/* * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support * Copyright (c) 2008 Marvell Semiconductor * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "mv88e6xxx.h" /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will * use all 32 SMI bus addresses on its SMI bus, and all switch registers * will be directly accessible on some {device address,register address} * pair. If the ADDR[4:0] pins are not strapped to zero, the switch * will only respond to SMI transactions to that specific address, and * an indirect addressing mechanism needs to be used to access its * registers. */ static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) { int ret; int i; for (i = 0; i < 16; i++) { ret = mdiobus_read(bus, sw_addr, SMI_CMD); if (ret < 0) return ret; if ((ret & SMI_CMD_BUSY) == 0) return 0; } return -ETIMEDOUT; } int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg) { int ret; if (sw_addr == 0) return mdiobus_read(bus, addr, reg); /* Wait for the bus to become free. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Transmit the read command. */ ret = mdiobus_write(bus, sw_addr, SMI_CMD, SMI_CMD_OP_22_READ | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the read command to complete. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Read the data. */ ret = mdiobus_read(bus, sw_addr, SMI_DATA); if (ret < 0) return ret; return ret & 0xffff; } /* Must be called with SMI mutex held */ static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); int ret; if (bus == NULL) return -EINVAL; ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg); if (ret < 0) return ret; dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, ret); return ret; } int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_reg_read(ds, addr, reg); mutex_unlock(&ps->smi_mutex); return ret; } int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, int reg, u16 val) { int ret; if (sw_addr == 0) return mdiobus_write(bus, addr, reg, val); /* Wait for the bus to become free. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Transmit the data to write. */ ret = mdiobus_write(bus, sw_addr, SMI_DATA, val); if (ret < 0) return ret; /* Transmit the write command. */ ret = mdiobus_write(bus, sw_addr, SMI_CMD, SMI_CMD_OP_22_WRITE | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the write command to complete. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; return 0; } /* Must be called with SMI mutex held */ static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); if (bus == NULL) return -EINVAL; dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, val); return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val); } int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_reg_write(ds, addr, reg, val); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) { REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); return 0; } int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) { int i; int ret; for (i = 0; i < 6; i++) { int j; /* Write the MAC address byte. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC, GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]); /* Wait for the write to complete. */ for (j = 0; j < 16; j++) { ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC); if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0) break; } if (j == 16) return -ETIMEDOUT; } return 0; } /* Must be called with phy mutex held */ static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) { if (addr >= 0) return mv88e6xxx_reg_read(ds, addr, regnum); return 0xffff; } /* Must be called with phy mutex held */ static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val) { if (addr >= 0) return mv88e6xxx_reg_write(ds, addr, regnum, val); return 0; } #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) { int ret; unsigned long timeout; ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret & ~GLOBAL_CONTROL_PPU_ENABLE); timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) { int ret; unsigned long timeout; ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE); timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) { struct mv88e6xxx_priv_state *ps; ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); if (mutex_trylock(&ps->ppu_mutex)) { struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1; if (mv88e6xxx_ppu_enable(ds) == 0) ps->ppu_disabled = 0; mutex_unlock(&ps->ppu_mutex); } } static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) { struct mv88e6xxx_priv_state *ps = (void *)_ps; schedule_work(&ps->ppu_work); } static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->ppu_mutex); /* If the PHY polling unit is enabled, disable it so that * we can access the PHY registers. If it was already * disabled, cancel the timer that is going to re-enable * it. */ if (!ps->ppu_disabled) { ret = mv88e6xxx_ppu_disable(ds); if (ret < 0) { mutex_unlock(&ps->ppu_mutex); return ret; } ps->ppu_disabled = 1; } else { del_timer(&ps->ppu_timer); ret = 0; } return ret; } static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); /* Schedule a timer to re-enable the PHY polling unit. */ mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); mutex_unlock(&ps->ppu_mutex); } void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); mutex_init(&ps->ppu_mutex); INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); init_timer(&ps->ppu_timer); ps->ppu_timer.data = (unsigned long)ps; ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; } int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) { int ret; ret = mv88e6xxx_ppu_access_get(ds); if (ret >= 0) { ret = mv88e6xxx_reg_read(ds, addr, regnum); mv88e6xxx_ppu_access_put(ds); } return ret; } int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, int regnum, u16 val) { int ret; ret = mv88e6xxx_ppu_access_get(ds); if (ret >= 0) { ret = mv88e6xxx_reg_write(ds, addr, regnum, val); mv88e6xxx_ppu_access_put(ds); } return ret; } #endif void mv88e6xxx_poll_link(struct dsa_switch *ds) { int i; for (i = 0; i < DSA_MAX_PORTS; i++) { struct net_device *dev; int uninitialized_var(port_status); int link; int speed; int duplex; int fc; dev = ds->ports[i]; if (dev == NULL) continue; link = 0; if (dev->flags & IFF_UP) { port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), PORT_STATUS); if (port_status < 0) continue; link = !!(port_status & PORT_STATUS_LINK); } if (!link) { if (netif_carrier_ok(dev)) { netdev_info(dev, "link down\n"); netif_carrier_off(dev); } continue; } switch (port_status & PORT_STATUS_SPEED_MASK) { case PORT_STATUS_SPEED_10: speed = 10; break; case PORT_STATUS_SPEED_100: speed = 100; break; case PORT_STATUS_SPEED_1000: speed = 1000; break; default: speed = -1; break; } duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0; fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0; if (!netif_carrier_ok(dev)) { netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n", speed, duplex ? "full" : "half", fc ? "en" : "dis"); netif_carrier_on(dev); } } } static bool mv88e6xxx_6065_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6031: case PORT_SWITCH_ID_6061: case PORT_SWITCH_ID_6035: case PORT_SWITCH_ID_6065: return true; } return false; } static bool mv88e6xxx_6095_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6092: case PORT_SWITCH_ID_6095: return true; } return false; } static bool mv88e6xxx_6097_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6046: case PORT_SWITCH_ID_6085: case PORT_SWITCH_ID_6096: case PORT_SWITCH_ID_6097: return true; } return false; } static bool mv88e6xxx_6165_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6123: case PORT_SWITCH_ID_6161: case PORT_SWITCH_ID_6165: return true; } return false; } static bool mv88e6xxx_6185_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6121: case PORT_SWITCH_ID_6122: case PORT_SWITCH_ID_6152: case PORT_SWITCH_ID_6155: case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185: case PORT_SWITCH_ID_6108: case PORT_SWITCH_ID_6131: return true; } return false; } static bool mv88e6xxx_6351_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6171: case PORT_SWITCH_ID_6175: case PORT_SWITCH_ID_6350: case PORT_SWITCH_ID_6351: return true; } return false; } static bool mv88e6xxx_6352_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176: case PORT_SWITCH_ID_6240: case PORT_SWITCH_ID_6352: return true; } return false; } static int mv88e6xxx_stats_wait(struct dsa_switch *ds) { int ret; int i; for (i = 0; i < 10; i++) { ret = REG_READ(REG_GLOBAL, GLOBAL_STATS_OP); if ((ret & GLOBAL_STATS_OP_BUSY) == 0) return 0; } return -ETIMEDOUT; } static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) { int ret; if (mv88e6xxx_6352_family(ds)) port = (port + 1) << 5; /* Snapshot the hardware statistics counters for this port. */ REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_CAPTURE_PORT | GLOBAL_STATS_OP_HIST_RX_TX | port); /* Wait for the snapshotting to complete. */ ret = mv88e6xxx_stats_wait(ds); if (ret < 0) return ret; return 0; } static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) { u32 _val; int ret; *val = 0; ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_READ_CAPTURED | GLOBAL_STATS_OP_HIST_RX_TX | stat); if (ret < 0) return; ret = mv88e6xxx_stats_wait(ds); if (ret < 0) return; ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); if (ret < 0) return; _val = ret << 16; ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); if (ret < 0) return; *val = _val | ret; } static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { { "in_good_octets", 8, 0x00, }, { "in_bad_octets", 4, 0x02, }, { "in_unicast", 4, 0x04, }, { "in_broadcasts", 4, 0x06, }, { "in_multicasts", 4, 0x07, }, { "in_pause", 4, 0x16, }, { "in_undersize", 4, 0x18, }, { "in_fragments", 4, 0x19, }, { "in_oversize", 4, 0x1a, }, { "in_jabber", 4, 0x1b, }, { "in_rx_error", 4, 0x1c, }, { "in_fcs_error", 4, 0x1d, }, { "out_octets", 8, 0x0e, }, { "out_unicast", 4, 0x10, }, { "out_broadcasts", 4, 0x13, }, { "out_multicasts", 4, 0x12, }, { "out_pause", 4, 0x15, }, { "excessive", 4, 0x11, }, { "collisions", 4, 0x1e, }, { "deferred", 4, 0x05, }, { "single", 4, 0x14, }, { "multiple", 4, 0x17, }, { "out_fcs_error", 4, 0x03, }, { "late", 4, 0x1f, }, { "hist_64bytes", 4, 0x08, }, { "hist_65_127bytes", 4, 0x09, }, { "hist_128_255bytes", 4, 0x0a, }, { "hist_256_511bytes", 4, 0x0b, }, { "hist_512_1023bytes", 4, 0x0c, }, { "hist_1024_max_bytes", 4, 0x0d, }, /* Not all devices have the following counters */ { "sw_in_discards", 4, 0x110, }, { "sw_in_filtered", 2, 0x112, }, { "sw_out_filtered", 2, 0x113, }, }; static bool have_sw_in_discards(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161: case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171: case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176: case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185: case PORT_SWITCH_ID_6352: return true; default: return false; } } static void _mv88e6xxx_get_strings(struct dsa_switch *ds, int nr_stats, struct mv88e6xxx_hw_stat *stats, int port, uint8_t *data) { int i; for (i = 0; i < nr_stats; i++) { memcpy(data + i * ETH_GSTRING_LEN, stats[i].string, ETH_GSTRING_LEN); } } static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int nr_stats, struct mv88e6xxx_hw_stat *stats, int port, uint64_t *data) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; mutex_lock(&ps->stats_mutex); ret = mv88e6xxx_stats_snapshot(ds, port); if (ret < 0) { mutex_unlock(&ps->stats_mutex); return; } /* Read each of the counters. */ for (i = 0; i < nr_stats; i++) { struct mv88e6xxx_hw_stat *s = stats + i; u32 low; u32 high = 0; if (s->reg >= 0x100) { ret = mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg - 0x100); if (ret < 0) goto error; low = ret; if (s->sizeof_stat == 4) { ret = mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg - 0x100 + 1); if (ret < 0) goto error; high = ret; } data[i] = (((u64)high) << 16) | low; continue; } mv88e6xxx_stats_read(ds, s->reg, &low); if (s->sizeof_stat == 8) mv88e6xxx_stats_read(ds, s->reg + 1, &high); data[i] = (((u64)high) << 32) | low; } error: mutex_unlock(&ps->stats_mutex); } /* All the statistics in the table */ void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { if (have_sw_in_discards(ds)) _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats), mv88e6xxx_hw_stats, port, data); else _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, mv88e6xxx_hw_stats, port, data); } int mv88e6xxx_get_sset_count(struct dsa_switch *ds) { if (have_sw_in_discards(ds)) return ARRAY_SIZE(mv88e6xxx_hw_stats); return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3; } void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { if (have_sw_in_discards(ds)) _mv88e6xxx_get_ethtool_stats( ds, ARRAY_SIZE(mv88e6xxx_hw_stats), mv88e6xxx_hw_stats, port, data); else _mv88e6xxx_get_ethtool_stats( ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, mv88e6xxx_hw_stats, port, data); } int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) { return 32 * sizeof(u16); } void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, struct ethtool_regs *regs, void *_p) { u16 *p = _p; int i; regs->version = 0; memset(p, 0xff, 32 * sizeof(u16)); for (i = 0; i < 32; i++) { int ret; ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i); if (ret >= 0) p[i] = ret; } } #ifdef CONFIG_NET_DSA_HWMON int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int val; *temp = 0; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6); if (ret < 0) goto error; /* Enable temperature sensor */ ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); if (ret < 0) goto error; ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5)); if (ret < 0) goto error; /* Wait for temperature to stabilize */ usleep_range(10000, 12000); val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); if (val < 0) { ret = val; goto error; } /* Disable temperature sensor */ ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5)); if (ret < 0) goto error; *temp = ((val & 0x1f) - 5) * 5; error: _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0); mutex_unlock(&ps->phy_mutex); return ret; } #endif /* CONFIG_NET_DSA_HWMON */ static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) { unsigned long timeout = jiffies + HZ / 10; while (time_before(jiffies, timeout)) { int ret; ret = REG_READ(reg, offset); if (!(ret & mask)) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } int mv88e6xxx_phy_wait(struct dsa_switch *ds) { return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_BUSY); } int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds) { return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, GLOBAL2_EEPROM_OP_LOAD); } int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds) { return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, GLOBAL2_EEPROM_OP_BUSY); } /* Must be called with SMI lock held */ static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) { unsigned long timeout = jiffies + HZ / 10; while (time_before(jiffies, timeout)) { int ret; ret = _mv88e6xxx_reg_read(ds, reg, offset); if (ret < 0) return ret; if (!(ret & mask)) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } /* Must be called with SMI lock held */ static int _mv88e6xxx_atu_wait(struct dsa_switch *ds) { return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY); } /* Must be called with phy mutex held */ static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, int regnum) { int ret; REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum); ret = mv88e6xxx_phy_wait(ds); if (ret < 0) return ret; return REG_READ(REG_GLOBAL2, GLOBAL2_SMI_DATA); } /* Must be called with phy mutex held */ static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, int regnum, u16 val) { REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_DATA, val); REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum); return mv88e6xxx_phy_wait(ds); } int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg; mutex_lock(&ps->phy_mutex); reg = _mv88e6xxx_phy_read_indirect(ds, port, 16); if (reg < 0) goto out; e->eee_enabled = !!(reg & 0x0200); e->tx_lpi_enabled = !!(reg & 0x0100); reg = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); if (reg < 0) goto out; e->eee_active = !!(reg & PORT_STATUS_EEE); reg = 0; out: mutex_unlock(&ps->phy_mutex); return reg; } int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, struct phy_device *phydev, struct ethtool_eee *e) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg; int ret; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_read_indirect(ds, port, 16); if (ret < 0) goto out; reg = ret & ~0x0300; if (e->eee_enabled) reg |= 0x0200; if (e->tx_lpi_enabled) reg |= 0x0100; ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg); out: mutex_unlock(&ps->phy_mutex); return ret; } static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd) { int ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd); if (ret < 0) return ret; return _mv88e6xxx_atu_wait(ds); } static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid) { int ret; ret = _mv88e6xxx_atu_wait(ds); if (ret < 0) return ret; return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB); } static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg, ret = 0; u8 oldstate; mutex_lock(&ps->smi_mutex); reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL); if (reg < 0) { ret = reg; goto abort; } oldstate = reg & PORT_CONTROL_STATE_MASK; if (oldstate != state) { /* Flush forwarding database if we're moving a port * from Learning or Forwarding state to Disabled or * Blocking or Listening state. */ if (oldstate >= PORT_CONTROL_STATE_LEARNING && state <= PORT_CONTROL_STATE_BLOCKING) { ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]); if (ret) goto abort; } reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, reg); } abort: mutex_unlock(&ps->smi_mutex); return ret; } /* Must be called with smi lock held */ static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u8 fid = ps->fid[port]; u16 reg = fid << 12; if (dsa_is_cpu_port(ds, port)) reg |= ds->phys_port_mask; else reg |= (ps->bridge_mask[fid] | (1 << dsa_upstream_port(ds))) & ~(1 << port); return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg); } /* Must be called with smi lock held */ static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int port; u32 mask; int ret; mask = ds->phys_port_mask; while (mask) { port = __ffs(mask); mask &= ~(1 << port); if (ps->fid[port] != fid) continue; ret = _mv88e6xxx_update_port_config(ds, port); if (ret) return ret; } return _mv88e6xxx_flush_fid(ds, fid); } /* Bridge handling functions */ int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret = 0; u32 nmask; int fid; /* If the bridge group is not empty, join that group. * Otherwise create a new group. */ fid = ps->fid[port]; nmask = br_port_mask & ~(1 << port); if (nmask) fid = ps->fid[__ffs(nmask)]; nmask = ps->bridge_mask[fid] | (1 << port); if (nmask != br_port_mask) { netdev_err(ds->ports[port], "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n", fid, br_port_mask, nmask); return -EINVAL; } mutex_lock(&ps->smi_mutex); ps->bridge_mask[fid] = br_port_mask; if (fid != ps->fid[port]) { ps->fid_mask |= 1 << ps->fid[port]; ps->fid[port] = fid; ret = _mv88e6xxx_update_bridge_config(ds, fid); } mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u8 fid, newfid; int ret; fid = ps->fid[port]; if (ps->bridge_mask[fid] != br_port_mask) { netdev_err(ds->ports[port], "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n", fid, br_port_mask, ps->bridge_mask[fid]); return -EINVAL; } /* If the port was the last port of a bridge, we are done. * Otherwise assign a new fid to the port, and fix up * the bridge configuration. */ if (br_port_mask == (1 << port)) return 0; mutex_lock(&ps->smi_mutex); newfid = __ffs(ps->fid_mask); ps->fid[port] = newfid; ps->fid_mask &= (1 << newfid); ps->bridge_mask[fid] &= ~(1 << port); ps->bridge_mask[newfid] = 1 << port; ret = _mv88e6xxx_update_bridge_config(ds, fid); if (!ret) ret = _mv88e6xxx_update_bridge_config(ds, newfid); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = PORT_CONTROL_STATE_DISABLED; break; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: stp_state = PORT_CONTROL_STATE_BLOCKING; break; case BR_STATE_LEARNING: stp_state = PORT_CONTROL_STATE_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = PORT_CONTROL_STATE_FORWARDING; break; } netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state); /* mv88e6xxx_port_stp_update may be called with softirqs disabled, * so we can not update the port state directly but need to schedule it. */ ps->port_state[port] = stp_state; set_bit(port, &ps->port_state_update_mask); schedule_work(&ps->bridge_work); return 0; } static int __mv88e6xxx_write_addr(struct dsa_switch *ds, const unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_write( ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, (addr[i * 2] << 8) | addr[i * 2 + 1]); if (ret < 0) return ret; } return 0; } static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i); if (ret < 0) return ret; addr[i * 2] = ret >> 8; addr[i * 2 + 1] = ret & 0xff; } return 0; } static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port, const unsigned char *addr, int state) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u8 fid = ps->fid[port]; int ret; ret = _mv88e6xxx_atu_wait(ds); if (ret < 0) return ret; ret = __mv88e6xxx_write_addr(ds, addr); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, (0x10 << port) | state); if (ret) return ret; ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB); return ret; } int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { int state = is_multicast_ether_addr(addr) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC; struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, GLOBAL_ATU_DATA_STATE_UNUSED); mutex_unlock(&ps->smi_mutex); return ret; } static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port, unsigned char *addr, bool *is_static) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u8 fid = ps->fid[port]; int ret, state; ret = _mv88e6xxx_atu_wait(ds); if (ret < 0) return ret; ret = __mv88e6xxx_write_addr(ds, addr); if (ret < 0) return ret; do { ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); if (ret < 0) return ret; state = ret & GLOBAL_ATU_DATA_STATE_MASK; if (state == GLOBAL_ATU_DATA_STATE_UNUSED) return -ENOENT; } while (!(((ret >> 4) & 0xff) & (1 << port))); ret = __mv88e6xxx_read_addr(ds, addr); if (ret < 0) return ret; *is_static = state == (is_multicast_ether_addr(addr) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC); return 0; } /* get next entry for port */ int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port, unsigned char *addr, bool *is_static) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static); mutex_unlock(&ps->smi_mutex); return ret; } static void mv88e6xxx_bridge_work(struct work_struct *work) { struct mv88e6xxx_priv_state *ps; struct dsa_switch *ds; int port; ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work); ds = ((struct dsa_switch *)ps) - 1; while (ps->port_state_update_mask) { port = __ffs(ps->port_state_update_mask); clear_bit(port, &ps->port_state_update_mask); mv88e6xxx_set_port_state(ds, port, ps->port_state[port]); } } static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret, fid; u16 reg; mutex_lock(&ps->smi_mutex); if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds)) { /* MAC Forcing register: don't force link, speed, * duplex or flow control state to any particular * values on physical ports, but force the CPU port * and all DSA ports to their maximum bandwidth and * full duplex. */ reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); if (dsa_is_cpu_port(ds, port) || ds->dsa_port_mask & (1 << port)) { reg |= PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX; if (mv88e6xxx_6065_family(ds)) reg |= PORT_PCS_CTRL_100; else reg |= PORT_PCS_CTRL_1000; } else { reg |= PORT_PCS_CTRL_UNFORCED; } ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg); if (ret) goto abort; } /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, * disable Header mode, enable IGMP/MLD snooping, disable VLAN * tunneling, determine priority by looking at 802.1p and IP * priority fields (IP prio has precedence), and set STP state * to Forwarding. * * If this is the CPU link, use DSA or EDSA tagging depending * on which tagging mode was configured. * * If this is a link to another switch, use DSA tagging mode. * * If this is the upstream port for this switch, enable * forwarding of unknown unicasts and multicasts. */ reg = 0; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || mv88e6xxx_6185_family(ds)) reg = PORT_CONTROL_IGMP_MLD_SNOOP | PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | PORT_CONTROL_STATE_FORWARDING; if (dsa_is_cpu_port(ds, port)) { if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) reg |= PORT_CONTROL_DSA_TAG; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) { if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA; else reg |= PORT_CONTROL_FRAME_MODE_DSA; } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || mv88e6xxx_6185_family(ds)) { if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) reg |= PORT_CONTROL_EGRESS_ADD_TAG; } } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds)) { if (ds->dsa_port_mask & (1 << port)) reg |= PORT_CONTROL_FRAME_MODE_DSA; if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_FORWARD_UNKNOWN | PORT_CONTROL_FORWARD_UNKNOWN_MC; } if (reg) { ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, reg); if (ret) goto abort; } /* Port Control 2: don't force a good FCS, set the maximum * frame size to 10240 bytes, don't let the switch add or * strip 802.1q tags, don't discard tagged or untagged frames * on this port, do a destination address lookup on all * received packets as usual, disable ARP mirroring and don't * send a copy of all transmitted/received frames on this port * to the CPU. */ reg = 0; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds)) reg = PORT_CONTROL_2_MAP_DA; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds)) reg |= PORT_CONTROL_2_JUMBO_10240; if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) { /* Set the upstream port this port should use */ reg |= dsa_upstream_port(ds); /* enable forwarding of unknown multicast addresses to * the upstream port */ if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; } if (reg) { ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2, reg); if (ret) goto abort; } /* Port Association Vector: when learning source addresses * of packets, add the address to the address database using * a port bitmap that has only the bit for this port set and * the other bits clear. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, 1 << port); if (ret) goto abort; /* Egress rate control 2: disable egress rate control. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2, 0x0000); if (ret) goto abort; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) { /* Do not limit the period of time that this port can * be paused for by the remote end or the period of * time that this port can pause the remote end. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PAUSE_CTRL, 0x0000); if (ret) goto abort; /* Port ATU control: disable limiting the number of * address database entries that this port is allowed * to use. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ATU_CONTROL, 0x0000); /* Priority Override: disable DA, SA and VTU priority * override. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PRI_OVERRIDE, 0x0000); if (ret) goto abort; /* Port Ethertype: use the Ethertype DSA Ethertype * value. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ETH_TYPE, ETH_P_EDSA); if (ret) goto abort; /* Tag Remap: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_TAG_REGMAP_0123, 0x3210); if (ret) goto abort; /* Tag Remap 2: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_TAG_REGMAP_4567, 0x7654); if (ret) goto abort; } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) { /* Rate Control: disable ingress rate limiting. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL, 0x0001); if (ret) goto abort; } /* Port Control 1: disable trunking, disable sending * learning messages to this port. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000); if (ret) goto abort; /* Port based VLAN map: give each port its own address * database, allow the CPU port to talk to each of the 'real' * ports, and allow each of the 'real' ports to only talk to * the upstream port. */ fid = __ffs(ps->fid_mask); ps->fid[port] = fid; ps->fid_mask &= ~(1 << fid); if (!dsa_is_cpu_port(ds, port)) ps->bridge_mask[fid] = 1 << port; ret = _mv88e6xxx_update_port_config(ds, port); if (ret) goto abort; /* Default VLAN ID and priority: don't set a default VLAN * ID, and set the default packet priority to zero. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, 0x0000); abort: mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_setup_ports(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; for (i = 0; i < ps->num_ports; i++) { ret = mv88e6xxx_setup_port(ds, i); if (ret < 0) return ret; } return 0; } int mv88e6xxx_setup_common(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); mutex_init(&ps->smi_mutex); mutex_init(&ps->stats_mutex); mutex_init(&ps->phy_mutex); ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0; ps->fid_mask = (1 << DSA_MAX_PORTS) - 1; INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work); return 0; } int mv88e6xxx_setup_global(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int i; /* Set the default address aging time to 5 minutes, and * enable address learn messages to be sent to all message * ports. */ REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL, 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL); /* Configure the IP ToS mapping registers. */ REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); /* Configure the IEEE 802.1p priority mapping register. */ REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); /* Send all frames with destination addresses matching * 01:80:c2:00:00:0x to the CPU port. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); /* Ignore removed tag data on doubly tagged packets, disable * flow control messages, force flow control priority to the * highest, and send all special multicast frames to the CPU * port at the highest priority. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 | GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI); /* Program the DSA routing table. */ for (i = 0; i < 32; i++) { int nexthop = 0x1f; if (ds->pd->rtable && i != ds->index && i < ds->dst->pd->nr_chips) nexthop = ds->pd->rtable[i] & 0x1f; REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, GLOBAL2_DEVICE_MAPPING_UPDATE | (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop); } /* Clear all trunk masks. */ for (i = 0; i < 8; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK, 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) | ((1 << ps->num_ports) - 1)); /* Clear all trunk mappings. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, GLOBAL2_TRUNK_MAPPING_UPDATE | (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT)); if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) { /* Send all frames with destination addresses matching * 01:80:c2:00:00:2x to the CPU port. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff); /* Initialise cross-chip port VLAN table to reset * defaults. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000); /* Clear the priority override table. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, 0x8000 | (i << 8)); } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) { /* Disable ingress rate limiting by resetting all * ingress rate limit registers to their initial * state. */ for (i = 0; i < ps->num_ports; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP, 0x9000 | (i << 8)); } return 0; } int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u16 is_reset = (ppu_active ? 0x8800 : 0xc800); unsigned long timeout; int ret; int i; /* Set all ports to the disabled state. */ for (i = 0; i < ps->num_ports; i++) { ret = REG_READ(REG_PORT(i), PORT_CONTROL); REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc); } /* Wait for transmit queues to drain. */ usleep_range(2000, 4000); /* Reset the switch. Keep the PPU active if requested. The PPU * needs to be active to support indirect phy register access * through global registers 0x18 and 0x19. */ if (ppu_active) REG_WRITE(REG_GLOBAL, 0x04, 0xc000); else REG_WRITE(REG_GLOBAL, 0x04, 0xc400); /* Wait up to one second for reset to complete. */ timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, 0x00); if ((ret & is_reset) == is_reset) break; usleep_range(1000, 2000); } if (time_after(jiffies, timeout)) return -ETIMEDOUT; return 0; } int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); if (ret < 0) goto error; ret = _mv88e6xxx_phy_read_indirect(ds, port, reg); error: _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); mutex_unlock(&ps->phy_mutex); return ret; } int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, int reg, int val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); if (ret < 0) goto error; ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val); error: _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); mutex_unlock(&ps->phy_mutex); return ret; } static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); if (port >= 0 && port < ps->num_ports) return port; return -EINVAL; } int mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_read(ds, addr, regnum); mutex_unlock(&ps->phy_mutex); return ret; } int mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_write(ds, addr, regnum, val); mutex_unlock(&ps->phy_mutex); return ret; } int mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum); mutex_unlock(&ps->phy_mutex); return ret; } int mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); mutex_unlock(&ps->phy_mutex); return ret; } static int __init mv88e6xxx_init(void) { #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) register_switch_driver(&mv88e6131_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) register_switch_driver(&mv88e6123_61_65_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) register_switch_driver(&mv88e6352_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) register_switch_driver(&mv88e6171_switch_driver); #endif return 0; } module_init(mv88e6xxx_init); static void __exit mv88e6xxx_cleanup(void) { #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) unregister_switch_driver(&mv88e6171_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) unregister_switch_driver(&mv88e6123_61_65_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) unregister_switch_driver(&mv88e6131_switch_driver); #endif } module_exit(mv88e6xxx_cleanup); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); MODULE_LICENSE("GPL");