// SPDX-License-Identifier: GPL-2.0-only /* * Contains CPU specific errata definitions * * Copyright (C) 2014 ARM Ltd. */ #include #include #include #include #include #include #include static bool __maybe_unused is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope) { const struct arm64_midr_revidr *fix; u32 midr = read_cpuid_id(), revidr; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); if (!is_midr_in_range(midr, &entry->midr_range)) return false; midr &= MIDR_REVISION_MASK | MIDR_VARIANT_MASK; revidr = read_cpuid(REVIDR_EL1); for (fix = entry->fixed_revs; fix && fix->revidr_mask; fix++) if (midr == fix->midr_rv && (revidr & fix->revidr_mask)) return false; return true; } static bool __maybe_unused is_affected_midr_range_list(const struct arm64_cpu_capabilities *entry, int scope) { WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); return is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list); } static bool __maybe_unused is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope) { u32 model; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); model = read_cpuid_id(); model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) | MIDR_ARCHITECTURE_MASK; return model == entry->midr_range.model; } static bool has_mismatched_cache_type(const struct arm64_cpu_capabilities *entry, int scope) { u64 mask = arm64_ftr_reg_ctrel0.strict_mask; u64 sys = arm64_ftr_reg_ctrel0.sys_val & mask; u64 ctr_raw, ctr_real; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); /* * We want to make sure that all the CPUs in the system expose * a consistent CTR_EL0 to make sure that applications behaves * correctly with migration. * * If a CPU has CTR_EL0.IDC but does not advertise it via CTR_EL0 : * * 1) It is safe if the system doesn't support IDC, as CPU anyway * reports IDC = 0, consistent with the rest. * * 2) If the system has IDC, it is still safe as we trap CTR_EL0 * access on this CPU via the ARM64_HAS_CACHE_IDC capability. * * So, we need to make sure either the raw CTR_EL0 or the effective * CTR_EL0 matches the system's copy to allow a secondary CPU to boot. */ ctr_raw = read_cpuid_cachetype() & mask; ctr_real = read_cpuid_effective_cachetype() & mask; return (ctr_real != sys) && (ctr_raw != sys); } static void cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *cap) { u64 mask = arm64_ftr_reg_ctrel0.strict_mask; bool enable_uct_trap = false; /* Trap CTR_EL0 access on this CPU, only if it has a mismatch */ if ((read_cpuid_cachetype() & mask) != (arm64_ftr_reg_ctrel0.sys_val & mask)) enable_uct_trap = true; /* ... or if the system is affected by an erratum */ if (cap->capability == ARM64_WORKAROUND_1542419) enable_uct_trap = true; if (enable_uct_trap) sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); } atomic_t arm64_el2_vector_last_slot = ATOMIC_INIT(-1); #include #include DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data); #ifdef CONFIG_KVM_INDIRECT_VECTORS extern char __smccc_workaround_1_smc_start[]; extern char __smccc_workaround_1_smc_end[]; static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start, const char *hyp_vecs_end) { void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K); int i; for (i = 0; i < SZ_2K; i += 0x80) memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start); __flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K); } static void install_bp_hardening_cb(bp_hardening_cb_t fn, const char *hyp_vecs_start, const char *hyp_vecs_end) { static DEFINE_RAW_SPINLOCK(bp_lock); int cpu, slot = -1; /* * detect_harden_bp_fw() passes NULL for the hyp_vecs start/end if * we're a guest. Skip the hyp-vectors work. */ if (!hyp_vecs_start) { __this_cpu_write(bp_hardening_data.fn, fn); return; } raw_spin_lock(&bp_lock); for_each_possible_cpu(cpu) { if (per_cpu(bp_hardening_data.fn, cpu) == fn) { slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu); break; } } if (slot == -1) { slot = atomic_inc_return(&arm64_el2_vector_last_slot); BUG_ON(slot >= BP_HARDEN_EL2_SLOTS); __copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end); } __this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot); __this_cpu_write(bp_hardening_data.fn, fn); raw_spin_unlock(&bp_lock); } #else #define __smccc_workaround_1_smc_start NULL #define __smccc_workaround_1_smc_end NULL static void install_bp_hardening_cb(bp_hardening_cb_t fn, const char *hyp_vecs_start, const char *hyp_vecs_end) { __this_cpu_write(bp_hardening_data.fn, fn); } #endif /* CONFIG_KVM_INDIRECT_VECTORS */ #include static void call_smc_arch_workaround_1(void) { arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL); } static void call_hvc_arch_workaround_1(void) { arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL); } static void qcom_link_stack_sanitization(void) { u64 tmp; asm volatile("mov %0, x30 \n" ".rept 16 \n" "bl . + 4 \n" ".endr \n" "mov x30, %0 \n" : "=&r" (tmp)); } static bool __nospectre_v2; static int __init parse_nospectre_v2(char *str) { __nospectre_v2 = true; return 0; } early_param("nospectre_v2", parse_nospectre_v2); /* * -1: No workaround * 0: No workaround required * 1: Workaround installed */ static int detect_harden_bp_fw(void) { bp_hardening_cb_t cb; void *smccc_start, *smccc_end; struct arm_smccc_res res; u32 midr = read_cpuid_id(); arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_ARCH_WORKAROUND_1, &res); switch ((int)res.a0) { case 1: /* Firmware says we're just fine */ return 0; case 0: break; default: return -1; } switch (arm_smccc_1_1_get_conduit()) { case SMCCC_CONDUIT_HVC: cb = call_hvc_arch_workaround_1; /* This is a guest, no need to patch KVM vectors */ smccc_start = NULL; smccc_end = NULL; break; case SMCCC_CONDUIT_SMC: cb = call_smc_arch_workaround_1; smccc_start = __smccc_workaround_1_smc_start; smccc_end = __smccc_workaround_1_smc_end; break; default: return -1; } if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) || ((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1)) cb = qcom_link_stack_sanitization; if (IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR)) install_bp_hardening_cb(cb, smccc_start, smccc_end); return 1; } DEFINE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); int ssbd_state __read_mostly = ARM64_SSBD_KERNEL; static bool __ssb_safe = true; static const struct ssbd_options { const char *str; int state; } ssbd_options[] = { { "force-on", ARM64_SSBD_FORCE_ENABLE, }, { "force-off", ARM64_SSBD_FORCE_DISABLE, }, { "kernel", ARM64_SSBD_KERNEL, }, }; static int __init ssbd_cfg(char *buf) { int i; if (!buf || !buf[0]) return -EINVAL; for (i = 0; i < ARRAY_SIZE(ssbd_options); i++) { int len = strlen(ssbd_options[i].str); if (strncmp(buf, ssbd_options[i].str, len)) continue; ssbd_state = ssbd_options[i].state; return 0; } return -EINVAL; } early_param("ssbd", ssbd_cfg); void __init arm64_update_smccc_conduit(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { u32 insn; BUG_ON(nr_inst != 1); switch (arm_smccc_1_1_get_conduit()) { case SMCCC_CONDUIT_HVC: insn = aarch64_insn_get_hvc_value(); break; case SMCCC_CONDUIT_SMC: insn = aarch64_insn_get_smc_value(); break; default: return; } *updptr = cpu_to_le32(insn); } void __init arm64_enable_wa2_handling(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { BUG_ON(nr_inst != 1); /* * Only allow mitigation on EL1 entry/exit and guest * ARCH_WORKAROUND_2 handling if the SSBD state allows it to * be flipped. */ if (arm64_get_ssbd_state() == ARM64_SSBD_KERNEL) *updptr = cpu_to_le32(aarch64_insn_gen_nop()); } void arm64_set_ssbd_mitigation(bool state) { int conduit; if (!IS_ENABLED(CONFIG_ARM64_SSBD)) { pr_info_once("SSBD disabled by kernel configuration\n"); return; } if (this_cpu_has_cap(ARM64_SSBS)) { if (state) asm volatile(SET_PSTATE_SSBS(0)); else asm volatile(SET_PSTATE_SSBS(1)); return; } conduit = arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL); WARN_ON_ONCE(conduit == SMCCC_CONDUIT_NONE); } static bool has_ssbd_mitigation(const struct arm64_cpu_capabilities *entry, int scope) { struct arm_smccc_res res; bool required = true; s32 val; bool this_cpu_safe = false; int conduit; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); if (cpu_mitigations_off()) ssbd_state = ARM64_SSBD_FORCE_DISABLE; /* delay setting __ssb_safe until we get a firmware response */ if (is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list)) this_cpu_safe = true; if (this_cpu_has_cap(ARM64_SSBS)) { if (!this_cpu_safe) __ssb_safe = false; required = false; goto out_printmsg; } conduit = arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_ARCH_WORKAROUND_2, &res); if (conduit == SMCCC_CONDUIT_NONE) { ssbd_state = ARM64_SSBD_UNKNOWN; if (!this_cpu_safe) __ssb_safe = false; return false; } val = (s32)res.a0; switch (val) { case SMCCC_RET_NOT_SUPPORTED: ssbd_state = ARM64_SSBD_UNKNOWN; if (!this_cpu_safe) __ssb_safe = false; return false; /* machines with mixed mitigation requirements must not return this */ case SMCCC_RET_NOT_REQUIRED: pr_info_once("%s mitigation not required\n", entry->desc); ssbd_state = ARM64_SSBD_MITIGATED; return false; case SMCCC_RET_SUCCESS: __ssb_safe = false; required = true; break; case 1: /* Mitigation not required on this CPU */ required = false; break; default: WARN_ON(1); if (!this_cpu_safe) __ssb_safe = false; return false; } switch (ssbd_state) { case ARM64_SSBD_FORCE_DISABLE: arm64_set_ssbd_mitigation(false); required = false; break; case ARM64_SSBD_KERNEL: if (required) { __this_cpu_write(arm64_ssbd_callback_required, 1); arm64_set_ssbd_mitigation(true); } break; case ARM64_SSBD_FORCE_ENABLE: arm64_set_ssbd_mitigation(true); required = true; break; default: WARN_ON(1); break; } out_printmsg: switch (ssbd_state) { case ARM64_SSBD_FORCE_DISABLE: pr_info_once("%s disabled from command-line\n", entry->desc); break; case ARM64_SSBD_FORCE_ENABLE: pr_info_once("%s forced from command-line\n", entry->desc); break; } return required; } /* known invulnerable cores */ static const struct midr_range arm64_ssb_cpus[] = { MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), {}, }; #ifdef CONFIG_ARM64_ERRATUM_1463225 DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); static bool has_cortex_a76_erratum_1463225(const struct arm64_cpu_capabilities *entry, int scope) { u32 midr = read_cpuid_id(); /* Cortex-A76 r0p0 - r3p1 */ struct midr_range range = MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1); WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); return is_midr_in_range(midr, &range) && is_kernel_in_hyp_mode(); } #endif static void __maybe_unused cpu_enable_cache_maint_trap(const struct arm64_cpu_capabilities *__unused) { sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCI, 0); } #define CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \ .matches = is_affected_midr_range, \ .midr_range = MIDR_RANGE(model, v_min, r_min, v_max, r_max) #define CAP_MIDR_ALL_VERSIONS(model) \ .matches = is_affected_midr_range, \ .midr_range = MIDR_ALL_VERSIONS(model) #define MIDR_FIXED(rev, revidr_mask) \ .fixed_revs = (struct arm64_midr_revidr[]){{ (rev), (revidr_mask) }, {}} #define ERRATA_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \ CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max) #define CAP_MIDR_RANGE_LIST(list) \ .matches = is_affected_midr_range_list, \ .midr_range_list = list /* Errata affecting a range of revisions of given model variant */ #define ERRATA_MIDR_REV_RANGE(m, var, r_min, r_max) \ ERRATA_MIDR_RANGE(m, var, r_min, var, r_max) /* Errata affecting a single variant/revision of a model */ #define ERRATA_MIDR_REV(model, var, rev) \ ERRATA_MIDR_RANGE(model, var, rev, var, rev) /* Errata affecting all variants/revisions of a given a model */ #define ERRATA_MIDR_ALL_VERSIONS(model) \ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \ CAP_MIDR_ALL_VERSIONS(model) /* Errata affecting a list of midr ranges, with same work around */ #define ERRATA_MIDR_RANGE_LIST(midr_list) \ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \ CAP_MIDR_RANGE_LIST(midr_list) /* Track overall mitigation state. We are only mitigated if all cores are ok */ static bool __hardenbp_enab = true; static bool __spectrev2_safe = true; int get_spectre_v2_workaround_state(void) { if (__spectrev2_safe) return ARM64_BP_HARDEN_NOT_REQUIRED; if (!__hardenbp_enab) return ARM64_BP_HARDEN_UNKNOWN; return ARM64_BP_HARDEN_WA_NEEDED; } /* * List of CPUs that do not need any Spectre-v2 mitigation at all. */ static const struct midr_range spectre_v2_safe_list[] = { MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), { /* sentinel */ } }; /* * Track overall bp hardening for all heterogeneous cores in the machine. * We are only considered "safe" if all booted cores are known safe. */ static bool __maybe_unused check_branch_predictor(const struct arm64_cpu_capabilities *entry, int scope) { int need_wa; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); /* If the CPU has CSV2 set, we're safe */ if (cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64PFR0_EL1), ID_AA64PFR0_CSV2_SHIFT)) return false; /* Alternatively, we have a list of unaffected CPUs */ if (is_midr_in_range_list(read_cpuid_id(), spectre_v2_safe_list)) return false; /* Fallback to firmware detection */ need_wa = detect_harden_bp_fw(); if (!need_wa) return false; __spectrev2_safe = false; if (!IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR)) { pr_warn_once("spectrev2 mitigation disabled by kernel configuration\n"); __hardenbp_enab = false; return false; } /* forced off */ if (__nospectre_v2 || cpu_mitigations_off()) { pr_info_once("spectrev2 mitigation disabled by command line option\n"); __hardenbp_enab = false; return false; } if (need_wa < 0) { pr_warn_once("ARM_SMCCC_ARCH_WORKAROUND_1 missing from firmware\n"); __hardenbp_enab = false; } return (need_wa > 0); } static const __maybe_unused struct midr_range tx2_family_cpus[] = { MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), {}, }; static bool __maybe_unused needs_tx2_tvm_workaround(const struct arm64_cpu_capabilities *entry, int scope) { int i; if (!is_affected_midr_range_list(entry, scope) || !is_hyp_mode_available()) return false; for_each_possible_cpu(i) { if (MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0) != 0) return true; } return false; } static bool __maybe_unused has_neoverse_n1_erratum_1542419(const struct arm64_cpu_capabilities *entry, int scope) { u32 midr = read_cpuid_id(); bool has_dic = read_cpuid_cachetype() & BIT(CTR_DIC_SHIFT); const struct midr_range range = MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1); WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); return is_midr_in_range(midr, &range) && has_dic; } #if defined(CONFIG_HARDEN_EL2_VECTORS) || defined(CONFIG_ARM64_ERRATUM_1319367) static const struct midr_range ca57_a72[] = { MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), {}, }; #endif #ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI static const struct arm64_cpu_capabilities arm64_repeat_tlbi_list[] = { #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009 { ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0) }, { .midr_range.model = MIDR_QCOM_KRYO, .matches = is_kryo_midr, }, #endif #ifdef CONFIG_ARM64_ERRATUM_1286807 { ERRATA_MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 0), }, #endif {}, }; #endif #ifdef CONFIG_CAVIUM_ERRATUM_27456 const struct midr_range cavium_erratum_27456_cpus[] = { /* Cavium ThunderX, T88 pass 1.x - 2.1 */ MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 1), /* Cavium ThunderX, T81 pass 1.0 */ MIDR_REV(MIDR_THUNDERX_81XX, 0, 0), {}, }; #endif #ifdef CONFIG_CAVIUM_ERRATUM_30115 static const struct midr_range cavium_erratum_30115_cpus[] = { /* Cavium ThunderX, T88 pass 1.x - 2.2 */ MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 2), /* Cavium ThunderX, T81 pass 1.0 - 1.2 */ MIDR_REV_RANGE(MIDR_THUNDERX_81XX, 0, 0, 2), /* Cavium ThunderX, T83 pass 1.0 */ MIDR_REV(MIDR_THUNDERX_83XX, 0, 0), {}, }; #endif #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003 static const struct arm64_cpu_capabilities qcom_erratum_1003_list[] = { { ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0), }, { .midr_range.model = MIDR_QCOM_KRYO, .matches = is_kryo_midr, }, {}, }; #endif #ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE static const struct midr_range workaround_clean_cache[] = { #if defined(CONFIG_ARM64_ERRATUM_826319) || \ defined(CONFIG_ARM64_ERRATUM_827319) || \ defined(CONFIG_ARM64_ERRATUM_824069) /* Cortex-A53 r0p[012]: ARM errata 826319, 827319, 824069 */ MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 2), #endif #ifdef CONFIG_ARM64_ERRATUM_819472 /* Cortex-A53 r0p[01] : ARM errata 819472 */ MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 1), #endif {}, }; #endif #ifdef CONFIG_ARM64_ERRATUM_1418040 /* * - 1188873 affects r0p0 to r2p0 * - 1418040 affects r0p0 to r3p1 */ static const struct midr_range erratum_1418040_list[] = { /* Cortex-A76 r0p0 to r3p1 */ MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1), /* Neoverse-N1 r0p0 to r3p1 */ MIDR_RANGE(MIDR_NEOVERSE_N1, 0, 0, 3, 1), {}, }; #endif #ifdef CONFIG_ARM64_ERRATUM_845719 static const struct midr_range erratum_845719_list[] = { /* Cortex-A53 r0p[01234] */ MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4), /* Brahma-B53 r0p[0] */ MIDR_REV(MIDR_BRAHMA_B53, 0, 0), {}, }; #endif #ifdef CONFIG_ARM64_ERRATUM_843419 static const struct arm64_cpu_capabilities erratum_843419_list[] = { { /* Cortex-A53 r0p[01234] */ .matches = is_affected_midr_range, ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4), MIDR_FIXED(0x4, BIT(8)), }, { /* Brahma-B53 r0p[0] */ .matches = is_affected_midr_range, ERRATA_MIDR_REV(MIDR_BRAHMA_B53, 0, 0), }, {}, }; #endif #ifdef CONFIG_ARM64_WORKAROUND_SPECULATIVE_AT_VHE static const struct midr_range erratum_speculative_at_vhe_list[] = { #ifdef CONFIG_ARM64_ERRATUM_1165522 /* Cortex A76 r0p0 to r2p0 */ MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 2, 0), #endif {}, }; #endif const struct arm64_cpu_capabilities arm64_errata[] = { #ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE { .desc = "ARM errata 826319, 827319, 824069, 819472", .capability = ARM64_WORKAROUND_CLEAN_CACHE, ERRATA_MIDR_RANGE_LIST(workaround_clean_cache), .cpu_enable = cpu_enable_cache_maint_trap, }, #endif #ifdef CONFIG_ARM64_ERRATUM_832075 { /* Cortex-A57 r0p0 - r1p2 */ .desc = "ARM erratum 832075", .capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE, ERRATA_MIDR_RANGE(MIDR_CORTEX_A57, 0, 0, 1, 2), }, #endif #ifdef CONFIG_ARM64_ERRATUM_834220 { /* Cortex-A57 r0p0 - r1p2 */ .desc = "ARM erratum 834220", .capability = ARM64_WORKAROUND_834220, ERRATA_MIDR_RANGE(MIDR_CORTEX_A57, 0, 0, 1, 2), }, #endif #ifdef CONFIG_ARM64_ERRATUM_843419 { .desc = "ARM erratum 843419", .capability = ARM64_WORKAROUND_843419, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = cpucap_multi_entry_cap_matches, .match_list = erratum_843419_list, }, #endif #ifdef CONFIG_ARM64_ERRATUM_845719 { .desc = "ARM erratum 845719", .capability = ARM64_WORKAROUND_845719, ERRATA_MIDR_RANGE_LIST(erratum_845719_list), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_23154 { /* Cavium ThunderX, pass 1.x */ .desc = "Cavium erratum 23154", .capability = ARM64_WORKAROUND_CAVIUM_23154, ERRATA_MIDR_REV_RANGE(MIDR_THUNDERX, 0, 0, 1), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_27456 { .desc = "Cavium erratum 27456", .capability = ARM64_WORKAROUND_CAVIUM_27456, ERRATA_MIDR_RANGE_LIST(cavium_erratum_27456_cpus), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_30115 { .desc = "Cavium erratum 30115", .capability = ARM64_WORKAROUND_CAVIUM_30115, ERRATA_MIDR_RANGE_LIST(cavium_erratum_30115_cpus), }, #endif { .desc = "Mismatched cache type (CTR_EL0)", .capability = ARM64_MISMATCHED_CACHE_TYPE, .matches = has_mismatched_cache_type, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .cpu_enable = cpu_enable_trap_ctr_access, }, #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003 { .desc = "Qualcomm Technologies Falkor/Kryo erratum 1003", .capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = cpucap_multi_entry_cap_matches, .match_list = qcom_erratum_1003_list, }, #endif #ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI { .desc = "Qualcomm erratum 1009, ARM erratum 1286807", .capability = ARM64_WORKAROUND_REPEAT_TLBI, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = cpucap_multi_entry_cap_matches, .match_list = arm64_repeat_tlbi_list, }, #endif #ifdef CONFIG_ARM64_ERRATUM_858921 { /* Cortex-A73 all versions */ .desc = "ARM erratum 858921", .capability = ARM64_WORKAROUND_858921, ERRATA_MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), }, #endif { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = check_branch_predictor, }, #ifdef CONFIG_HARDEN_EL2_VECTORS { .desc = "EL2 vector hardening", .capability = ARM64_HARDEN_EL2_VECTORS, ERRATA_MIDR_RANGE_LIST(ca57_a72), }, #endif { .desc = "Speculative Store Bypass Disable", .capability = ARM64_SSBD, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = has_ssbd_mitigation, .midr_range_list = arm64_ssb_cpus, }, #ifdef CONFIG_ARM64_ERRATUM_1418040 { .desc = "ARM erratum 1418040", .capability = ARM64_WORKAROUND_1418040, ERRATA_MIDR_RANGE_LIST(erratum_1418040_list), }, #endif #ifdef CONFIG_ARM64_WORKAROUND_SPECULATIVE_AT_VHE { .desc = "ARM erratum 1165522", .capability = ARM64_WORKAROUND_SPECULATIVE_AT_VHE, ERRATA_MIDR_RANGE_LIST(erratum_speculative_at_vhe_list), }, #endif #ifdef CONFIG_ARM64_ERRATUM_1463225 { .desc = "ARM erratum 1463225", .capability = ARM64_WORKAROUND_1463225, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = has_cortex_a76_erratum_1463225, }, #endif #ifdef CONFIG_CAVIUM_TX2_ERRATUM_219 { .desc = "Cavium ThunderX2 erratum 219 (KVM guest sysreg trapping)", .capability = ARM64_WORKAROUND_CAVIUM_TX2_219_TVM, ERRATA_MIDR_RANGE_LIST(tx2_family_cpus), .matches = needs_tx2_tvm_workaround, }, { .desc = "Cavium ThunderX2 erratum 219 (PRFM removal)", .capability = ARM64_WORKAROUND_CAVIUM_TX2_219_PRFM, ERRATA_MIDR_RANGE_LIST(tx2_family_cpus), }, #endif #ifdef CONFIG_ARM64_ERRATUM_1542419 { /* we depend on the firmware portion for correctness */ .desc = "ARM erratum 1542419 (kernel portion)", .capability = ARM64_WORKAROUND_1542419, .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, .matches = has_neoverse_n1_erratum_1542419, .cpu_enable = cpu_enable_trap_ctr_access, }, #endif #ifdef CONFIG_ARM64_ERRATUM_1319367 { .desc = "ARM erratum 1319367", .capability = ARM64_WORKAROUND_SPECULATIVE_AT_NVHE, ERRATA_MIDR_RANGE_LIST(ca57_a72), }, #endif { } }; ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "Mitigation: __user pointer sanitization\n"); } ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) { switch (get_spectre_v2_workaround_state()) { case ARM64_BP_HARDEN_NOT_REQUIRED: return sprintf(buf, "Not affected\n"); case ARM64_BP_HARDEN_WA_NEEDED: return sprintf(buf, "Mitigation: Branch predictor hardening\n"); case ARM64_BP_HARDEN_UNKNOWN: default: return sprintf(buf, "Vulnerable\n"); } } ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) { if (__ssb_safe) return sprintf(buf, "Not affected\n"); switch (ssbd_state) { case ARM64_SSBD_KERNEL: case ARM64_SSBD_FORCE_ENABLE: if (IS_ENABLED(CONFIG_ARM64_SSBD)) return sprintf(buf, "Mitigation: Speculative Store Bypass disabled via prctl\n"); } return sprintf(buf, "Vulnerable\n"); }