// SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2015-2018 Linaro Limited. * * Author: Tor Jeremiassen * Author: Mathieu Poirier */ #include #include #include #include #include #include #include "auxtrace.h" #include "color.h" #include "cs-etm.h" #include "cs-etm-decoder/cs-etm-decoder.h" #include "debug.h" #include "evlist.h" #include "intlist.h" #include "machine.h" #include "map.h" #include "perf.h" #include "thread.h" #include "thread_map.h" #include "thread-stack.h" #include "util.h" #define MAX_TIMESTAMP (~0ULL) /* * A64 instructions are always 4 bytes * * Only A64 is supported, so can use this constant for converting between * addresses and instruction counts, calculting offsets etc */ #define A64_INSTR_SIZE 4 struct cs_etm_auxtrace { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; struct itrace_synth_opts synth_opts; struct perf_session *session; struct machine *machine; struct thread *unknown_thread; u8 timeless_decoding; u8 snapshot_mode; u8 data_queued; u8 sample_branches; u8 sample_instructions; int num_cpu; u32 auxtrace_type; u64 branches_sample_type; u64 branches_id; u64 instructions_sample_type; u64 instructions_sample_period; u64 instructions_id; u64 **metadata; u64 kernel_start; unsigned int pmu_type; }; struct cs_etm_queue { struct cs_etm_auxtrace *etm; struct thread *thread; struct cs_etm_decoder *decoder; struct auxtrace_buffer *buffer; const struct cs_etm_state *state; union perf_event *event_buf; unsigned int queue_nr; pid_t pid, tid; int cpu; u64 time; u64 timestamp; u64 offset; u64 period_instructions; struct branch_stack *last_branch; struct branch_stack *last_branch_rb; size_t last_branch_pos; struct cs_etm_packet *prev_packet; struct cs_etm_packet *packet; }; static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, pid_t tid, u64 time_); static void cs_etm__packet_dump(const char *pkt_string) { const char *color = PERF_COLOR_BLUE; int len = strlen(pkt_string); if (len && (pkt_string[len-1] == '\n')) color_fprintf(stdout, color, " %s", pkt_string); else color_fprintf(stdout, color, " %s\n", pkt_string); fflush(stdout); } static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, struct auxtrace_buffer *buffer) { int i, ret; const char *color = PERF_COLOR_BLUE; struct cs_etm_decoder_params d_params; struct cs_etm_trace_params *t_params; struct cs_etm_decoder *decoder; size_t buffer_used = 0; fprintf(stdout, "\n"); color_fprintf(stdout, color, ". ... CoreSight ETM Trace data: size %zu bytes\n", buffer->size); /* Use metadata to fill in trace parameters for trace decoder */ t_params = zalloc(sizeof(*t_params) * etm->num_cpu); for (i = 0; i < etm->num_cpu; i++) { t_params[i].protocol = CS_ETM_PROTO_ETMV4i; t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; t_params[i].etmv4.reg_configr = etm->metadata[i][CS_ETMV4_TRCCONFIGR]; t_params[i].etmv4.reg_traceidr = etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; } /* Set decoder parameters to simply print the trace packets */ d_params.packet_printer = cs_etm__packet_dump; d_params.operation = CS_ETM_OPERATION_PRINT; d_params.formatted = true; d_params.fsyncs = false; d_params.hsyncs = false; d_params.frame_aligned = true; decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); zfree(&t_params); if (!decoder) return; do { size_t consumed; ret = cs_etm_decoder__process_data_block( decoder, buffer->offset, &((u8 *)buffer->data)[buffer_used], buffer->size - buffer_used, &consumed); if (ret) break; buffer_used += consumed; } while (buffer_used < buffer->size); cs_etm_decoder__free(decoder); } static int cs_etm__flush_events(struct perf_session *session, struct perf_tool *tool) { int ret; struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (dump_trace) return 0; if (!tool->ordered_events) return -EINVAL; if (!etm->timeless_decoding) return -EINVAL; ret = cs_etm__update_queues(etm); if (ret < 0) return ret; return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1); } static void cs_etm__free_queue(void *priv) { struct cs_etm_queue *etmq = priv; if (!etmq) return; thread__zput(etmq->thread); cs_etm_decoder__free(etmq->decoder); zfree(&etmq->event_buf); zfree(&etmq->last_branch); zfree(&etmq->last_branch_rb); zfree(&etmq->prev_packet); zfree(&etmq->packet); free(etmq); } static void cs_etm__free_events(struct perf_session *session) { unsigned int i; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); struct auxtrace_queues *queues = &aux->queues; for (i = 0; i < queues->nr_queues; i++) { cs_etm__free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } auxtrace_queues__free(queues); } static void cs_etm__free(struct perf_session *session) { int i; struct int_node *inode, *tmp; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); cs_etm__free_events(session); session->auxtrace = NULL; /* First remove all traceID/CPU# nodes for the RB tree */ intlist__for_each_entry_safe(inode, tmp, traceid_list) intlist__remove(traceid_list, inode); /* Then the RB tree itself */ intlist__delete(traceid_list); for (i = 0; i < aux->num_cpu; i++) zfree(&aux->metadata[i]); thread__zput(aux->unknown_thread); zfree(&aux->metadata); zfree(&aux); } static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address, size_t size, u8 *buffer) { u8 cpumode; u64 offset; int len; struct thread *thread; struct machine *machine; struct addr_location al; if (!etmq) return -1; machine = etmq->etm->machine; if (address >= etmq->etm->kernel_start) cpumode = PERF_RECORD_MISC_KERNEL; else cpumode = PERF_RECORD_MISC_USER; thread = etmq->thread; if (!thread) { if (cpumode != PERF_RECORD_MISC_KERNEL) return -EINVAL; thread = etmq->etm->unknown_thread; } if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) return 0; if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) return 0; offset = al.map->map_ip(al.map, address); map__load(al.map); len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); if (len <= 0) return 0; return len; } static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, unsigned int queue_nr) { int i; struct cs_etm_decoder_params d_params; struct cs_etm_trace_params *t_params; struct cs_etm_queue *etmq; size_t szp = sizeof(struct cs_etm_packet); etmq = zalloc(sizeof(*etmq)); if (!etmq) return NULL; etmq->packet = zalloc(szp); if (!etmq->packet) goto out_free; if (etm->synth_opts.last_branch || etm->sample_branches) { etmq->prev_packet = zalloc(szp); if (!etmq->prev_packet) goto out_free; } if (etm->synth_opts.last_branch) { size_t sz = sizeof(struct branch_stack); sz += etm->synth_opts.last_branch_sz * sizeof(struct branch_entry); etmq->last_branch = zalloc(sz); if (!etmq->last_branch) goto out_free; etmq->last_branch_rb = zalloc(sz); if (!etmq->last_branch_rb) goto out_free; } etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); if (!etmq->event_buf) goto out_free; etmq->etm = etm; etmq->queue_nr = queue_nr; etmq->pid = -1; etmq->tid = -1; etmq->cpu = -1; /* Use metadata to fill in trace parameters for trace decoder */ t_params = zalloc(sizeof(*t_params) * etm->num_cpu); if (!t_params) goto out_free; for (i = 0; i < etm->num_cpu; i++) { t_params[i].protocol = CS_ETM_PROTO_ETMV4i; t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; t_params[i].etmv4.reg_configr = etm->metadata[i][CS_ETMV4_TRCCONFIGR]; t_params[i].etmv4.reg_traceidr = etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; } /* Set decoder parameters to simply print the trace packets */ d_params.packet_printer = cs_etm__packet_dump; d_params.operation = CS_ETM_OPERATION_DECODE; d_params.formatted = true; d_params.fsyncs = false; d_params.hsyncs = false; d_params.frame_aligned = true; d_params.data = etmq; etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); zfree(&t_params); if (!etmq->decoder) goto out_free; /* * Register a function to handle all memory accesses required by * the trace decoder library. */ if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 0x0L, ((u64) -1L), cs_etm__mem_access)) goto out_free_decoder; etmq->offset = 0; etmq->period_instructions = 0; return etmq; out_free_decoder: cs_etm_decoder__free(etmq->decoder); out_free: zfree(&etmq->event_buf); zfree(&etmq->last_branch); zfree(&etmq->last_branch_rb); zfree(&etmq->prev_packet); zfree(&etmq->packet); free(etmq); return NULL; } static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, struct auxtrace_queue *queue, unsigned int queue_nr) { struct cs_etm_queue *etmq = queue->priv; if (list_empty(&queue->head) || etmq) return 0; etmq = cs_etm__alloc_queue(etm, queue_nr); if (!etmq) return -ENOMEM; queue->priv = etmq; if (queue->cpu != -1) etmq->cpu = queue->cpu; etmq->tid = queue->tid; return 0; } static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) { unsigned int i; int ret; for (i = 0; i < etm->queues.nr_queues; i++) { ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); if (ret) return ret; } return 0; } static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) { if (etm->queues.new_data) { etm->queues.new_data = false; return cs_etm__setup_queues(etm); } return 0; } static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq) { struct branch_stack *bs_src = etmq->last_branch_rb; struct branch_stack *bs_dst = etmq->last_branch; size_t nr = 0; /* * Set the number of records before early exit: ->nr is used to * determine how many branches to copy from ->entries. */ bs_dst->nr = bs_src->nr; /* * Early exit when there is nothing to copy. */ if (!bs_src->nr) return; /* * As bs_src->entries is a circular buffer, we need to copy from it in * two steps. First, copy the branches from the most recently inserted * branch ->last_branch_pos until the end of bs_src->entries buffer. */ nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos; memcpy(&bs_dst->entries[0], &bs_src->entries[etmq->last_branch_pos], sizeof(struct branch_entry) * nr); /* * If we wrapped around at least once, the branches from the beginning * of the bs_src->entries buffer and until the ->last_branch_pos element * are older valid branches: copy them over. The total number of * branches copied over will be equal to the number of branches asked by * the user in last_branch_sz. */ if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { memcpy(&bs_dst->entries[nr], &bs_src->entries[0], sizeof(struct branch_entry) * etmq->last_branch_pos); } } static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq) { etmq->last_branch_pos = 0; etmq->last_branch_rb->nr = 0; } static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet) { /* Returns 0 for the CS_ETM_TRACE_ON packet */ if (packet->sample_type == CS_ETM_TRACE_ON) return 0; /* * The packet records the execution range with an exclusive end address * * A64 instructions are constant size, so the last executed * instruction is A64_INSTR_SIZE before the end address * Will need to do instruction level decode for T32 instructions as * they can be variable size (not yet supported). */ return packet->end_addr - A64_INSTR_SIZE; } static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) { /* Returns 0 for the CS_ETM_TRACE_ON packet */ if (packet->sample_type == CS_ETM_TRACE_ON) return 0; return packet->start_addr; } static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet) { /* * Only A64 instructions are currently supported, so can get * instruction count by dividing. * Will need to do instruction level decode for T32 instructions as * they can be variable size (not yet supported). */ return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE; } static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet, u64 offset) { /* * Only A64 instructions are currently supported, so can get * instruction address by muliplying. * Will need to do instruction level decode for T32 instructions as * they can be variable size (not yet supported). */ return packet->start_addr + offset * A64_INSTR_SIZE; } static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq) { struct branch_stack *bs = etmq->last_branch_rb; struct branch_entry *be; /* * The branches are recorded in a circular buffer in reverse * chronological order: we start recording from the last element of the * buffer down. After writing the first element of the stack, move the * insert position back to the end of the buffer. */ if (!etmq->last_branch_pos) etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; etmq->last_branch_pos -= 1; be = &bs->entries[etmq->last_branch_pos]; be->from = cs_etm__last_executed_instr(etmq->prev_packet); be->to = cs_etm__first_executed_instr(etmq->packet); /* No support for mispredict */ be->flags.mispred = 0; be->flags.predicted = 1; /* * Increment bs->nr until reaching the number of last branches asked by * the user on the command line. */ if (bs->nr < etmq->etm->synth_opts.last_branch_sz) bs->nr += 1; } static int cs_etm__inject_event(union perf_event *event, struct perf_sample *sample, u64 type) { event->header.size = perf_event__sample_event_size(sample, type, 0); return perf_event__synthesize_sample(event, type, 0, sample); } static int cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq) { struct auxtrace_buffer *aux_buffer = etmq->buffer; struct auxtrace_buffer *old_buffer = aux_buffer; struct auxtrace_queue *queue; queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; aux_buffer = auxtrace_buffer__next(queue, aux_buffer); /* If no more data, drop the previous auxtrace_buffer and return */ if (!aux_buffer) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); buff->len = 0; return 0; } etmq->buffer = aux_buffer; /* If the aux_buffer doesn't have data associated, try to load it */ if (!aux_buffer->data) { /* get the file desc associated with the perf data file */ int fd = perf_data__fd(etmq->etm->session->data); aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); if (!aux_buffer->data) return -ENOMEM; } /* If valid, drop the previous buffer */ if (old_buffer) auxtrace_buffer__drop_data(old_buffer); buff->offset = aux_buffer->offset; buff->len = aux_buffer->size; buff->buf = aux_buffer->data; buff->ref_timestamp = aux_buffer->reference; return buff->len; } static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, struct auxtrace_queue *queue) { struct cs_etm_queue *etmq = queue->priv; /* CPU-wide tracing isn't supported yet */ if (queue->tid == -1) return; if ((!etmq->thread) && (etmq->tid != -1)) etmq->thread = machine__find_thread(etm->machine, -1, etmq->tid); if (etmq->thread) { etmq->pid = etmq->thread->pid_; if (queue->cpu == -1) etmq->cpu = etmq->thread->cpu; } } static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, u64 addr, u64 period) { int ret = 0; struct cs_etm_auxtrace *etm = etmq->etm; union perf_event *event = etmq->event_buf; struct perf_sample sample = {.ip = 0,}; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = PERF_RECORD_MISC_USER; event->sample.header.size = sizeof(struct perf_event_header); sample.ip = addr; sample.pid = etmq->pid; sample.tid = etmq->tid; sample.id = etmq->etm->instructions_id; sample.stream_id = etmq->etm->instructions_id; sample.period = period; sample.cpu = etmq->packet->cpu; sample.flags = 0; sample.insn_len = 1; sample.cpumode = event->header.misc; if (etm->synth_opts.last_branch) { cs_etm__copy_last_branch_rb(etmq); sample.branch_stack = etmq->last_branch; } if (etm->synth_opts.inject) { ret = cs_etm__inject_event(event, &sample, etm->instructions_sample_type); if (ret) return ret; } ret = perf_session__deliver_synth_event(etm->session, event, &sample); if (ret) pr_err( "CS ETM Trace: failed to deliver instruction event, error %d\n", ret); if (etm->synth_opts.last_branch) cs_etm__reset_last_branch_rb(etmq); return ret; } /* * The cs etm packet encodes an instruction range between a branch target * and the next taken branch. Generate sample accordingly. */ static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq) { int ret = 0; struct cs_etm_auxtrace *etm = etmq->etm; struct perf_sample sample = {.ip = 0,}; union perf_event *event = etmq->event_buf; struct dummy_branch_stack { u64 nr; struct branch_entry entries; } dummy_bs; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = PERF_RECORD_MISC_USER; event->sample.header.size = sizeof(struct perf_event_header); sample.ip = cs_etm__last_executed_instr(etmq->prev_packet); sample.pid = etmq->pid; sample.tid = etmq->tid; sample.addr = cs_etm__first_executed_instr(etmq->packet); sample.id = etmq->etm->branches_id; sample.stream_id = etmq->etm->branches_id; sample.period = 1; sample.cpu = etmq->packet->cpu; sample.flags = 0; sample.cpumode = PERF_RECORD_MISC_USER; /* * perf report cannot handle events without a branch stack */ if (etm->synth_opts.last_branch) { dummy_bs = (struct dummy_branch_stack){ .nr = 1, .entries = { .from = sample.ip, .to = sample.addr, }, }; sample.branch_stack = (struct branch_stack *)&dummy_bs; } if (etm->synth_opts.inject) { ret = cs_etm__inject_event(event, &sample, etm->branches_sample_type); if (ret) return ret; } ret = perf_session__deliver_synth_event(etm->session, event, &sample); if (ret) pr_err( "CS ETM Trace: failed to deliver instruction event, error %d\n", ret); return ret; } struct cs_etm_synth { struct perf_tool dummy_tool; struct perf_session *session; }; static int cs_etm__event_synth(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { struct cs_etm_synth *cs_etm_synth = container_of(tool, struct cs_etm_synth, dummy_tool); return perf_session__deliver_synth_event(cs_etm_synth->session, event, NULL); } static int cs_etm__synth_event(struct perf_session *session, struct perf_event_attr *attr, u64 id) { struct cs_etm_synth cs_etm_synth; memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); cs_etm_synth.session = session; return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, &id, cs_etm__event_synth); } static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, struct perf_session *session) { struct perf_evlist *evlist = session->evlist; struct perf_evsel *evsel; struct perf_event_attr attr; bool found = false; u64 id; int err; evlist__for_each_entry(evlist, evsel) { if (evsel->attr.type == etm->pmu_type) { found = true; break; } } if (!found) { pr_debug("No selected events with CoreSight Trace data\n"); return 0; } memset(&attr, 0, sizeof(struct perf_event_attr)); attr.size = sizeof(struct perf_event_attr); attr.type = PERF_TYPE_HARDWARE; attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_PERIOD; if (etm->timeless_decoding) attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; else attr.sample_type |= PERF_SAMPLE_TIME; attr.exclude_user = evsel->attr.exclude_user; attr.exclude_kernel = evsel->attr.exclude_kernel; attr.exclude_hv = evsel->attr.exclude_hv; attr.exclude_host = evsel->attr.exclude_host; attr.exclude_guest = evsel->attr.exclude_guest; attr.sample_id_all = evsel->attr.sample_id_all; attr.read_format = evsel->attr.read_format; /* create new id val to be a fixed offset from evsel id */ id = evsel->id[0] + 1000000000; if (!id) id = 1; if (etm->synth_opts.branches) { attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; attr.sample_period = 1; attr.sample_type |= PERF_SAMPLE_ADDR; err = cs_etm__synth_event(session, &attr, id); if (err) return err; etm->sample_branches = true; etm->branches_sample_type = attr.sample_type; etm->branches_id = id; id += 1; attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; } if (etm->synth_opts.last_branch) attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; if (etm->synth_opts.instructions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; attr.sample_period = etm->synth_opts.period; etm->instructions_sample_period = attr.sample_period; err = cs_etm__synth_event(session, &attr, id); if (err) return err; etm->sample_instructions = true; etm->instructions_sample_type = attr.sample_type; etm->instructions_id = id; id += 1; } return 0; } static int cs_etm__sample(struct cs_etm_queue *etmq) { struct cs_etm_auxtrace *etm = etmq->etm; struct cs_etm_packet *tmp; int ret; u64 instrs_executed; instrs_executed = cs_etm__instr_count(etmq->packet); etmq->period_instructions += instrs_executed; /* * Record a branch when the last instruction in * PREV_PACKET is a branch. */ if (etm->synth_opts.last_branch && etmq->prev_packet && etmq->prev_packet->sample_type == CS_ETM_RANGE && etmq->prev_packet->last_instr_taken_branch) cs_etm__update_last_branch_rb(etmq); if (etm->sample_instructions && etmq->period_instructions >= etm->instructions_sample_period) { /* * Emit instruction sample periodically * TODO: allow period to be defined in cycles and clock time */ /* Get number of instructions executed after the sample point */ u64 instrs_over = etmq->period_instructions - etm->instructions_sample_period; /* * Calculate the address of the sampled instruction (-1 as * sample is reported as though instruction has just been * executed, but PC has not advanced to next instruction) */ u64 offset = (instrs_executed - instrs_over - 1); u64 addr = cs_etm__instr_addr(etmq->packet, offset); ret = cs_etm__synth_instruction_sample( etmq, addr, etm->instructions_sample_period); if (ret) return ret; /* Carry remaining instructions into next sample period */ etmq->period_instructions = instrs_over; } if (etm->sample_branches && etmq->prev_packet && etmq->prev_packet->sample_type == CS_ETM_RANGE && etmq->prev_packet->last_instr_taken_branch) { ret = cs_etm__synth_branch_sample(etmq); if (ret) return ret; } if (etm->sample_branches || etm->synth_opts.last_branch) { /* * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for * the next incoming packet. */ tmp = etmq->packet; etmq->packet = etmq->prev_packet; etmq->prev_packet = tmp; } return 0; } static int cs_etm__flush(struct cs_etm_queue *etmq) { int err = 0; struct cs_etm_auxtrace *etm = etmq->etm; struct cs_etm_packet *tmp; if (!etmq->prev_packet) return 0; /* Handle start tracing packet */ if (etmq->prev_packet->sample_type == CS_ETM_EMPTY) goto swap_packet; if (etmq->etm->synth_opts.last_branch && etmq->prev_packet->sample_type == CS_ETM_RANGE) { /* * Generate a last branch event for the branches left in the * circular buffer at the end of the trace. * * Use the address of the end of the last reported execution * range */ u64 addr = cs_etm__last_executed_instr(etmq->prev_packet); err = cs_etm__synth_instruction_sample( etmq, addr, etmq->period_instructions); if (err) return err; etmq->period_instructions = 0; } if (etm->sample_branches && etmq->prev_packet->sample_type == CS_ETM_RANGE) { err = cs_etm__synth_branch_sample(etmq); if (err) return err; } swap_packet: if (etmq->etm->synth_opts.last_branch) { /* * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for * the next incoming packet. */ tmp = etmq->packet; etmq->packet = etmq->prev_packet; etmq->prev_packet = tmp; } return err; } static int cs_etm__run_decoder(struct cs_etm_queue *etmq) { struct cs_etm_auxtrace *etm = etmq->etm; struct cs_etm_buffer buffer; size_t buffer_used, processed; int err = 0; if (!etm->kernel_start) etm->kernel_start = machine__kernel_start(etm->machine); /* Go through each buffer in the queue and decode them one by one */ while (1) { buffer_used = 0; memset(&buffer, 0, sizeof(buffer)); err = cs_etm__get_trace(&buffer, etmq); if (err <= 0) return err; /* * We cannot assume consecutive blocks in the data file are * contiguous, reset the decoder to force re-sync. */ err = cs_etm_decoder__reset(etmq->decoder); if (err != 0) return err; /* Run trace decoder until buffer consumed or end of trace */ do { processed = 0; err = cs_etm_decoder__process_data_block( etmq->decoder, etmq->offset, &buffer.buf[buffer_used], buffer.len - buffer_used, &processed); if (err) return err; etmq->offset += processed; buffer_used += processed; /* Process each packet in this chunk */ while (1) { err = cs_etm_decoder__get_packet(etmq->decoder, etmq->packet); if (err <= 0) /* * Stop processing this chunk on * end of data or error */ break; switch (etmq->packet->sample_type) { case CS_ETM_RANGE: /* * If the packet contains an instruction * range, generate instruction sequence * events. */ cs_etm__sample(etmq); break; case CS_ETM_TRACE_ON: /* * Discontinuity in trace, flush * previous branch stack */ cs_etm__flush(etmq); break; case CS_ETM_EMPTY: /* * Should not receive empty packet, * report error. */ pr_err("CS ETM Trace: empty packet\n"); return -EINVAL; default: break; } } } while (buffer.len > buffer_used); if (err == 0) /* Flush any remaining branch stack entries */ err = cs_etm__flush(etmq); } return err; } static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, pid_t tid, u64 time_) { unsigned int i; struct auxtrace_queues *queues = &etm->queues; for (i = 0; i < queues->nr_queues; i++) { struct auxtrace_queue *queue = &etm->queues.queue_array[i]; struct cs_etm_queue *etmq = queue->priv; if (etmq && ((tid == -1) || (etmq->tid == tid))) { etmq->time = time_; cs_etm__set_pid_tid_cpu(etm, queue); cs_etm__run_decoder(etmq); } } return 0; } static int cs_etm__process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { int err = 0; u64 timestamp; struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (dump_trace) return 0; if (!tool->ordered_events) { pr_err("CoreSight ETM Trace requires ordered events\n"); return -EINVAL; } if (!etm->timeless_decoding) return -EINVAL; if (sample->time && (sample->time != (u64) -1)) timestamp = sample->time; else timestamp = 0; if (timestamp || etm->timeless_decoding) { err = cs_etm__update_queues(etm); if (err) return err; } if (event->header.type == PERF_RECORD_EXIT) return cs_etm__process_timeless_queues(etm, event->fork.tid, sample->time); return 0; } static int cs_etm__process_auxtrace_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool __maybe_unused) { struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (!etm->data_queued) { struct auxtrace_buffer *buffer; off_t data_offset; int fd = perf_data__fd(session->data); bool is_pipe = perf_data__is_pipe(session->data); int err; if (is_pipe) data_offset = 0; else { data_offset = lseek(fd, 0, SEEK_CUR); if (data_offset == -1) return -errno; } err = auxtrace_queues__add_event(&etm->queues, session, event, data_offset, &buffer); if (err) return err; if (dump_trace) if (auxtrace_buffer__get_data(buffer, fd)) { cs_etm__dump_event(etm, buffer); auxtrace_buffer__put_data(buffer); } } return 0; } static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) { struct perf_evsel *evsel; struct perf_evlist *evlist = etm->session->evlist; bool timeless_decoding = true; /* * Circle through the list of event and complain if we find one * with the time bit set. */ evlist__for_each_entry(evlist, evsel) { if ((evsel->attr.sample_type & PERF_SAMPLE_TIME)) timeless_decoding = false; } return timeless_decoding; } static const char * const cs_etm_global_header_fmts[] = { [CS_HEADER_VERSION_0] = " Header version %llx\n", [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", }; static const char * const cs_etm_priv_fmts[] = { [CS_ETM_MAGIC] = " Magic number %llx\n", [CS_ETM_CPU] = " CPU %lld\n", [CS_ETM_ETMCR] = " ETMCR %llx\n", [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", [CS_ETM_ETMCCER] = " ETMCCER %llx\n", [CS_ETM_ETMIDR] = " ETMIDR %llx\n", }; static const char * const cs_etmv4_priv_fmts[] = { [CS_ETM_MAGIC] = " Magic number %llx\n", [CS_ETM_CPU] = " CPU %lld\n", [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", }; static void cs_etm__print_auxtrace_info(u64 *val, int num) { int i, j, cpu = 0; for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { if (val[i] == __perf_cs_etmv3_magic) for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) fprintf(stdout, cs_etm_priv_fmts[j], val[i]); else if (val[i] == __perf_cs_etmv4_magic) for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); else /* failure.. return */ return; } } int cs_etm__process_auxtrace_info(union perf_event *event, struct perf_session *session) { struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; struct cs_etm_auxtrace *etm = NULL; struct int_node *inode; unsigned int pmu_type; int event_header_size = sizeof(struct perf_event_header); int info_header_size; int total_size = auxtrace_info->header.size; int priv_size = 0; int num_cpu; int err = 0, idx = -1; int i, j, k; u64 *ptr, *hdr = NULL; u64 **metadata = NULL; /* * sizeof(auxtrace_info_event::type) + * sizeof(auxtrace_info_event::reserved) == 8 */ info_header_size = 8; if (total_size < (event_header_size + info_header_size)) return -EINVAL; priv_size = total_size - event_header_size - info_header_size; /* First the global part */ ptr = (u64 *) auxtrace_info->priv; /* Look for version '0' of the header */ if (ptr[0] != 0) return -EINVAL; hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); if (!hdr) return -ENOMEM; /* Extract header information - see cs-etm.h for format */ for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) hdr[i] = ptr[i]; num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); /* * Create an RB tree for traceID-CPU# tuple. Since the conversion has * to be made for each packet that gets decoded, optimizing access in * anything other than a sequential array is worth doing. */ traceid_list = intlist__new(NULL); if (!traceid_list) { err = -ENOMEM; goto err_free_hdr; } metadata = zalloc(sizeof(*metadata) * num_cpu); if (!metadata) { err = -ENOMEM; goto err_free_traceid_list; } /* * The metadata is stored in the auxtrace_info section and encodes * the configuration of the ARM embedded trace macrocell which is * required by the trace decoder to properly decode the trace due * to its highly compressed nature. */ for (j = 0; j < num_cpu; j++) { if (ptr[i] == __perf_cs_etmv3_magic) { metadata[j] = zalloc(sizeof(*metadata[j]) * CS_ETM_PRIV_MAX); if (!metadata[j]) { err = -ENOMEM; goto err_free_metadata; } for (k = 0; k < CS_ETM_PRIV_MAX; k++) metadata[j][k] = ptr[i + k]; /* The traceID is our handle */ idx = metadata[j][CS_ETM_ETMTRACEIDR]; i += CS_ETM_PRIV_MAX; } else if (ptr[i] == __perf_cs_etmv4_magic) { metadata[j] = zalloc(sizeof(*metadata[j]) * CS_ETMV4_PRIV_MAX); if (!metadata[j]) { err = -ENOMEM; goto err_free_metadata; } for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) metadata[j][k] = ptr[i + k]; /* The traceID is our handle */ idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; i += CS_ETMV4_PRIV_MAX; } /* Get an RB node for this CPU */ inode = intlist__findnew(traceid_list, idx); /* Something went wrong, no need to continue */ if (!inode) { err = PTR_ERR(inode); goto err_free_metadata; } /* * The node for that CPU should not be taken. * Back out if that's the case. */ if (inode->priv) { err = -EINVAL; goto err_free_metadata; } /* All good, associate the traceID with the CPU# */ inode->priv = &metadata[j][CS_ETM_CPU]; } /* * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and * CS_ETMV4_PRIV_MAX mark how many double words are in the * global metadata, and each cpu's metadata respectively. * The following tests if the correct number of double words was * present in the auxtrace info section. */ if (i * 8 != priv_size) { err = -EINVAL; goto err_free_metadata; } etm = zalloc(sizeof(*etm)); if (!etm) { err = -ENOMEM; goto err_free_metadata; } err = auxtrace_queues__init(&etm->queues); if (err) goto err_free_etm; etm->session = session; etm->machine = &session->machines.host; etm->num_cpu = num_cpu; etm->pmu_type = pmu_type; etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); etm->metadata = metadata; etm->auxtrace_type = auxtrace_info->type; etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); etm->auxtrace.process_event = cs_etm__process_event; etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; etm->auxtrace.flush_events = cs_etm__flush_events; etm->auxtrace.free_events = cs_etm__free_events; etm->auxtrace.free = cs_etm__free; session->auxtrace = &etm->auxtrace; etm->unknown_thread = thread__new(999999999, 999999999); if (!etm->unknown_thread) goto err_free_queues; /* * Initialize list node so that at thread__zput() we can avoid * segmentation fault at list_del_init(). */ INIT_LIST_HEAD(&etm->unknown_thread->node); err = thread__set_comm(etm->unknown_thread, "unknown", 0); if (err) goto err_delete_thread; if (thread__init_map_groups(etm->unknown_thread, etm->machine)) goto err_delete_thread; if (dump_trace) { cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); return 0; } if (session->itrace_synth_opts && session->itrace_synth_opts->set) { etm->synth_opts = *session->itrace_synth_opts; } else { itrace_synth_opts__set_default(&etm->synth_opts); etm->synth_opts.callchain = false; } err = cs_etm__synth_events(etm, session); if (err) goto err_delete_thread; err = auxtrace_queues__process_index(&etm->queues, session); if (err) goto err_delete_thread; etm->data_queued = etm->queues.populated; return 0; err_delete_thread: thread__zput(etm->unknown_thread); err_free_queues: auxtrace_queues__free(&etm->queues); session->auxtrace = NULL; err_free_etm: zfree(&etm); err_free_metadata: /* No need to check @metadata[j], free(NULL) is supported */ for (j = 0; j < num_cpu; j++) free(metadata[j]); zfree(&metadata); err_free_traceid_list: intlist__delete(traceid_list); err_free_hdr: zfree(&hdr); return -EINVAL; }