RX buffers don't overflow */ net_dev->mtu = new_mtu; efx->type->reconfigure_mac(efx); mutex_unlock(&efx->mac_lock); efx_start_all(efx); return 0; } static int efx_set_mac_address(struct net_device *net_dev, void *data) { struct efx_nic *efx = netdev_priv(net_dev); struct sockaddr *addr = data; char *new_addr = addr->sa_data; EFX_ASSERT_RESET_SERIALISED(efx); if (!is_valid_ether_addr(new_addr)) { netif_err(efx, drv, efx->net_dev, "invalid ethernet MAC address requested: %pM\n", new_addr); return -EADDRNOTAVAIL; } memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); efx_sriov_mac_address_changed(efx); /* Reconfigure the MAC */ mutex_lock(&efx->mac_lock); efx->type->reconfigure_mac(efx); mutex_unlock(&efx->mac_lock); return 0; } /* Context: netif_addr_lock held, BHs disabled. */ static void efx_set_rx_mode(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); struct netdev_hw_addr *ha; union efx_multicast_hash *mc_hash = &efx->multicast_hash; u32 crc; int bit; efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); /* Build multicast hash table */ if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { memset(mc_hash, 0xff, sizeof(*mc_hash)); } else { memset(mc_hash, 0x00, sizeof(*mc_hash)); netdev_for_each_mc_addr(ha, net_dev) { crc = ether_crc_le(ETH_ALEN, ha->addr); bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); set_bit_le(bit, mc_hash->byte); } /* Broadcast packets go through the multicast hash filter. * ether_crc_le() of the broadcast address is 0xbe2612ff * so we always add bit 0xff to the mask. */ set_bit_le(0xff, mc_hash->byte); } if (efx->port_enabled) queue_work(efx->workqueue, &efx->mac_work); /* Otherwise efx_start_port() will do this */ } static int efx_set_features(struct net_device *net_dev, netdev_features_t data) { struct efx_nic *efx = netdev_priv(net_dev); /* If disabling RX n-tuple filtering, clear existing filters */ if (net_dev->features & ~data & NETIF_F_NTUPLE) efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); return 0; } static const struct net_device_ops efx_netdev_ops = { .ndo_open = efx_net_open, .ndo_stop = efx_net_stop, .ndo_get_stats64 = efx_net_stats, .ndo_tx_timeout = efx_watchdog, .ndo_start_xmit = efx_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = efx_ioctl, .ndo_change_mtu = efx_change_mtu, .ndo_set_mac_address = efx_set_mac_address, .ndo_set_rx_mode = efx_set_rx_mode, .ndo_set_features = efx_set_features, #ifdef CONFIG_SFC_SRIOV .ndo_set_vf_mac = efx_sriov_set_vf_mac, .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, .ndo_get_vf_config = efx_sriov_get_vf_config, #endif #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = efx_netpoll, #endif .ndo_setup_tc = efx_setup_tc, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = efx_filter_rfs, #endif }; static void efx_update_name(struct efx_nic *efx) { strcpy(efx->name, efx->net_dev->name); efx_mtd_rename(efx); efx_set_channel_names(efx); } static int efx_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = ptr; if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) efx_update_name(netdev_priv(net_dev)); return NOTIFY_DONE; } static struct notifier_block efx_netdev_notifier = { .notifier_call = efx_netdev_event, }; static ssize_t show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", efx->phy_type); } static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); static int efx_register_netdev(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; struct efx_channel *channel; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->netdev_ops = &efx_netdev_ops; SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); rtnl_lock(); rc = dev_alloc_name(net_dev, net_dev->name); if (rc < 0) goto fail_locked; efx_update_name(efx); rc = register_netdevice(net_dev); if (rc) goto fail_locked; efx_for_each_channel(channel, efx) { struct efx_tx_queue *tx_queue; efx_for_each_channel_tx_queue(tx_queue, channel) efx_init_tx_queue_core_txq(tx_queue); } /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(net_dev); rtnl_unlock(); rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to init net dev attributes\n"); goto fail_registered; } return 0; fail_locked: rtnl_unlock(); netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); return rc; fail_registered: unregister_netdev(net_dev); return rc; } static void efx_unregister_netdev(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; if (!efx->net_dev) return; BUG_ON(netdev_priv(efx->net_dev) != efx); /* Free up any skbs still remaining. This has to happen before * we try to unregister the netdev as running their destructors * may be needed to get the device ref. count to 0. */ efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) efx_release_tx_buffers(tx_queue); } strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); unregister_netdev(efx->net_dev); } /************************************************************************** * * Device reset and suspend * **************************************************************************/ /* Tears down the entire software state and most of the hardware state * before reset. */ void efx_reset_down(struct efx_nic *efx, enum reset_type method) { EFX_ASSERT_RESET_SERIALISED(efx); efx_stop_all(efx); mutex_lock(&efx->mac_lock); efx_stop_interrupts(efx, false); if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) efx->phy_op->fini(efx); efx->type->fini(efx); } /* This function will always ensure that the locks acquired in * efx_reset_down() are released. A failure return code indicates * that we were unable to reinitialise the hardware, and the * driver should be disabled. If ok is false, then the rx and tx * engines are not restarted, pending a RESET_DISABLE. */ int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); rc = efx->type->init(efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); goto fail; } if (!ok) goto fail; if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { rc = efx->phy_op->init(efx); if (rc) goto fail; if (efx->phy_op->reconfigure(efx)) netif_err(efx, drv, efx->net_dev, "could not restore PHY settings\n"); } efx->type->reconfigure_mac(efx); efx_start_interrupts(efx, false); efx_restore_filters(efx); efx_sriov_reset(efx); mutex_unlock(&efx->mac_lock); efx_start_all(efx); return 0; fail: efx->port_initialized = false; mutex_unlock(&efx->mac_lock); return rc; } /* Reset the NIC using the specified method. Note that the reset may * fail, in which case the card will be left in an unusable state. * * Caller must hold the rtnl_lock. */ int efx_reset(struct efx_nic *efx, enum reset_type method) { int rc, rc2; bool disabled; netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", RESET_TYPE(method)); netif_device_detach(efx->net_dev); efx_reset_down(efx, method); rc = efx->type->reset(efx, method); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); goto out; } /* Clear flags for the scopes we covered. We assume the NIC and * driver are now quiescent so that there is no race here. */ efx->reset_pending &= -(1 << (method + 1)); /* Reinitialise bus-mastering, which may have been turned off before * the reset was scheduled. This is still appropriate, even in the * RESET_TYPE_DISABLE since this driver generally assumes the hardware * can respond to requests. */ pci_set_master(efx->pci_dev); out: /* Leave device stopped if necessary */ disabled = rc || method == RESET_TYPE_DISABLE; rc2 = efx_reset_up(efx, method, !disabled); if (rc2) { disabled = true; if (!rc) rc = rc2; } if (disabled) { dev_close(efx->net_dev); netif_err(efx, drv, efx->net_dev, "has been disabled\n"); efx->state = STATE_DISABLED; } else { netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); netif_device_attach(efx->net_dev); } return rc; } /* The worker thread exists so that code that cannot sleep can * schedule a reset for later. */ static void efx_reset_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); unsigned long pending = ACCESS_ONCE(efx->reset_pending); if (!pending) return; /* If we're not RUNNING then don't reset. Leave the reset_pending * flags set so that efx_pci_probe_main will be retried */ if (efx->state != STATE_RUNNING) { netif_info(efx, drv, efx->net_dev, "scheduled reset quenched. NIC not RUNNING\n"); return; } rtnl_lock(); (void)efx_reset(efx, fls(pending) - 1); rtnl_unlock(); } void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) { enum reset_type method; switch (type) { case RESET_TYPE_INVISIBLE: case RESET_TYPE_ALL: case RESET_TYPE_WORLD: case RESET_TYPE_DISABLE: method = type; netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", RESET_TYPE(method)); break; default: method = efx->type->map_reset_reason(type); netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset for %s\n", RESET_TYPE(method), RESET_TYPE(type)); break; } set_bit(method, &efx->reset_pending); /* efx_process_channel() will no longer read events once a * reset is scheduled. So switch back to poll'd MCDI completions. */ efx_mcdi_mode_poll(efx); queue_work(reset_workqueue, &efx->reset_work); } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), .driver_data = (unsigned long) &falcon_a1_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000B), .driver_data = (unsigned long) &falcon_b0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ .driver_data = (unsigned long) &siena_a0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ .driver_data = (unsigned long) &siena_a0_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Dummy PHY/MAC operations * * Can be used for some unimplemented operations * Needed so all function pointers are valid and do not have to be tested * before use * **************************************************************************/ int efx_port_dummy_op_int(struct efx_nic *efx) { return 0; } void efx_port_dummy_op_void(struct efx_nic *efx) {} static bool efx_port_dummy_op_poll(struct efx_nic *efx) { return false; } static const struct efx_phy_operations efx_dummy_phy_operations = { .init = efx_port_dummy_op_int, .reconfigure = efx_port_dummy_op_int, .poll = efx_port_dummy_op_poll, .fini = efx_port_dummy_op_void, }; /************************************************************************** * * Data housekeeping * **************************************************************************/ /* This zeroes out and then fills in the invariants in a struct * efx_nic (including all sub-structures). */ static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, struct pci_dev *pci_dev, struct net_device *net_dev) { int i; /* Initialise common structures */ memset(efx, 0, sizeof(*efx)); spin_lock_init(&efx->biu_lock); #ifdef CONFIG_SFC_MTD INIT_LIST_HEAD(&efx->mtd_list); #endif INIT_WORK(&efx->reset_work, efx_reset_work); INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); efx->pci_dev = pci_dev; efx->msg_enable = debug; efx->state = STATE_INIT; strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); efx->net_dev = net_dev; spin_lock_init(&efx->stats_lock); mutex_init(&efx->mac_lock); efx->phy_op = &efx_dummy_phy_operations; efx->mdio.dev = net_dev; INIT_WORK(&efx->mac_work, efx_mac_work); init_waitqueue_head(&efx->flush_wq); for (i = 0; i < EFX_MAX_CHANNELS; i++) { efx->channel[i] = efx_alloc_channel(efx, i, NULL); if (!efx->channel[i]) goto fail; } efx->type = type; EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); /* Higher numbered interrupt modes are less capable! */ efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); /* Would be good to use the net_dev name, but we're too early */ snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", pci_name(pci_dev)); efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); if (!efx->workqueue) goto fail; return 0; fail: efx_fini_struct(efx); return -ENOMEM; } static void efx_fini_struct(struct efx_nic *efx) { int i; for (i = 0; i < EFX_MAX_CHANNELS; i++) kfree(efx->channel[i]); if (efx->workqueue) { destroy_workqueue(efx->workqueue); efx->workqueue = NULL; } } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove_main(struct efx_nic *efx) { #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; #endif efx_stop_interrupts(efx, false); efx_nic_fini_interrupt(efx); efx_fini_port(efx); efx->type->fini(efx); efx_fini_napi(efx); efx_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove(struct pci_dev *pci_dev) { struct efx_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); efx->state = STATE_FINI; dev_close(efx->net_dev); /* Allow any queued efx_resets() to complete */ rtnl_unlock(); efx_stop_interrupts(efx, false); efx_sriov_fini(efx); efx_unregister_netdev(efx); efx_mtd_remove(efx); /* Wait for any scheduled resets to complete. No more will be * scheduled from this point because efx_stop_all() has been * called, we are no longer registered with driverlink, and * the net_device's have been removed. */ cancel_work_sync(&efx->reset_work); efx_pci_remove_main(efx); efx_fini_io(efx); netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); pci_set_drvdata(pci_dev, NULL); efx_fini_struct(efx); free_netdev(efx->net_dev); }; /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int efx_pci_probe_main(struct efx_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = efx_probe_all(efx); if (rc) goto fail1; efx_init_napi(efx); rc = efx->type->init(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise NIC\n"); goto fail3; } rc = efx_init_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise port\n"); goto fail4; } rc = efx_nic_init_interrupt(efx); if (rc) goto fail5; efx_start_interrupts(efx, false); return 0; fail5: efx_fini_port(efx); fail4: efx->type->fini(efx); fail3: efx_fini_napi(efx); efx_remove_all(efx); fail1: return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. efx_net_open). */ static int __devinit efx_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; struct net_device *net_dev; struct efx_nic *efx; int rc; /* Allocate and initialise a struct net_device and struct efx_nic */ net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, EFX_MAX_RX_QUEUES); if (!net_dev) return -ENOMEM; net_dev->features |= (type->offload_features | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_TSO | NETIF_F_RXCSUM); if (type->offload_features & NETIF_F_V6_CSUM) net_dev->features |= NETIF_F_TSO6; /* Mask for features that also apply to VLAN devices */ net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | NETIF_F_RXCSUM); /* All offloads can be toggled */ net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; efx = netdev_priv(net_dev); pci_set_drvdata(pci_dev, efx); SET_NETDEV_DEV(net_dev, &pci_dev->dev); rc = efx_init_struct(efx, type, pci_dev, net_dev); if (rc) goto fail1; netif_info(efx, probe, efx->net_dev, "Solarflare NIC detected\n"); /* Set up basic I/O (BAR mappings etc) */ rc = efx_init_io(efx); if (rc) goto fail2; rc = efx_pci_probe_main(efx); /* Serialise against efx_reset(). No more resets will be * scheduled since efx_stop_all() has been called, and we have * not and never have been registered. */ cancel_work_sync(&efx->reset_work); if (rc) goto fail3; /* If there was a scheduled reset during probe, the NIC is * probably hosed anyway. */ if (efx->reset_pending) { rc = -EIO; goto fail4; } /* Switch to the running state before we expose the device to the OS, * so that dev_open()|efx_start_all() will actually start the device */ efx->state = STATE_RUNNING; rc = efx_register_netdev(efx); if (rc) goto fail4; rc = efx_sriov_init(efx); if (rc) netif_err(efx, probe, efx->net_dev, "SR-IOV can't be enabled rc %d\n", rc); netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); /* Try to create MTDs, but allow this to fail */ rtnl_lock(); rc = efx_mtd_probe(efx); rtnl_unlock(); if (rc) netif_warn(efx, probe, efx->net_dev, "failed to create MTDs (%d)\n", rc); return 0; fail4: efx_pci_remove_main(efx); fail3: efx_fini_io(efx); fail2: efx_fini_struct(efx); fail1: WARN_ON(rc > 0); netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); return rc; } static int efx_pm_freeze(struct device *dev) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); efx->state = STATE_FINI; netif_device_detach(efx->net_dev); efx_stop_all(efx); efx_stop_interrupts(efx, false); return 0; } static int efx_pm_thaw(struct device *dev) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); efx->state = STATE_INIT; efx_start_interrupts(efx, false); mutex_lock(&efx->mac_lock); efx->phy_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); efx_start_all(efx); netif_device_attach(efx->net_dev); efx->state = STATE_RUNNING; efx->type->resume_wol(efx); /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ queue_work(reset_workqueue, &efx->reset_work); return 0; } static int efx_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); efx->type->fini(efx); efx->reset_pending = 0; pci_save_state(pci_dev); return pci_set_power_state(pci_dev, PCI_D3hot); } /* Used for both resume and restore */ static int efx_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); int rc; rc = pci_set_power_state(pci_dev, PCI_D0); if (rc) return rc; pci_restore_state(pci_dev); rc = pci_enable_device(pci_dev); if (rc) return rc; pci_set_master(efx->pci_dev); rc = efx->type->reset(efx, RESET_TYPE_ALL); if (rc) return rc; rc = efx->type->init(efx); if (rc) return rc; efx_pm_thaw(dev); return 0; } static int efx_pm_suspend(struct device *dev) { int rc; efx_pm_freeze(dev); rc = efx_pm_poweroff(dev); if (rc) efx_pm_resume(dev); return rc; } static const struct dev_pm_ops efx_pm_ops = { .suspend = efx_pm_suspend, .resume = efx_pm_resume, .freeze = efx_pm_freeze, .thaw = efx_pm_thaw, .poweroff = efx_pm_poweroff, .restore = efx_pm_resume, }; static struct pci_driver efx_pci_driver = { .name = KBUILD_MODNAME, .id_table = efx_pci_table, .probe = efx_pci_probe, .remove = efx_pci_remove, .driver.pm = &efx_pm_ops, }; /************************************************************************** * * Kernel module interface * *************************************************************************/ module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); static int __init efx_init_module(void) { int rc; printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); rc = register_netdevice_notifier(&efx_netdev_notifier); if (rc) goto err_notifier; rc = efx_init_sriov(); if (rc) goto err_sriov; reset_workqueue = create_singlethread_workqueue("sfc_reset"); if (!reset_workqueue) { rc = -ENOMEM; goto err_reset; } rc = pci_register_driver(&efx_pci_driver); if (rc < 0) goto err_pci; return 0; err_pci: destroy_workqueue(reset_workqueue); err_reset: efx_fini_sriov(); err_sriov: unregister_netdevice_notifier(&efx_netdev_notifier); err_notifier: return rc; } static void __exit efx_exit_module(void) { printk(KERN_INFO "Solarflare NET driver unloading\n"); pci_unregister_driver(&efx_pci_driver); destroy_workqueue(reset_workqueue); efx_fini_sriov(); unregister_netdevice_notifier(&efx_netdev_notifier); } module_init(efx_init_module); module_exit(efx_exit_module); MODULE_AUTHOR("Solarflare Communications and " "Michael Brown "); MODULE_DESCRIPTION("Solarflare Communications network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, efx_pci_table);