// SPDX-License-Identifier: GPL-2.0+ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <video/mipi_display.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_device.h> #include <drm/drm_drv.h> #include <drm/drm_encoder.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_modeset_helper_vtables.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include "mcde_drm.h" #include "mcde_dsi_regs.h" #define DSI_DEFAULT_LP_FREQ_HZ 19200000 #define DSI_DEFAULT_HS_FREQ_HZ 420160000 /* PRCMU DSI reset registers */ #define PRCM_DSI_SW_RESET 0x324 #define PRCM_DSI_SW_RESET_DSI0_SW_RESETN BIT(0) #define PRCM_DSI_SW_RESET_DSI1_SW_RESETN BIT(1) #define PRCM_DSI_SW_RESET_DSI2_SW_RESETN BIT(2) struct mcde_dsi { struct device *dev; struct mcde *mcde; struct drm_bridge bridge; struct drm_panel *panel; struct drm_bridge *bridge_out; struct mipi_dsi_host dsi_host; struct mipi_dsi_device *mdsi; struct clk *hs_clk; struct clk *lp_clk; unsigned long hs_freq; unsigned long lp_freq; bool unused; void __iomem *regs; struct regmap *prcmu; }; static inline struct mcde_dsi *bridge_to_mcde_dsi(struct drm_bridge *bridge) { return container_of(bridge, struct mcde_dsi, bridge); } static inline struct mcde_dsi *host_to_mcde_dsi(struct mipi_dsi_host *h) { return container_of(h, struct mcde_dsi, dsi_host); } bool mcde_dsi_irq(struct mipi_dsi_device *mdsi) { struct mcde_dsi *d; u32 val; bool te_received = false; d = host_to_mcde_dsi(mdsi->host); dev_dbg(d->dev, "%s called\n", __func__); val = readl(d->regs + DSI_DIRECT_CMD_STS_FLAG); if (val) dev_dbg(d->dev, "DSI_DIRECT_CMD_STS_FLAG = %08x\n", val); if (val & DSI_DIRECT_CMD_STS_WRITE_COMPLETED) dev_dbg(d->dev, "direct command write completed\n"); if (val & DSI_DIRECT_CMD_STS_TE_RECEIVED) { te_received = true; dev_dbg(d->dev, "direct command TE received\n"); } if (val & DSI_DIRECT_CMD_STS_ACKNOWLEDGE_WITH_ERR_RECEIVED) dev_err(d->dev, "direct command ACK ERR received\n"); if (val & DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR) dev_err(d->dev, "direct command read ERR received\n"); /* Mask off the ACK value and clear status */ writel(val, d->regs + DSI_DIRECT_CMD_STS_CLR); val = readl(d->regs + DSI_CMD_MODE_STS_FLAG); if (val) dev_dbg(d->dev, "DSI_CMD_MODE_STS_FLAG = %08x\n", val); if (val & DSI_CMD_MODE_STS_ERR_NO_TE) /* This happens all the time (safe to ignore) */ dev_dbg(d->dev, "CMD mode no TE\n"); if (val & DSI_CMD_MODE_STS_ERR_TE_MISS) /* This happens all the time (safe to ignore) */ dev_dbg(d->dev, "CMD mode TE miss\n"); if (val & DSI_CMD_MODE_STS_ERR_SDI1_UNDERRUN) dev_err(d->dev, "CMD mode SD1 underrun\n"); if (val & DSI_CMD_MODE_STS_ERR_SDI2_UNDERRUN) dev_err(d->dev, "CMD mode SD2 underrun\n"); if (val & DSI_CMD_MODE_STS_ERR_UNWANTED_RD) dev_err(d->dev, "CMD mode unwanted RD\n"); writel(val, d->regs + DSI_CMD_MODE_STS_CLR); val = readl(d->regs + DSI_DIRECT_CMD_RD_STS_FLAG); if (val) dev_dbg(d->dev, "DSI_DIRECT_CMD_RD_STS_FLAG = %08x\n", val); writel(val, d->regs + DSI_DIRECT_CMD_RD_STS_CLR); val = readl(d->regs + DSI_TG_STS_FLAG); if (val) dev_dbg(d->dev, "DSI_TG_STS_FLAG = %08x\n", val); writel(val, d->regs + DSI_TG_STS_CLR); val = readl(d->regs + DSI_VID_MODE_STS_FLAG); if (val) dev_dbg(d->dev, "DSI_VID_MODE_STS_FLAG = %08x\n", val); if (val & DSI_VID_MODE_STS_VSG_RUNNING) dev_dbg(d->dev, "VID mode VSG running\n"); if (val & DSI_VID_MODE_STS_ERR_MISSING_DATA) dev_err(d->dev, "VID mode missing data\n"); if (val & DSI_VID_MODE_STS_ERR_MISSING_HSYNC) dev_err(d->dev, "VID mode missing HSYNC\n"); if (val & DSI_VID_MODE_STS_ERR_MISSING_VSYNC) dev_err(d->dev, "VID mode missing VSYNC\n"); if (val & DSI_VID_MODE_STS_REG_ERR_SMALL_LENGTH) dev_err(d->dev, "VID mode less bytes than expected between two HSYNC\n"); if (val & DSI_VID_MODE_STS_REG_ERR_SMALL_HEIGHT) dev_err(d->dev, "VID mode less lines than expected between two VSYNC\n"); if (val & (DSI_VID_MODE_STS_ERR_BURSTWRITE | DSI_VID_MODE_STS_ERR_LINEWRITE | DSI_VID_MODE_STS_ERR_LONGREAD)) dev_err(d->dev, "VID mode read/write error\n"); if (val & DSI_VID_MODE_STS_ERR_VRS_WRONG_LENGTH) dev_err(d->dev, "VID mode received packets differ from expected size\n"); if (val & DSI_VID_MODE_STS_VSG_RECOVERY) dev_err(d->dev, "VID mode VSG in recovery mode\n"); writel(val, d->regs + DSI_VID_MODE_STS_CLR); return te_received; } static void mcde_dsi_attach_to_mcde(struct mcde_dsi *d) { d->mcde->mdsi = d->mdsi; d->mcde->video_mode = !!(d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO); /* Enable use of the TE signal for all command mode panels */ d->mcde->te_sync = !d->mcde->video_mode; } static int mcde_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *mdsi) { struct mcde_dsi *d = host_to_mcde_dsi(host); if (mdsi->lanes < 1 || mdsi->lanes > 2) { DRM_ERROR("dsi device params invalid, 1 or 2 lanes supported\n"); return -EINVAL; } dev_info(d->dev, "attached DSI device with %d lanes\n", mdsi->lanes); /* MIPI_DSI_FMT_RGB88 etc */ dev_info(d->dev, "format %08x, %dbpp\n", mdsi->format, mipi_dsi_pixel_format_to_bpp(mdsi->format)); dev_info(d->dev, "mode flags: %08lx\n", mdsi->mode_flags); d->mdsi = mdsi; if (d->mcde) mcde_dsi_attach_to_mcde(d); return 0; } static int mcde_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *mdsi) { struct mcde_dsi *d = host_to_mcde_dsi(host); d->mdsi = NULL; if (d->mcde) d->mcde->mdsi = NULL; return 0; } #define MCDE_DSI_HOST_IS_READ(type) \ ((type == MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM) || \ (type == MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM) || \ (type == MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM) || \ (type == MIPI_DSI_DCS_READ)) static ssize_t mcde_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct mcde_dsi *d = host_to_mcde_dsi(host); const u32 loop_delay_us = 10; /* us */ const u8 *tx = msg->tx_buf; u32 loop_counter; size_t txlen = msg->tx_len; size_t rxlen = msg->rx_len; u32 val; int ret; int i; if (txlen > 16) { dev_err(d->dev, "dunno how to write more than 16 bytes yet\n"); return -EIO; } if (rxlen > 4) { dev_err(d->dev, "dunno how to read more than 4 bytes yet\n"); return -EIO; } dev_dbg(d->dev, "message to channel %d, write %zd bytes read %zd bytes\n", msg->channel, txlen, rxlen); /* Command "nature" */ if (MCDE_DSI_HOST_IS_READ(msg->type)) /* MCTL_MAIN_DATA_CTL already set up */ val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_READ; else val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_WRITE; /* * More than 2 bytes will not fit in a single packet, so it's * time to set the "long not short" bit. One byte is used by * the MIPI DCS command leaving just one byte for the payload * in a short package. */ if (mipi_dsi_packet_format_is_long(msg->type)) val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LONGNOTSHORT; val |= 0 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_ID_SHIFT; val |= txlen << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_SIZE_SHIFT; val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LP_EN; val |= msg->type << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_HEAD_SHIFT; writel(val, d->regs + DSI_DIRECT_CMD_MAIN_SETTINGS); /* MIPI DCS command is part of the data */ if (txlen > 0) { val = 0; for (i = 0; i < 4 && i < txlen; i++) val |= tx[i] << (i * 8); } writel(val, d->regs + DSI_DIRECT_CMD_WRDAT0); if (txlen > 4) { val = 0; for (i = 0; i < 4 && (i + 4) < txlen; i++) val |= tx[i + 4] << (i * 8); writel(val, d->regs + DSI_DIRECT_CMD_WRDAT1); } if (txlen > 8) { val = 0; for (i = 0; i < 4 && (i + 8) < txlen; i++) val |= tx[i + 8] << (i * 8); writel(val, d->regs + DSI_DIRECT_CMD_WRDAT2); } if (txlen > 12) { val = 0; for (i = 0; i < 4 && (i + 12) < txlen; i++) val |= tx[i + 12] << (i * 8); writel(val, d->regs + DSI_DIRECT_CMD_WRDAT3); } writel(~0, d->regs + DSI_DIRECT_CMD_STS_CLR); writel(~0, d->regs + DSI_CMD_MODE_STS_CLR); /* Send command */ writel(1, d->regs + DSI_DIRECT_CMD_SEND); loop_counter = 1000 * 1000 / loop_delay_us; if (MCDE_DSI_HOST_IS_READ(msg->type)) { /* Read command */ while (!(readl(d->regs + DSI_DIRECT_CMD_STS) & (DSI_DIRECT_CMD_STS_READ_COMPLETED | DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR)) && --loop_counter) usleep_range(loop_delay_us, (loop_delay_us * 3) / 2); if (!loop_counter) { dev_err(d->dev, "DSI read timeout!\n"); return -ETIME; } } else { /* Writing only */ while (!(readl(d->regs + DSI_DIRECT_CMD_STS) & DSI_DIRECT_CMD_STS_WRITE_COMPLETED) && --loop_counter) usleep_range(loop_delay_us, (loop_delay_us * 3) / 2); if (!loop_counter) { dev_err(d->dev, "DSI write timeout!\n"); return -ETIME; } } val = readl(d->regs + DSI_DIRECT_CMD_STS); if (val & DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR) { dev_err(d->dev, "read completed with error\n"); writel(1, d->regs + DSI_DIRECT_CMD_RD_INIT); return -EIO; } if (val & DSI_DIRECT_CMD_STS_ACKNOWLEDGE_WITH_ERR_RECEIVED) { val >>= DSI_DIRECT_CMD_STS_ACK_VAL_SHIFT; dev_err(d->dev, "error during transmission: %04x\n", val); return -EIO; } if (!MCDE_DSI_HOST_IS_READ(msg->type)) { /* Return number of bytes written */ ret = txlen; } else { /* OK this is a read command, get the response */ u32 rdsz; u32 rddat; u8 *rx = msg->rx_buf; rdsz = readl(d->regs + DSI_DIRECT_CMD_RD_PROPERTY); rdsz &= DSI_DIRECT_CMD_RD_PROPERTY_RD_SIZE_MASK; rddat = readl(d->regs + DSI_DIRECT_CMD_RDDAT); if (rdsz < rxlen) { dev_err(d->dev, "read error, requested %zd got %d\n", rxlen, rdsz); return -EIO; } /* FIXME: read more than 4 bytes */ for (i = 0; i < 4 && i < rxlen; i++) rx[i] = (rddat >> (i * 8)) & 0xff; ret = rdsz; } writel(~0, d->regs + DSI_DIRECT_CMD_STS_CLR); writel(~0, d->regs + DSI_CMD_MODE_STS_CLR); return ret; } static const struct mipi_dsi_host_ops mcde_dsi_host_ops = { .attach = mcde_dsi_host_attach, .detach = mcde_dsi_host_detach, .transfer = mcde_dsi_host_transfer, }; /* This sends a direct (short) command to request TE */ void mcde_dsi_te_request(struct mipi_dsi_device *mdsi) { struct mcde_dsi *d; u32 val; d = host_to_mcde_dsi(mdsi->host); /* Command "nature" TE request */ val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_TE_REQ; val |= 0 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_ID_SHIFT; val |= 2 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_SIZE_SHIFT; val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LP_EN; val |= MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_HEAD_SHIFT; writel(val, d->regs + DSI_DIRECT_CMD_MAIN_SETTINGS); /* Clear TE reveived and error status bits and enables them */ writel(DSI_DIRECT_CMD_STS_CLR_TE_RECEIVED_CLR | DSI_DIRECT_CMD_STS_CLR_ACKNOWLEDGE_WITH_ERR_RECEIVED_CLR, d->regs + DSI_DIRECT_CMD_STS_CLR); val = readl(d->regs + DSI_DIRECT_CMD_STS_CTL); val |= DSI_DIRECT_CMD_STS_CTL_TE_RECEIVED_EN; val |= DSI_DIRECT_CMD_STS_CTL_ACKNOWLEDGE_WITH_ERR_EN; writel(val, d->regs + DSI_DIRECT_CMD_STS_CTL); /* Clear and enable no TE or TE missing status */ writel(DSI_CMD_MODE_STS_CLR_ERR_NO_TE_CLR | DSI_CMD_MODE_STS_CLR_ERR_TE_MISS_CLR, d->regs + DSI_CMD_MODE_STS_CLR); val = readl(d->regs + DSI_CMD_MODE_STS_CTL); val |= DSI_CMD_MODE_STS_CTL_ERR_NO_TE_EN; val |= DSI_CMD_MODE_STS_CTL_ERR_TE_MISS_EN; writel(val, d->regs + DSI_CMD_MODE_STS_CTL); /* Send this TE request command */ writel(1, d->regs + DSI_DIRECT_CMD_SEND); } static void mcde_dsi_setup_video_mode(struct mcde_dsi *d, const struct drm_display_mode *mode) { /* cpp, characters per pixel, number of bytes per pixel */ u8 cpp = mipi_dsi_pixel_format_to_bpp(d->mdsi->format) / 8; u64 pclk; u64 bpl; int hfp; int hbp; int hsa; u32 blkline_pck, line_duration; u32 val; val = 0; if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) val |= DSI_VID_MAIN_CTL_BURST_MODE; if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) { val |= DSI_VID_MAIN_CTL_SYNC_PULSE_ACTIVE; val |= DSI_VID_MAIN_CTL_SYNC_PULSE_HORIZONTAL; } /* RGB header and pixel mode */ switch (d->mdsi->format) { case MIPI_DSI_FMT_RGB565: val |= MIPI_DSI_PACKED_PIXEL_STREAM_16 << DSI_VID_MAIN_CTL_HEADER_SHIFT; val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_16BITS; break; case MIPI_DSI_FMT_RGB666_PACKED: val |= MIPI_DSI_PACKED_PIXEL_STREAM_18 << DSI_VID_MAIN_CTL_HEADER_SHIFT; val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_18BITS; break; case MIPI_DSI_FMT_RGB666: val |= MIPI_DSI_PIXEL_STREAM_3BYTE_18 << DSI_VID_MAIN_CTL_HEADER_SHIFT; val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_18BITS_LOOSE; break; case MIPI_DSI_FMT_RGB888: val |= MIPI_DSI_PACKED_PIXEL_STREAM_24 << DSI_VID_MAIN_CTL_HEADER_SHIFT; val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_24BITS; break; default: dev_err(d->dev, "unknown pixel mode\n"); return; } /* TODO: TVG (test video generator) could be enabled here */ /* * During vertical blanking: go to LP mode * Like with the EOL setting, if this is not set, the EOL area will be * filled with NULL or blanking packets in the vblank area. * FIXME: some Samsung phones and display panels such as s6e63m0 use * DSI_VID_MAIN_CTL_REG_BLKLINE_MODE_BLANKING here instead, * figure out how to properly configure that from the panel. */ val |= DSI_VID_MAIN_CTL_REG_BLKLINE_MODE_LP_0; /* * During EOL: go to LP mode. If this is not set, the EOL area will be * filled with NULL or blanking packets. */ val |= DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0; /* Recovery mode 1 */ val |= 1 << DSI_VID_MAIN_CTL_RECOVERY_MODE_SHIFT; /* All other fields zero */ writel(val, d->regs + DSI_VID_MAIN_CTL); /* Vertical frame parameters are pretty straight-forward */ val = mode->vdisplay << DSI_VID_VSIZE_VACT_LENGTH_SHIFT; /* vertical front porch */ val |= (mode->vsync_start - mode->vdisplay) << DSI_VID_VSIZE_VFP_LENGTH_SHIFT; /* vertical sync active */ val |= (mode->vsync_end - mode->vsync_start) << DSI_VID_VSIZE_VSA_LENGTH_SHIFT; /* vertical back porch */ val |= (mode->vtotal - mode->vsync_end) << DSI_VID_VSIZE_VBP_LENGTH_SHIFT; writel(val, d->regs + DSI_VID_VSIZE); /* * Horizontal frame parameters: * horizontal resolution is given in pixels but must be re-calculated * into bytes since this is what the hardware expects, these registers * define the payload size of the packet. * * hfp = horizontal front porch in bytes * hbp = horizontal back porch in bytes * hsa = horizontal sync active in bytes * * 6 + 2 is HFP header + checksum */ hfp = (mode->hsync_start - mode->hdisplay) * cpp - 6 - 2; if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) { /* * Use sync pulse for sync: explicit HSA time * 6 is HBP header + checksum * 4 is RGB header + checksum */ hbp = (mode->htotal - mode->hsync_end) * cpp - 4 - 6; /* * 6 is HBP header + checksum * 4 is HSW packet bytes * 4 is RGB header + checksum */ hsa = (mode->hsync_end - mode->hsync_start) * cpp - 4 - 4 - 6; } else { /* * Use event for sync: HBP includes both back porch and sync * 6 is HBP header + checksum * 4 is HSW packet bytes * 4 is RGB header + checksum */ hbp = (mode->htotal - mode->hsync_start) * cpp - 4 - 4 - 6; /* HSA is not present in this mode and set to 0 */ hsa = 0; } if (hfp < 0) { dev_info(d->dev, "hfp negative, set to 0\n"); hfp = 0; } if (hbp < 0) { dev_info(d->dev, "hbp negative, set to 0\n"); hbp = 0; } if (hsa < 0) { dev_info(d->dev, "hsa negative, set to 0\n"); hsa = 0; } dev_dbg(d->dev, "hfp: %u, hbp: %u, hsa: %u bytes\n", hfp, hbp, hsa); /* Frame parameters: horizontal sync active */ val = hsa << DSI_VID_HSIZE1_HSA_LENGTH_SHIFT; /* horizontal back porch */ val |= hbp << DSI_VID_HSIZE1_HBP_LENGTH_SHIFT; /* horizontal front porch */ val |= hfp << DSI_VID_HSIZE1_HFP_LENGTH_SHIFT; writel(val, d->regs + DSI_VID_HSIZE1); /* RGB data length (visible bytes on one scanline) */ val = mode->hdisplay * cpp; writel(val, d->regs + DSI_VID_HSIZE2); dev_dbg(d->dev, "RGB length, visible area on a line: %u bytes\n", val); /* * Calculate the time between two pixels in picoseconds using * the supplied refresh rate and total resolution including * porches and sync. */ /* (ps/s) / (pixels/s) = ps/pixels */ pclk = DIV_ROUND_UP_ULL(1000000000000, (mode->vrefresh * mode->htotal * mode->vtotal)); dev_dbg(d->dev, "picoseconds between two pixels: %llu\n", pclk); /* * How many bytes per line will this update frequency yield? * * Calculate the number of picoseconds for one scanline (1), then * divide by 1000000000000 (2) to get in pixels per second we * want to output. * * Multiply with number of bytes per second at this video display * frequency (3) to get number of bytes transferred during this * time. Notice that we use the frequency the display wants, * not what we actually get from the DSI PLL, which is hs_freq. * * These arithmetics are done in a different order to avoid * overflow. */ bpl = pclk * mode->htotal; /* (1) picoseconds per line */ dev_dbg(d->dev, "picoseconds per line: %llu\n", bpl); /* Multiply with bytes per second (3) */ bpl *= (d->mdsi->hs_rate / 8); /* Pixels per second (2) */ bpl = DIV_ROUND_DOWN_ULL(bpl, 1000000); /* microseconds */ bpl = DIV_ROUND_DOWN_ULL(bpl, 1000000); /* seconds */ /* parallel transactions in all lanes */ bpl *= d->mdsi->lanes; dev_dbg(d->dev, "calculated bytes per line: %llu @ %d Hz with HS %lu Hz\n", bpl, mode->vrefresh, d->mdsi->hs_rate); /* * 6 is header + checksum, header = 4 bytes, checksum = 2 bytes * 4 is short packet for vsync/hsync */ if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) { /* Set the event packet size to 0 (not used) */ writel(0, d->regs + DSI_VID_BLKSIZE1); /* * FIXME: isn't the hsync width in pixels? The porch and * sync area size is in pixels here, but this -6 * seems to be for bytes. It looks like this in the vendor * code though. Is it completely untested? */ blkline_pck = bpl - (mode->hsync_end - mode->hsync_start) - 6; val = blkline_pck << DSI_VID_BLKSIZE2_BLKLINE_PULSE_PCK_SHIFT; writel(val, d->regs + DSI_VID_BLKSIZE2); } else { /* Set the sync pulse packet size to 0 (not used) */ writel(0, d->regs + DSI_VID_BLKSIZE2); /* Specifying payload size in bytes (-4-6 from manual) */ blkline_pck = bpl - 4 - 6; if (blkline_pck > 0x1FFF) dev_err(d->dev, "blkline_pck too big %d bytes\n", blkline_pck); val = blkline_pck << DSI_VID_BLKSIZE1_BLKLINE_EVENT_PCK_SHIFT; val &= DSI_VID_BLKSIZE1_BLKLINE_EVENT_PCK_MASK; writel(val, d->regs + DSI_VID_BLKSIZE1); } /* * The line duration is used to scale back the frequency from * the max frequency supported by the HS clock to the desired * update frequency in vrefresh. */ line_duration = blkline_pck + 6; /* * The datasheet contains this complex condition to decreasing * the line duration by 1 under very specific circumstances. * Here we also imply that LP is used during burst EOL. */ if (d->mdsi->lanes == 2 && (hsa & 0x01) && (hfp & 0x01) && (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)) line_duration--; line_duration = DIV_ROUND_CLOSEST(line_duration, d->mdsi->lanes); dev_dbg(d->dev, "line duration %u bytes\n", line_duration); val = line_duration << DSI_VID_DPHY_TIME_REG_LINE_DURATION_SHIFT; /* * This is the time to perform LP->HS on D-PHY * FIXME: nowhere to get this from: DT property on the DSI? * The manual says this is "system dependent". * values like 48 and 72 seen in the vendor code. */ val |= 48 << DSI_VID_DPHY_TIME_REG_WAKEUP_TIME_SHIFT; writel(val, d->regs + DSI_VID_DPHY_TIME); /* * See the manual figure 657 page 2203 for understanding the impact * of the different burst mode settings. */ if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) { int blkeol_pck, blkeol_duration; /* * Packet size at EOL for burst mode, this is only used * if DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0 is NOT set, * but we instead send NULL or blanking packets at EOL. * This is given in number of bytes. * * See the manual page 2198 for the 13 reg_blkeol_pck bits. */ blkeol_pck = bpl - (mode->htotal * cpp) - 6; if (blkeol_pck < 0) { dev_err(d->dev, "video block does not fit on line!\n"); dev_err(d->dev, "calculated bytes per line: %llu @ %d Hz\n", bpl, mode->vrefresh); dev_err(d->dev, "bytes per line (blkline_pck) %u bytes\n", blkline_pck); dev_err(d->dev, "blkeol_pck becomes %d bytes\n", blkeol_pck); return; } dev_dbg(d->dev, "BLKEOL packet: %d bytes\n", blkeol_pck); val = readl(d->regs + DSI_VID_BLKSIZE1); val &= ~DSI_VID_BLKSIZE1_BLKEOL_PCK_MASK; val |= blkeol_pck << DSI_VID_BLKSIZE1_BLKEOL_PCK_SHIFT; writel(val, d->regs + DSI_VID_BLKSIZE1); /* Use the same value for exact burst limit */ val = blkeol_pck << DSI_VID_VCA_SETTING2_EXACT_BURST_LIMIT_SHIFT; val &= DSI_VID_VCA_SETTING2_EXACT_BURST_LIMIT_MASK; writel(val, d->regs + DSI_VID_VCA_SETTING2); /* * This BLKEOL duration is claimed to be the duration in clock * cycles of the BLLP end-of-line (EOL) period for each line if * DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0 is set. * * It is hard to trust the manuals' claim that this is in clock * cycles as we mimic the behaviour of the vendor code, which * appears to write a number of bytes that would have been * transferred on a single lane. * * See the manual figure 657 page 2203 and page 2198 for the 13 * reg_blkeol_duration bits. * * FIXME: should this also be set up also for non-burst mode * according to figure 565 page 2202? */ blkeol_duration = DIV_ROUND_CLOSEST(blkeol_pck + 6, d->mdsi->lanes); dev_dbg(d->dev, "BLKEOL duration: %d clock cycles\n", blkeol_duration); val = readl(d->regs + DSI_VID_PCK_TIME); val &= ~DSI_VID_PCK_TIME_BLKEOL_DURATION_MASK; val |= blkeol_duration << DSI_VID_PCK_TIME_BLKEOL_DURATION_SHIFT; writel(val, d->regs + DSI_VID_PCK_TIME); /* Max burst limit, this is given in bytes */ val = readl(d->regs + DSI_VID_VCA_SETTING1); val &= ~DSI_VID_VCA_SETTING1_MAX_BURST_LIMIT_MASK; val |= (blkeol_pck - 6) << DSI_VID_VCA_SETTING1_MAX_BURST_LIMIT_SHIFT; writel(val, d->regs + DSI_VID_VCA_SETTING1); } /* Maximum line limit */ val = readl(d->regs + DSI_VID_VCA_SETTING2); val &= ~DSI_VID_VCA_SETTING2_MAX_LINE_LIMIT_MASK; val |= (blkline_pck - 6) << DSI_VID_VCA_SETTING2_MAX_LINE_LIMIT_SHIFT; writel(val, d->regs + DSI_VID_VCA_SETTING2); dev_dbg(d->dev, "blkline pck: %d bytes\n", blkline_pck - 6); } static void mcde_dsi_start(struct mcde_dsi *d) { unsigned long hs_freq; u32 val; int i; /* No integration mode */ writel(0, d->regs + DSI_MCTL_INTEGRATION_MODE); /* Enable the DSI port, from drivers/video/mcde/dsilink_v2.c */ val = DSI_MCTL_MAIN_DATA_CTL_LINK_EN | DSI_MCTL_MAIN_DATA_CTL_BTA_EN | DSI_MCTL_MAIN_DATA_CTL_READ_EN | DSI_MCTL_MAIN_DATA_CTL_REG_TE_EN; if (d->mdsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET) val |= DSI_MCTL_MAIN_DATA_CTL_HOST_EOT_GEN; writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL); /* Set a high command timeout, clear other fields */ val = 0x3ff << DSI_CMD_MODE_CTL_TE_TIMEOUT_SHIFT; writel(val, d->regs + DSI_CMD_MODE_CTL); /* * UI_X4 is described as "unit interval times four" * I guess since DSI packets are 4 bytes wide, one unit * is one byte. */ hs_freq = clk_get_rate(d->hs_clk); hs_freq /= 1000000; /* MHz */ val = 4000 / hs_freq; dev_dbg(d->dev, "UI value: %d\n", val); val <<= DSI_MCTL_DPHY_STATIC_UI_X4_SHIFT; val &= DSI_MCTL_DPHY_STATIC_UI_X4_MASK; writel(val, d->regs + DSI_MCTL_DPHY_STATIC); /* * Enable clocking: 0x0f (something?) between each burst, * enable the second lane if needed, enable continuous clock if * needed, enable switch into ULPM (ultra-low power mode) on * all the lines. */ val = 0x0f << DSI_MCTL_MAIN_PHY_CTL_WAIT_BURST_TIME_SHIFT; if (d->mdsi->lanes == 2) val |= DSI_MCTL_MAIN_PHY_CTL_LANE2_EN; if (!(d->mdsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) val |= DSI_MCTL_MAIN_PHY_CTL_CLK_CONTINUOUS; val |= DSI_MCTL_MAIN_PHY_CTL_CLK_ULPM_EN | DSI_MCTL_MAIN_PHY_CTL_DAT1_ULPM_EN | DSI_MCTL_MAIN_PHY_CTL_DAT2_ULPM_EN; writel(val, d->regs + DSI_MCTL_MAIN_PHY_CTL); val = (1 << DSI_MCTL_ULPOUT_TIME_CKLANE_ULPOUT_TIME_SHIFT) | (1 << DSI_MCTL_ULPOUT_TIME_DATA_ULPOUT_TIME_SHIFT); writel(val, d->regs + DSI_MCTL_ULPOUT_TIME); writel(DSI_DPHY_LANES_TRIM_DPHY_SPECS_90_81B_0_90, d->regs + DSI_DPHY_LANES_TRIM); /* High PHY timeout */ val = (0x0f << DSI_MCTL_DPHY_TIMEOUT_CLK_DIV_SHIFT) | (0x3fff << DSI_MCTL_DPHY_TIMEOUT_HSTX_TO_VAL_SHIFT) | (0x3fff << DSI_MCTL_DPHY_TIMEOUT_LPRX_TO_VAL_SHIFT); writel(val, d->regs + DSI_MCTL_DPHY_TIMEOUT); val = DSI_MCTL_MAIN_EN_PLL_START | DSI_MCTL_MAIN_EN_CKLANE_EN | DSI_MCTL_MAIN_EN_DAT1_EN | DSI_MCTL_MAIN_EN_IF1_EN; if (d->mdsi->lanes == 2) val |= DSI_MCTL_MAIN_EN_DAT2_EN; writel(val, d->regs + DSI_MCTL_MAIN_EN); /* Wait for the PLL to lock and the clock and data lines to come up */ i = 0; val = DSI_MCTL_MAIN_STS_PLL_LOCK | DSI_MCTL_MAIN_STS_CLKLANE_READY | DSI_MCTL_MAIN_STS_DAT1_READY; if (d->mdsi->lanes == 2) val |= DSI_MCTL_MAIN_STS_DAT2_READY; while ((readl(d->regs + DSI_MCTL_MAIN_STS) & val) != val) { /* Sleep for a millisecond */ usleep_range(1000, 1500); if (i++ == 100) { dev_warn(d->dev, "DSI lanes did not start up\n"); return; } } /* TODO needed? */ /* Command mode, clear IF1 ID */ val = readl(d->regs + DSI_CMD_MODE_CTL); /* * If we enable low-power mode here, with * val |= DSI_CMD_MODE_CTL_IF1_LP_EN * then display updates become really slow. */ val &= ~DSI_CMD_MODE_CTL_IF1_ID_MASK; writel(val, d->regs + DSI_CMD_MODE_CTL); /* Wait for DSI PHY to initialize */ usleep_range(100, 200); dev_info(d->dev, "DSI link enabled\n"); } static void mcde_dsi_bridge_enable(struct drm_bridge *bridge) { struct mcde_dsi *d = bridge_to_mcde_dsi(bridge); u32 val; if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) { /* Enable video mode */ val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL); val |= DSI_MCTL_MAIN_DATA_CTL_VID_EN; writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL); } dev_info(d->dev, "enable DSI master\n"); }; static void mcde_dsi_bridge_pre_enable(struct drm_bridge *bridge) { struct mcde_dsi *d = bridge_to_mcde_dsi(bridge); unsigned long hs_freq, lp_freq; u32 val; int ret; /* Copy maximum clock frequencies */ if (d->mdsi->lp_rate) lp_freq = d->mdsi->lp_rate; else lp_freq = DSI_DEFAULT_LP_FREQ_HZ; if (d->mdsi->hs_rate) hs_freq = d->mdsi->hs_rate; else hs_freq = DSI_DEFAULT_HS_FREQ_HZ; /* Enable LP (Low Power, Energy Save, ES) and HS (High Speed) clocks */ d->lp_freq = clk_round_rate(d->lp_clk, lp_freq); ret = clk_set_rate(d->lp_clk, d->lp_freq); if (ret) dev_err(d->dev, "failed to set LP clock rate %lu Hz\n", d->lp_freq); d->hs_freq = clk_round_rate(d->hs_clk, hs_freq); ret = clk_set_rate(d->hs_clk, d->hs_freq); if (ret) dev_err(d->dev, "failed to set HS clock rate %lu Hz\n", d->hs_freq); /* Start clocks */ ret = clk_prepare_enable(d->lp_clk); if (ret) dev_err(d->dev, "failed to enable LP clock\n"); else dev_info(d->dev, "DSI LP clock rate %lu Hz\n", d->lp_freq); ret = clk_prepare_enable(d->hs_clk); if (ret) dev_err(d->dev, "failed to enable HS clock\n"); else dev_info(d->dev, "DSI HS clock rate %lu Hz\n", d->hs_freq); if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) { /* Put IF1 into video mode */ val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL); val |= DSI_MCTL_MAIN_DATA_CTL_IF1_MODE; writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL); /* Disable command mode on IF1 */ val = readl(d->regs + DSI_CMD_MODE_CTL); val &= ~DSI_CMD_MODE_CTL_IF1_LP_EN; writel(val, d->regs + DSI_CMD_MODE_CTL); /* Enable some error interrupts */ val = readl(d->regs + DSI_VID_MODE_STS_CTL); val |= DSI_VID_MODE_STS_CTL_ERR_MISSING_VSYNC; val |= DSI_VID_MODE_STS_CTL_ERR_MISSING_DATA; writel(val, d->regs + DSI_VID_MODE_STS_CTL); } else { /* Command mode, clear IF1 ID */ val = readl(d->regs + DSI_CMD_MODE_CTL); /* * If we enable low-power mode here with * val |= DSI_CMD_MODE_CTL_IF1_LP_EN * the display updates become really slow. */ val &= ~DSI_CMD_MODE_CTL_IF1_ID_MASK; writel(val, d->regs + DSI_CMD_MODE_CTL); } } static void mcde_dsi_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adj) { struct mcde_dsi *d = bridge_to_mcde_dsi(bridge); if (!d->mdsi) { dev_err(d->dev, "no DSI device attached to encoder!\n"); return; } dev_info(d->dev, "set DSI master to %dx%d %u Hz %s mode\n", mode->hdisplay, mode->vdisplay, mode->clock * 1000, (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) ? "VIDEO" : "CMD" ); if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) mcde_dsi_setup_video_mode(d, mode); } static void mcde_dsi_wait_for_command_mode_stop(struct mcde_dsi *d) { u32 val; int i; /* * Wait until we get out of command mode * CSM = Command State Machine */ i = 0; val = DSI_CMD_MODE_STS_CSM_RUNNING; while ((readl(d->regs + DSI_CMD_MODE_STS) & val) == val) { /* Sleep for a millisecond */ usleep_range(1000, 2000); if (i++ == 100) { dev_warn(d->dev, "could not get out of command mode\n"); return; } } } static void mcde_dsi_wait_for_video_mode_stop(struct mcde_dsi *d) { u32 val; int i; /* Wait until we get out og video mode */ i = 0; val = DSI_VID_MODE_STS_VSG_RUNNING; while ((readl(d->regs + DSI_VID_MODE_STS) & val) == val) { /* Sleep for a millisecond */ usleep_range(1000, 2000); if (i++ == 100) { dev_warn(d->dev, "could not get out of video mode\n"); return; } } } static void mcde_dsi_bridge_disable(struct drm_bridge *bridge) { struct mcde_dsi *d = bridge_to_mcde_dsi(bridge); u32 val; /* Disable all error interrupts */ writel(0, d->regs + DSI_VID_MODE_STS_CTL); if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) { /* Stop video mode */ val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL); val &= ~DSI_MCTL_MAIN_DATA_CTL_VID_EN; writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL); mcde_dsi_wait_for_video_mode_stop(d); } else { /* Stop command mode */ mcde_dsi_wait_for_command_mode_stop(d); } /* Stop clocks */ clk_disable_unprepare(d->hs_clk); clk_disable_unprepare(d->lp_clk); } static int mcde_dsi_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct mcde_dsi *d = bridge_to_mcde_dsi(bridge); struct drm_device *drm = bridge->dev; int ret; if (!drm_core_check_feature(drm, DRIVER_ATOMIC)) { dev_err(d->dev, "we need atomic updates\n"); return -ENOTSUPP; } /* Attach the DSI bridge to the output (panel etc) bridge */ ret = drm_bridge_attach(bridge->encoder, d->bridge_out, bridge, flags); if (ret) { dev_err(d->dev, "failed to attach the DSI bridge\n"); return ret; } return 0; } static const struct drm_bridge_funcs mcde_dsi_bridge_funcs = { .attach = mcde_dsi_bridge_attach, .mode_set = mcde_dsi_bridge_mode_set, .disable = mcde_dsi_bridge_disable, .enable = mcde_dsi_bridge_enable, .pre_enable = mcde_dsi_bridge_pre_enable, }; static int mcde_dsi_bind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; struct mcde *mcde = to_mcde(drm); struct mcde_dsi *d = dev_get_drvdata(dev); struct device_node *child; struct drm_panel *panel = NULL; struct drm_bridge *bridge = NULL; if (!of_get_available_child_count(dev->of_node)) { dev_info(dev, "unused DSI interface\n"); d->unused = true; return 0; } d->mcde = mcde; /* If the display attached before binding, set this up */ if (d->mdsi) mcde_dsi_attach_to_mcde(d); /* Obtain the clocks */ d->hs_clk = devm_clk_get(dev, "hs"); if (IS_ERR(d->hs_clk)) { dev_err(dev, "unable to get HS clock\n"); return PTR_ERR(d->hs_clk); } d->lp_clk = devm_clk_get(dev, "lp"); if (IS_ERR(d->lp_clk)) { dev_err(dev, "unable to get LP clock\n"); return PTR_ERR(d->lp_clk); } /* Assert RESET through the PRCMU, active low */ /* FIXME: which DSI block? */ regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET, PRCM_DSI_SW_RESET_DSI0_SW_RESETN, 0); usleep_range(100, 200); /* De-assert RESET again */ regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET, PRCM_DSI_SW_RESET_DSI0_SW_RESETN, PRCM_DSI_SW_RESET_DSI0_SW_RESETN); /* Start up the hardware */ mcde_dsi_start(d); /* Look for a panel as a child to this node */ for_each_available_child_of_node(dev->of_node, child) { panel = of_drm_find_panel(child); if (IS_ERR(panel)) { dev_err(dev, "failed to find panel try bridge (%ld)\n", PTR_ERR(panel)); panel = NULL; bridge = of_drm_find_bridge(child); if (!bridge) { dev_err(dev, "failed to find bridge\n"); return -EINVAL; } } } if (panel) { bridge = drm_panel_bridge_add_typed(panel, DRM_MODE_CONNECTOR_DSI); if (IS_ERR(bridge)) { dev_err(dev, "error adding panel bridge\n"); return PTR_ERR(bridge); } dev_info(dev, "connected to panel\n"); d->panel = panel; } else if (bridge) { /* TODO: AV8100 HDMI encoder goes here for example */ dev_info(dev, "connected to non-panel bridge (unsupported)\n"); return -ENODEV; } else { dev_err(dev, "no panel or bridge\n"); return -ENODEV; } d->bridge_out = bridge; /* Create a bridge for this DSI channel */ d->bridge.funcs = &mcde_dsi_bridge_funcs; d->bridge.of_node = dev->of_node; drm_bridge_add(&d->bridge); /* TODO: first come first serve, use a list */ mcde->bridge = &d->bridge; dev_info(dev, "initialized MCDE DSI bridge\n"); return 0; } static void mcde_dsi_unbind(struct device *dev, struct device *master, void *data) { struct mcde_dsi *d = dev_get_drvdata(dev); if (d->panel) drm_panel_bridge_remove(d->bridge_out); regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET, PRCM_DSI_SW_RESET_DSI0_SW_RESETN, 0); } static const struct component_ops mcde_dsi_component_ops = { .bind = mcde_dsi_bind, .unbind = mcde_dsi_unbind, }; static int mcde_dsi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mcde_dsi *d; struct mipi_dsi_host *host; struct resource *res; u32 dsi_id; int ret; d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->dev = dev; platform_set_drvdata(pdev, d); /* Get a handle on the PRCMU so we can do reset */ d->prcmu = syscon_regmap_lookup_by_compatible("stericsson,db8500-prcmu"); if (IS_ERR(d->prcmu)) { dev_err(dev, "no PRCMU regmap\n"); return PTR_ERR(d->prcmu); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); d->regs = devm_ioremap_resource(dev, res); if (IS_ERR(d->regs)) { dev_err(dev, "no DSI regs\n"); return PTR_ERR(d->regs); } dsi_id = readl(d->regs + DSI_ID_REG); dev_info(dev, "HW revision 0x%08x\n", dsi_id); host = &d->dsi_host; host->dev = dev; host->ops = &mcde_dsi_host_ops; ret = mipi_dsi_host_register(host); if (ret < 0) { dev_err(dev, "failed to register DSI host: %d\n", ret); return ret; } dev_info(dev, "registered DSI host\n"); platform_set_drvdata(pdev, d); return component_add(dev, &mcde_dsi_component_ops); } static int mcde_dsi_remove(struct platform_device *pdev) { struct mcde_dsi *d = platform_get_drvdata(pdev); component_del(&pdev->dev, &mcde_dsi_component_ops); mipi_dsi_host_unregister(&d->dsi_host); return 0; } static const struct of_device_id mcde_dsi_of_match[] = { { .compatible = "ste,mcde-dsi", }, {}, }; struct platform_driver mcde_dsi_driver = { .driver = { .name = "mcde-dsi", .of_match_table = of_match_ptr(mcde_dsi_of_match), }, .probe = mcde_dsi_probe, .remove = mcde_dsi_remove, };