/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: monk liu */ #include #include "amdgpu.h" static void amdgpu_ctx_do_release(struct kref *ref) { struct amdgpu_ctx *ctx; struct amdgpu_device *adev; unsigned i, j; ctx = container_of(ref, struct amdgpu_ctx, refcount); adev = ctx->adev; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) for (j = 0; j < AMDGPU_CTX_MAX_CS_PENDING; ++j) fence_put(ctx->rings[i].fences[j]); if (amdgpu_enable_scheduler) { for (i = 0; i < adev->num_rings; i++) amd_context_entity_fini(adev->rings[i]->scheduler, &ctx->rings[i].c_entity); } kfree(ctx); } static void amdgpu_ctx_init(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, struct amdgpu_ctx *ctx, uint32_t id) { int i; memset(ctx, 0, sizeof(*ctx)); ctx->adev = adev; kref_init(&ctx->refcount); spin_lock_init(&ctx->ring_lock); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) ctx->rings[i].sequence = 1; } int amdgpu_ctx_alloc(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t *id) { struct amdgpu_ctx *ctx; int i, j, r; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (fpriv) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); r = idr_alloc(&mgr->ctx_handles, ctx, 1, 0, GFP_KERNEL); if (r < 0) { mutex_unlock(&mgr->lock); kfree(ctx); return r; } *id = (uint32_t)r; amdgpu_ctx_init(adev, fpriv, ctx, *id); mutex_unlock(&mgr->lock); } else { if (adev->kernel_ctx) { DRM_ERROR("kernel cnotext has been created.\n"); kfree(ctx); return 0; } *id = AMD_KERNEL_CONTEXT_ID; amdgpu_ctx_init(adev, fpriv, ctx, *id); adev->kernel_ctx = ctx; } if (amdgpu_enable_scheduler) { /* create context entity for each ring */ for (i = 0; i < adev->num_rings; i++) { struct amd_run_queue *rq; if (fpriv) rq = &adev->rings[i]->scheduler->sched_rq; else rq = &adev->rings[i]->scheduler->kernel_rq; r = amd_context_entity_init(adev->rings[i]->scheduler, &ctx->rings[i].c_entity, NULL, rq, *id, amdgpu_sched_jobs); if (r) break; } if (i < adev->num_rings) { for (j = 0; j < i; j++) amd_context_entity_fini(adev->rings[j]->scheduler, &ctx->rings[j].c_entity); kfree(ctx); return -EINVAL; } } return 0; } int amdgpu_ctx_free(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx *ctx; if (fpriv) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (ctx) { idr_remove(&mgr->ctx_handles, id); kref_put(&ctx->refcount, amdgpu_ctx_do_release); mutex_unlock(&mgr->lock); return 0; } mutex_unlock(&mgr->lock); } else { ctx = adev->kernel_ctx; kref_put(&ctx->refcount, amdgpu_ctx_do_release); return 0; } return -EINVAL; } static int amdgpu_ctx_query(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; unsigned reset_counter; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } /* TODO: these two are always zero */ out->state.flags = 0x0; out->state.hangs = 0x0; /* determine if a GPU reset has occured since the last call */ reset_counter = atomic_read(&adev->gpu_reset_counter); /* TODO: this should ideally return NO, GUILTY, or INNOCENT. */ if (ctx->reset_counter == reset_counter) out->state.reset_status = AMDGPU_CTX_NO_RESET; else out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET; ctx->reset_counter = reset_counter; mutex_unlock(&mgr->lock); return 0; } void amdgpu_ctx_fini(struct amdgpu_fpriv *fpriv) { struct idr *idp; struct amdgpu_ctx *ctx; uint32_t id; struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; idp = &mgr->ctx_handles; idr_for_each_entry(idp,ctx,id) { if (kref_put(&ctx->refcount, amdgpu_ctx_do_release) != 1) DRM_ERROR("ctx %p is still alive\n", ctx); } idr_destroy(&mgr->ctx_handles); mutex_destroy(&mgr->lock); } int amdgpu_ctx_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { int r; uint32_t id; union drm_amdgpu_ctx *args = data; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_fpriv *fpriv = filp->driver_priv; r = 0; id = args->in.ctx_id; switch (args->in.op) { case AMDGPU_CTX_OP_ALLOC_CTX: r = amdgpu_ctx_alloc(adev, fpriv, &id); args->out.alloc.ctx_id = id; break; case AMDGPU_CTX_OP_FREE_CTX: r = amdgpu_ctx_free(adev, fpriv, id); break; case AMDGPU_CTX_OP_QUERY_STATE: r = amdgpu_ctx_query(adev, fpriv, id, &args->out); break; default: return -EINVAL; } return r; } struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return NULL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (ctx) kref_get(&ctx->refcount); mutex_unlock(&mgr->lock); return ctx; } int amdgpu_ctx_put(struct amdgpu_ctx *ctx) { if (ctx == NULL) return -EINVAL; kref_put(&ctx->refcount, amdgpu_ctx_do_release); return 0; } uint64_t amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct amdgpu_ring *ring, struct fence *fence, uint64_t queued_seq) { struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx]; uint64_t seq = 0; unsigned idx = 0; struct fence *other = NULL; if (amdgpu_enable_scheduler) seq = queued_seq; else seq = cring->sequence; idx = seq % AMDGPU_CTX_MAX_CS_PENDING; other = cring->fences[idx]; if (other) { signed long r; r = fence_wait_timeout(other, false, MAX_SCHEDULE_TIMEOUT); if (r < 0) DRM_ERROR("Error (%ld) waiting for fence!\n", r); } fence_get(fence); spin_lock(&ctx->ring_lock); cring->fences[idx] = fence; if (!amdgpu_enable_scheduler) cring->sequence++; spin_unlock(&ctx->ring_lock); fence_put(other); return seq; } struct fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx, struct amdgpu_ring *ring, uint64_t seq) { struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx]; struct fence *fence; uint64_t queued_seq; int r; if (amdgpu_enable_scheduler) { r = amd_sched_wait_emit(&cring->c_entity, seq, false, -1); if (r) return NULL; } spin_lock(&ctx->ring_lock); if (amdgpu_enable_scheduler) queued_seq = atomic64_read(&cring->c_entity.last_queued_v_seq) + 1; else queued_seq = cring->sequence; if (seq >= queued_seq) { spin_unlock(&ctx->ring_lock); return ERR_PTR(-EINVAL); } if (seq + AMDGPU_CTX_MAX_CS_PENDING < queued_seq) { spin_unlock(&ctx->ring_lock); return NULL; } fence = fence_get(cring->fences[seq % AMDGPU_CTX_MAX_CS_PENDING]); spin_unlock(&ctx->ring_lock); return fence; }