/****************************************************************************** * * Copyright(c) 2009-2010 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include #include "wifi.h" #include "rc.h" #include "base.h" #include "efuse.h" #include "cam.h" #include "ps.h" #include "regd.h" /* *NOTICE!!!: This file will be very big, we hsould *keep it clear under follwing roles: * *This file include follwing part, so, if you add new *functions into this file, please check which part it *should includes. or check if you should add new part *for this file: * *1) mac80211 init functions *2) tx information functions *3) functions called by core.c *4) wq & timer callback functions *5) frame process functions *6) sysfs functions *7) ... */ /********************************************************* * * mac80211 init functions * *********************************************************/ static struct ieee80211_channel rtl_channeltable[] = { {.center_freq = 2412, .hw_value = 1,}, {.center_freq = 2417, .hw_value = 2,}, {.center_freq = 2422, .hw_value = 3,}, {.center_freq = 2427, .hw_value = 4,}, {.center_freq = 2432, .hw_value = 5,}, {.center_freq = 2437, .hw_value = 6,}, {.center_freq = 2442, .hw_value = 7,}, {.center_freq = 2447, .hw_value = 8,}, {.center_freq = 2452, .hw_value = 9,}, {.center_freq = 2457, .hw_value = 10,}, {.center_freq = 2462, .hw_value = 11,}, {.center_freq = 2467, .hw_value = 12,}, {.center_freq = 2472, .hw_value = 13,}, {.center_freq = 2484, .hw_value = 14,}, }; static struct ieee80211_rate rtl_ratetable[] = { {.bitrate = 10, .hw_value = 0x00,}, {.bitrate = 20, .hw_value = 0x01,}, {.bitrate = 55, .hw_value = 0x02,}, {.bitrate = 110, .hw_value = 0x03,}, {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static const struct ieee80211_supported_band rtl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = rtl_channeltable, .n_channels = ARRAY_SIZE(rtl_channeltable), .bitrates = rtl_ratetable, .n_bitrates = ARRAY_SIZE(rtl_ratetable), .ht_cap = {0}, }; static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw, struct ieee80211_sta_ht_cap *ht_cap) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); ht_cap->ht_supported = true; ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU; /* *Maximum length of AMPDU that the STA can receive. *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; /*Minimum MPDU start spacing , */ ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; /* *hw->wiphy->bands[IEEE80211_BAND_2GHZ] *base on ant_num *rx_mask: RX mask *if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7 *if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15 *if rx_ant >=3 rx_mask[2]=0xff; *if BW_40 rx_mask[4]=0x01; *highest supported RX rate */ if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("1T2R or 2T2R\n")); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS15; } else if (get_rf_type(rtlphy) == RF_1T1R) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("1T1R\n")); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0x00; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS7; } } static void _rtl_init_mac80211(struct ieee80211_hw *hw) { struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct ieee80211_supported_band *sband; /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]); /* * <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; /* <5> set hw caps */ hw->flags = IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_BEACON_FILTER | IEEE80211_HW_AMPDU_AGGREGATION | /*PS*/ /*IEEE80211_HW_SUPPORTS_PS | */ /*IEEE80211_HW_PS_NULLFUNC_STACK | */ /*IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */ IEEE80211_HW_REPORTS_TX_ACK_STATUS | 0; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); hw->wiphy->rts_threshold = 2347; hw->queues = AC_MAX; hw->extra_tx_headroom = RTL_TX_HEADER_SIZE; /* TODO: Correct this value for our hw */ /* TODO: define these hard code value */ hw->channel_change_time = 100; hw->max_listen_interval = 5; hw->max_rate_tries = 4; /* hw->max_rates = 1; */ /* <6> mac address */ if (is_valid_ether_addr(rtlefuse->dev_addr)) { SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr); } else { u8 rtlmac[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 }; get_random_bytes((rtlmac + (ETH_ALEN - 1)), 1); SET_IEEE80211_PERM_ADDR(hw, rtlmac); } } static void _rtl_init_deferred_work(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* <1> timer */ init_timer(&rtlpriv->works.watchdog_timer); setup_timer(&rtlpriv->works.watchdog_timer, rtl_watch_dog_timer_callback, (unsigned long)hw); /* <2> work queue */ rtlpriv->works.hw = hw; rtlpriv->works.rtl_wq = create_workqueue(rtlpriv->cfg->name); INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq, (void *)rtl_watchdog_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq, (void *)rtl_ips_nic_off_wq_callback); } void rtl_deinit_deferred_work(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); del_timer_sync(&rtlpriv->works.watchdog_timer); cancel_delayed_work(&rtlpriv->works.watchdog_wq); cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq); } void rtl_init_rfkill(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool radio_state; bool blocked; u8 valid = 0; /*set init state to rf on */ rtlpriv->rfkill.rfkill_state = 1; radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid); if (valid) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, (KERN_INFO "wireless switch is %s\n", rtlpriv->rfkill.rfkill_state ? "on" : "off")); rtlpriv->rfkill.rfkill_state = radio_state; blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1; wiphy_rfkill_set_hw_state(hw->wiphy, blocked); } wiphy_rfkill_start_polling(hw->wiphy); } void rtl_deinit_rfkill(struct ieee80211_hw *hw) { wiphy_rfkill_stop_polling(hw->wiphy); } int rtl_init_core(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); /* <1> init mac80211 */ _rtl_init_mac80211(hw); rtlmac->hw = hw; /* <2> rate control register */ if (rtl_rate_control_register()) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("rtl: Unable to register rtl_rc," "use default RC !!\n")); } else { hw->rate_control_algorithm = "rtl_rc"; } /* * <3> init CRDA must come after init * mac80211 hw in _rtl_init_mac80211. */ if (rtl_regd_init(hw, rtl_reg_notifier)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("REGD init failed\n")); return 1; } else { /* CRDA regd hint must after init CRDA */ if (regulatory_hint(hw->wiphy, rtlpriv->regd.alpha2)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("regulatory_hint fail\n")); } } /* <4> locks */ mutex_init(&rtlpriv->locks.conf_mutex); spin_lock_init(&rtlpriv->locks.ips_lock); spin_lock_init(&rtlpriv->locks.irq_th_lock); spin_lock_init(&rtlpriv->locks.h2c_lock); spin_lock_init(&rtlpriv->locks.rf_ps_lock); spin_lock_init(&rtlpriv->locks.rf_lock); spin_lock_init(&rtlpriv->locks.lps_lock); rtlmac->link_state = MAC80211_NOLINK; /* <5> init deferred work */ _rtl_init_deferred_work(hw); return 0; } void rtl_deinit_core(struct ieee80211_hw *hw) { /*RC*/ rtl_rate_control_unregister(); } void rtl_init_rx_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_MGT_FILTER, (u8 *) (&mac->rx_mgt_filter)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_CTRL_FILTER, (u8 *) (&mac->rx_ctrl_filter)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_DATA_FILTER, (u8 *) (&mac->rx_data_filter)); } /********************************************************* * * tx information functions * *********************************************************/ static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; tcb_desc->use_shortpreamble = false; /* 1M can only use Long Preamble. 11B spec */ if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M]) return; else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) tcb_desc->use_shortpreamble = true; return; } static void _rtl_query_shortgi(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 rate_flag = info->control.rates[0].flags; tcb_desc->use_shortgi = false; if (!mac->ht_enable) return; if (!mac->sgi_40 && !mac->sgi_20) return; if ((mac->bw_40 == true) && mac->sgi_40) tcb_desc->use_shortgi = true; else if ((mac->bw_40 == false) && mac->sgi_20) tcb_desc->use_shortgi = true; if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI)) tcb_desc->use_shortgi = false; } static void _rtl_query_protection_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; /* Common Settings */ tcb_desc->b_rts_stbc = false; tcb_desc->b_cts_enable = false; tcb_desc->rts_sc = 0; tcb_desc->b_rts_bw = false; tcb_desc->b_rts_use_shortpreamble = false; tcb_desc->b_rts_use_shortgi = false; if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) { /* Use CTS-to-SELF in protection mode. */ tcb_desc->b_rts_enable = true; tcb_desc->b_cts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) { /* Use RTS-CTS in protection mode. */ tcb_desc->b_rts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } } static void _rtl_txrate_selectmode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) { if (mac->opmode == NL80211_IFTYPE_STATION) tcb_desc->ratr_index = 0; else if (mac->opmode == NL80211_IFTYPE_ADHOC) { if (tcb_desc->b_multicast || tcb_desc->b_broadcast) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M]; tcb_desc->use_driver_rate = 1; } else { /* TODO */ } } } if (rtlpriv->dm.b_useramask) { /* TODO we will differentiate adhoc and station futrue */ tcb_desc->mac_id = 0; if ((mac->mode == WIRELESS_MODE_N_24G) || (mac->mode == WIRELESS_MODE_N_5G)) { tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB; } else if (mac->mode & WIRELESS_MODE_G) { tcb_desc->ratr_index = RATR_INX_WIRELESS_GB; } else if (mac->mode & WIRELESS_MODE_B) { tcb_desc->ratr_index = RATR_INX_WIRELESS_B; } } } static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); tcb_desc->b_packet_bw = false; if (!mac->bw_40 || !mac->ht_enable) return; if (tcb_desc->b_multicast || tcb_desc->b_broadcast) return; /*use legency rate, shall use 20MHz */ if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]) return; tcb_desc->b_packet_bw = true; } static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 hw_rate; if (get_rf_type(rtlphy) == RF_2T2R) hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15]; else hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7]; return hw_rate; } void rtl_get_tcb_desc(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); struct ieee80211_rate *txrate; u16 fc = le16_to_cpu(hdr->frame_control); memset(tcb_desc, 0, sizeof(struct rtl_tcb_desc)); if (ieee80211_is_data(fc)) { txrate = ieee80211_get_tx_rate(hw, info); tcb_desc->hw_rate = txrate->hw_value; /* *we set data rate RTL_RC_CCK_RATE1M *in rtl_rc.c if skb is special data or *mgt which need low data rate. */ /* *So tcb_desc->hw_rate is just used for *special data and mgt frames */ if (tcb_desc->hw_rate < rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M]) { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = 7; tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M]; tcb_desc->disable_ratefallback = 1; } else { /* *because hw will nerver use hw_rate *when tcb_desc->use_driver_rate = false *so we never set highest N rate here, *and N rate will all be controled by FW *when tcb_desc->use_driver_rate = false */ if (rtlmac->ht_enable) { tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw); } else { if (rtlmac->mode == WIRELESS_MODE_B) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M]; } else { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]; } } } if (is_multicast_ether_addr(ieee80211_get_DA(hdr))) tcb_desc->b_multicast = 1; else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr))) tcb_desc->b_broadcast = 1; _rtl_txrate_selectmode(hw, tcb_desc); _rtl_query_bandwidth_mode(hw, tcb_desc); _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info); _rtl_query_shortgi(hw, tcb_desc, info); _rtl_query_protection_mode(hw, tcb_desc, info); } else { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = 7; tcb_desc->disable_ratefallback = 1; tcb_desc->mac_id = 0; tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M]; } } EXPORT_SYMBOL(rtl_get_tcb_desc); bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); u16 fc = le16_to_cpu(hdr->frame_control); if (ieee80211_is_auth(fc)) { RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, ("MAC80211_LINKING\n")); rtl_ips_nic_on(hw); mac->link_state = MAC80211_LINKING; } return true; } bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); struct rtl_priv *rtlpriv = rtl_priv(hw); u16 fc = le16_to_cpu(hdr->frame_control); u8 *act = (u8 *) (((u8 *) skb->data + MAC80211_3ADDR_LEN)); u8 category; if (!ieee80211_is_action(fc)) return true; category = *act; act++; switch (category) { case ACT_CAT_BA: switch (*act) { case ACT_ADDBAREQ: if (mac->act_scanning) return false; RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, ("%s ACT_ADDBAREQ From :" MAC_FMT "\n", is_tx ? "Tx" : "Rx", MAC_ARG(hdr->addr2))); break; case ACT_ADDBARSP: RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, ("%s ACT_ADDBARSP From :" MAC_FMT "\n", is_tx ? "Tx" : "Rx", MAC_ARG(hdr->addr2))); break; case ACT_DELBA: RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, ("ACT_ADDBADEL From :" MAC_FMT "\n", MAC_ARG(hdr->addr2))); break; } break; default: break; } return true; } /*should call before software enc*/ u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u16 fc = le16_to_cpu(hdr->frame_control); u16 ether_type; u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb); const struct iphdr *ip; if (!ieee80211_is_data(fc)) goto end; if (ieee80211_is_nullfunc(fc)) return true; ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len + SNAP_SIZE + PROTOC_TYPE_SIZE); ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE); ether_type = ntohs(ether_type); if (ETH_P_IP == ether_type) { if (IPPROTO_UDP == ip->protocol) { struct udphdr *udp = (struct udphdr *)((u8 *) ip + (ip->ihl << 2)); if (((((u8 *) udp)[1] == 68) && (((u8 *) udp)[3] == 67)) || ((((u8 *) udp)[1] == 67) && (((u8 *) udp)[3] == 68))) { /* * 68 : UDP BOOTP client * 67 : UDP BOOTP server */ RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, ("dhcp %s !!\n", (is_tx) ? "Tx" : "Rx")); if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } } } else if (ETH_P_ARP == ether_type) { if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } else if (ETH_P_PAE == ether_type) { RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, ("802.1X %s EAPOL pkt!!\n", (is_tx) ? "Tx" : "Rx")); if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } else if (0x86DD == ether_type) { return true; } end: return false; } /********************************************************* * * functions called by core.c * *********************************************************/ int rtl_tx_agg_start(struct ieee80211_hw *hw, const u8 *ra, u16 tid, u16 *ssn) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, ("on ra = %pM tid = %d\n", ra, tid)); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; if (mac->tids[tid].agg.agg_state != RTL_AGG_OFF) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Start AGG when state is not RTL_AGG_OFF !\n")); return -ENXIO; } tid_data = &mac->tids[tid]; *ssn = SEQ_TO_SN(tid_data->seq_number); RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, ("HW queue is empty tid:%d\n", tid)); tid_data->agg.agg_state = RTL_AGG_ON; ieee80211_start_tx_ba_cb_irqsafe(mac->vif, ra, tid); return 0; } int rtl_tx_agg_stop(struct ieee80211_hw *hw, const u8 * ra, u16 tid) { int ssn = -1; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_tid_data *tid_data; if (!ra) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("ra = NULL\n")); return -EINVAL; } if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; if (mac->tids[tid].agg.agg_state != RTL_AGG_ON) RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Stopping AGG while state not ON or starting\n")); tid_data = &mac->tids[tid]; ssn = (tid_data->seq_number & IEEE80211_SCTL_SEQ) >> 4; mac->tids[tid].agg.agg_state = RTL_AGG_OFF; ieee80211_stop_tx_ba_cb_irqsafe(mac->vif, ra, tid); return 0; } /********************************************************* * * wq & timer callback functions * *********************************************************/ void rtl_watchdog_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, watchdog_wq); struct ieee80211_hw *hw = rtlworks->hw; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); bool b_busytraffic = false; bool b_higher_busytraffic = false; bool b_higher_busyrxtraffic = false; bool b_higher_busytxtraffic = false; u8 idx = 0; u32 rx_cnt_inp4eriod = 0; u32 tx_cnt_inp4eriod = 0; u32 aver_rx_cnt_inperiod = 0; u32 aver_tx_cnt_inperiod = 0; bool benter_ps = false; if (is_hal_stop(rtlhal)) return; /* <1> Determine if action frame is allowed */ if (mac->link_state > MAC80211_NOLINK) { if (mac->cnt_after_linked < 20) mac->cnt_after_linked++; } else { mac->cnt_after_linked = 0; } /* <2> DM */ rtlpriv->cfg->ops->dm_watchdog(hw); /* *<3> to check if traffic busy, if * busytraffic we don't change channel */ if (mac->link_state >= MAC80211_LINKED) { /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */ for (idx = 0; idx <= 2; idx++) { rtlpriv->link_info.num_rx_in4period[idx] = rtlpriv->link_info.num_rx_in4period[idx + 1]; rtlpriv->link_info.num_tx_in4period[idx] = rtlpriv->link_info.num_tx_in4period[idx + 1]; } rtlpriv->link_info.num_rx_in4period[3] = rtlpriv->link_info.num_rx_inperiod; rtlpriv->link_info.num_tx_in4period[3] = rtlpriv->link_info.num_tx_inperiod; for (idx = 0; idx <= 3; idx++) { rx_cnt_inp4eriod += rtlpriv->link_info.num_rx_in4period[idx]; tx_cnt_inp4eriod += rtlpriv->link_info.num_tx_in4period[idx]; } aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4; aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4; /* (2) check traffic busy */ if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) b_busytraffic = true; /* Higher Tx/Rx data. */ if (aver_rx_cnt_inperiod > 4000 || aver_tx_cnt_inperiod > 4000) { b_higher_busytraffic = true; /* Extremely high Rx data. */ if (aver_rx_cnt_inperiod > 5000) b_higher_busyrxtraffic = true; else b_higher_busytxtraffic = false; } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) benter_ps = false; else benter_ps = true; /* LeisurePS only work in infra mode. */ if (benter_ps) rtl_lps_enter(hw); else rtl_lps_leave(hw); } rtlpriv->link_info.num_rx_inperiod = 0; rtlpriv->link_info.num_tx_inperiod = 0; rtlpriv->link_info.b_busytraffic = b_busytraffic; rtlpriv->link_info.b_higher_busytraffic = b_higher_busytraffic; rtlpriv->link_info.b_higher_busyrxtraffic = b_higher_busyrxtraffic; } void rtl_watch_dog_timer_callback(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; struct rtl_priv *rtlpriv = rtl_priv(hw); queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.watchdog_wq, 0); mod_timer(&rtlpriv->works.watchdog_timer, jiffies + MSECS(RTL_WATCH_DOG_TIME)); } /********************************************************* * * sysfs functions * *********************************************************/ static ssize_t rtl_show_debug_level(struct device *d, struct device_attribute *attr, char *buf) { struct ieee80211_hw *hw = dev_get_drvdata(d); struct rtl_priv *rtlpriv = rtl_priv(hw); return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel); } static ssize_t rtl_store_debug_level(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ieee80211_hw *hw = dev_get_drvdata(d); struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned long val; int ret; ret = strict_strtoul(buf, 0, &val); if (ret) { printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf); } else { rtlpriv->dbg.global_debuglevel = val; printk(KERN_DEBUG "debuglevel:%x\n", rtlpriv->dbg.global_debuglevel); } return strnlen(buf, count); } static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO, rtl_show_debug_level, rtl_store_debug_level); static struct attribute *rtl_sysfs_entries[] = { &dev_attr_debug_level.attr, NULL }; /* * "name" is folder name witch will be * put in device directory like : * sys/devices/pci0000:00/0000:00:1c.4/ * 0000:06:00.0/rtl_sysfs */ struct attribute_group rtl_attribute_group = { .name = "rtlsysfs", .attrs = rtl_sysfs_entries, }; MODULE_AUTHOR("lizhaoming "); MODULE_AUTHOR("Realtek WlanFAE "); MODULE_AUTHOR("Larry Finger "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core"); static int __init rtl_core_module_init(void) { return 0; } static void __exit rtl_core_module_exit(void) { } module_init(rtl_core_module_init); module_exit(rtl_core_module_exit);