/* * smc91x.c * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. * * Copyright (C) 1996 by Erik Stahlman * Copyright (C) 2001 Standard Microsystems Corporation * Developed by Simple Network Magic Corporation * Copyright (C) 2003 Monta Vista Software, Inc. * Unified SMC91x driver by Nicolas Pitre * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * Arguments: * io = for the base address * irq = for the IRQ * nowait = 0 for normal wait states, 1 eliminates additional wait states * * original author: * Erik Stahlman * * hardware multicast code: * Peter Cammaert * * contributors: * Daris A Nevil * Nicolas Pitre * Russell King * * History: * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, * more bus abstraction, big cleanup, etc. * 29/09/03 Russell King - add driver model support * - ethtool support * - convert to use generic MII interface * - add link up/down notification * - don't try to handle full negotiation in * smc_phy_configure * - clean up (and fix stack overrun) in PHY * MII read/write functions * 22/09/04 Nicolas Pitre big update (see commit log for details) */ static const char version[] = "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre "; /* Debugging level */ #ifndef SMC_DEBUG #define SMC_DEBUG 0 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smc91x.h" #if defined(CONFIG_ASSABET_NEPONSET) #include #include #endif #ifndef SMC_NOWAIT # define SMC_NOWAIT 0 #endif static int nowait = SMC_NOWAIT; module_param(nowait, int, 0400); MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); /* * Transmit timeout, default 5 seconds. */ static int watchdog = 1000; module_param(watchdog, int, 0400); MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:smc91x"); /* * The internal workings of the driver. If you are changing anything * here with the SMC stuff, you should have the datasheet and know * what you are doing. */ #define CARDNAME "smc91x" /* * Use power-down feature of the chip */ #define POWER_DOWN 1 /* * Wait time for memory to be free. This probably shouldn't be * tuned that much, as waiting for this means nothing else happens * in the system */ #define MEMORY_WAIT_TIME 16 /* * The maximum number of processing loops allowed for each call to the * IRQ handler. */ #define MAX_IRQ_LOOPS 8 /* * This selects whether TX packets are sent one by one to the SMC91x internal * memory and throttled until transmission completes. This may prevent * RX overruns a litle by keeping much of the memory free for RX packets * but to the expense of reduced TX throughput and increased IRQ overhead. * Note this is not a cure for a too slow data bus or too high IRQ latency. */ #define THROTTLE_TX_PKTS 0 /* * The MII clock high/low times. 2x this number gives the MII clock period * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) */ #define MII_DELAY 1 #define DBG(n, dev, fmt, ...) \ do { \ if (SMC_DEBUG >= (n)) \ netdev_dbg(dev, fmt, ##__VA_ARGS__); \ } while (0) #define PRINTK(dev, fmt, ...) \ do { \ if (SMC_DEBUG > 0) \ netdev_info(dev, fmt, ##__VA_ARGS__); \ else \ netdev_dbg(dev, fmt, ##__VA_ARGS__); \ } while (0) #if SMC_DEBUG > 3 static void PRINT_PKT(u_char *buf, int length) { int i; int remainder; int lines; lines = length / 16; remainder = length % 16; for (i = 0; i < lines ; i ++) { int cur; printk(KERN_DEBUG); for (cur = 0; cur < 8; cur++) { u_char a, b; a = *buf++; b = *buf++; pr_cont("%02x%02x ", a, b); } pr_cont("\n"); } printk(KERN_DEBUG); for (i = 0; i < remainder/2 ; i++) { u_char a, b; a = *buf++; b = *buf++; pr_cont("%02x%02x ", a, b); } pr_cont("\n"); } #else static inline void PRINT_PKT(u_char *buf, int length) { } #endif /* this enables an interrupt in the interrupt mask register */ #define SMC_ENABLE_INT(lp, x) do { \ unsigned char mask; \ unsigned long smc_enable_flags; \ spin_lock_irqsave(&lp->lock, smc_enable_flags); \ mask = SMC_GET_INT_MASK(lp); \ mask |= (x); \ SMC_SET_INT_MASK(lp, mask); \ spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ } while (0) /* this disables an interrupt from the interrupt mask register */ #define SMC_DISABLE_INT(lp, x) do { \ unsigned char mask; \ unsigned long smc_disable_flags; \ spin_lock_irqsave(&lp->lock, smc_disable_flags); \ mask = SMC_GET_INT_MASK(lp); \ mask &= ~(x); \ SMC_SET_INT_MASK(lp, mask); \ spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ } while (0) /* * Wait while MMU is busy. This is usually in the order of a few nanosecs * if at all, but let's avoid deadlocking the system if the hardware * decides to go south. */ #define SMC_WAIT_MMU_BUSY(lp) do { \ if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ unsigned long timeout = jiffies + 2; \ while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ if (time_after(jiffies, timeout)) { \ netdev_dbg(dev, "timeout %s line %d\n", \ __FILE__, __LINE__); \ break; \ } \ cpu_relax(); \ } \ } \ } while (0) /* * this does a soft reset on the device */ static void smc_reset(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int ctl, cfg; struct sk_buff *pending_skb; DBG(2, dev, "%s\n", __func__); /* Disable all interrupts, block TX tasklet */ spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, 0); pending_skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; spin_unlock_irq(&lp->lock); /* free any pending tx skb */ if (pending_skb) { dev_kfree_skb(pending_skb); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; } /* * This resets the registers mostly to defaults, but doesn't * affect EEPROM. That seems unnecessary */ SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_SOFTRST); /* * Setup the Configuration Register * This is necessary because the CONFIG_REG is not affected * by a soft reset */ SMC_SELECT_BANK(lp, 1); cfg = CONFIG_DEFAULT; /* * Setup for fast accesses if requested. If the card/system * can't handle it then there will be no recovery except for * a hard reset or power cycle */ if (lp->cfg.flags & SMC91X_NOWAIT) cfg |= CONFIG_NO_WAIT; /* * Release from possible power-down state * Configuration register is not affected by Soft Reset */ cfg |= CONFIG_EPH_POWER_EN; SMC_SET_CONFIG(lp, cfg); /* this should pause enough for the chip to be happy */ /* * elaborate? What does the chip _need_? --jgarzik * * This seems to be undocumented, but something the original * driver(s) have always done. Suspect undocumented timing * info/determined empirically. --rmk */ udelay(1); /* Disable transmit and receive functionality */ SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_CLEAR); SMC_SET_TCR(lp, TCR_CLEAR); SMC_SELECT_BANK(lp, 1); ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; /* * Set the control register to automatically release successfully * transmitted packets, to make the best use out of our limited * memory */ if(!THROTTLE_TX_PKTS) ctl |= CTL_AUTO_RELEASE; else ctl &= ~CTL_AUTO_RELEASE; SMC_SET_CTL(lp, ctl); /* Reset the MMU */ SMC_SELECT_BANK(lp, 2); SMC_SET_MMU_CMD(lp, MC_RESET); SMC_WAIT_MMU_BUSY(lp); } /* * Enable Interrupts, Receive, and Transmit */ static void smc_enable(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int mask; DBG(2, dev, "%s\n", __func__); /* see the header file for options in TCR/RCR DEFAULT */ SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); SMC_SET_RCR(lp, lp->rcr_cur_mode); SMC_SELECT_BANK(lp, 1); SMC_SET_MAC_ADDR(lp, dev->dev_addr); /* now, enable interrupts */ mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; if (lp->version >= (CHIP_91100 << 4)) mask |= IM_MDINT; SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, mask); /* * From this point the register bank must _NOT_ be switched away * to something else than bank 2 without proper locking against * races with any tasklet or interrupt handlers until smc_shutdown() * or smc_reset() is called. */ } /* * this puts the device in an inactive state */ static void smc_shutdown(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; struct sk_buff *pending_skb; DBG(2, dev, "%s: %s\n", CARDNAME, __func__); /* no more interrupts for me */ spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, 0); pending_skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; spin_unlock_irq(&lp->lock); if (pending_skb) dev_kfree_skb(pending_skb); /* and tell the card to stay away from that nasty outside world */ SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_CLEAR); SMC_SET_TCR(lp, TCR_CLEAR); #ifdef POWER_DOWN /* finally, shut the chip down */ SMC_SELECT_BANK(lp, 1); SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); #endif } /* * This is the procedure to handle the receipt of a packet. */ static inline void smc_rcv(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int packet_number, status, packet_len; DBG(3, dev, "%s\n", __func__); packet_number = SMC_GET_RXFIFO(lp); if (unlikely(packet_number & RXFIFO_REMPTY)) { PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); return; } /* read from start of packet */ SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); /* First two words are status and packet length */ SMC_GET_PKT_HDR(lp, status, packet_len); packet_len &= 0x07ff; /* mask off top bits */ DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", packet_number, status, packet_len, packet_len); back: if (unlikely(packet_len < 6 || status & RS_ERRORS)) { if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { /* accept VLAN packets */ status &= ~RS_TOOLONG; goto back; } if (packet_len < 6) { /* bloody hardware */ netdev_err(dev, "fubar (rxlen %u status %x\n", packet_len, status); status |= RS_TOOSHORT; } SMC_WAIT_MMU_BUSY(lp); SMC_SET_MMU_CMD(lp, MC_RELEASE); dev->stats.rx_errors++; if (status & RS_ALGNERR) dev->stats.rx_frame_errors++; if (status & (RS_TOOSHORT | RS_TOOLONG)) dev->stats.rx_length_errors++; if (status & RS_BADCRC) dev->stats.rx_crc_errors++; } else { struct sk_buff *skb; unsigned char *data; unsigned int data_len; /* set multicast stats */ if (status & RS_MULTICAST) dev->stats.multicast++; /* * Actual payload is packet_len - 6 (or 5 if odd byte). * We want skb_reserve(2) and the final ctrl word * (2 bytes, possibly containing the payload odd byte). * Furthermore, we add 2 bytes to allow rounding up to * multiple of 4 bytes on 32 bit buses. * Hence packet_len - 6 + 2 + 2 + 2. */ skb = netdev_alloc_skb(dev, packet_len); if (unlikely(skb == NULL)) { SMC_WAIT_MMU_BUSY(lp); SMC_SET_MMU_CMD(lp, MC_RELEASE); dev->stats.rx_dropped++; return; } /* Align IP header to 32 bits */ skb_reserve(skb, 2); /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ if (lp->version == 0x90) status |= RS_ODDFRAME; /* * If odd length: packet_len - 5, * otherwise packet_len - 6. * With the trailing ctrl byte it's packet_len - 4. */ data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); data = skb_put(skb, data_len); SMC_PULL_DATA(lp, data, packet_len - 4); SMC_WAIT_MMU_BUSY(lp); SMC_SET_MMU_CMD(lp, MC_RELEASE); PRINT_PKT(data, packet_len - 4); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += data_len; } } #ifdef CONFIG_SMP /* * On SMP we have the following problem: * * A = smc_hardware_send_pkt() * B = smc_hard_start_xmit() * C = smc_interrupt() * * A and B can never be executed simultaneously. However, at least on UP, * it is possible (and even desirable) for C to interrupt execution of * A or B in order to have better RX reliability and avoid overruns. * C, just like A and B, must have exclusive access to the chip and * each of them must lock against any other concurrent access. * Unfortunately this is not possible to have C suspend execution of A or * B taking place on another CPU. On UP this is no an issue since A and B * are run from softirq context and C from hard IRQ context, and there is * no other CPU where concurrent access can happen. * If ever there is a way to force at least B and C to always be executed * on the same CPU then we could use read/write locks to protect against * any other concurrent access and C would always interrupt B. But life * isn't that easy in a SMP world... */ #define smc_special_trylock(lock, flags) \ ({ \ int __ret; \ local_irq_save(flags); \ __ret = spin_trylock(lock); \ if (!__ret) \ local_irq_restore(flags); \ __ret; \ }) #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) #else #define smc_special_trylock(lock, flags) ((void)flags, true) #define smc_special_lock(lock, flags) do { flags = 0; } while (0) #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) #endif /* * This is called to actually send a packet to the chip. */ static void smc_hardware_send_pkt(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; struct sk_buff *skb; unsigned int packet_no, len; unsigned char *buf; unsigned long flags; DBG(3, dev, "%s\n", __func__); if (!smc_special_trylock(&lp->lock, flags)) { netif_stop_queue(dev); tasklet_schedule(&lp->tx_task); return; } skb = lp->pending_tx_skb; if (unlikely(!skb)) { smc_special_unlock(&lp->lock, flags); return; } lp->pending_tx_skb = NULL; packet_no = SMC_GET_AR(lp); if (unlikely(packet_no & AR_FAILED)) { netdev_err(dev, "Memory allocation failed.\n"); dev->stats.tx_errors++; dev->stats.tx_fifo_errors++; smc_special_unlock(&lp->lock, flags); goto done; } /* point to the beginning of the packet */ SMC_SET_PN(lp, packet_no); SMC_SET_PTR(lp, PTR_AUTOINC); buf = skb->data; len = skb->len; DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", packet_no, len, len, buf); PRINT_PKT(buf, len); /* * Send the packet length (+6 for status words, length, and ctl. * The card will pad to 64 bytes with zeroes if packet is too small. */ SMC_PUT_PKT_HDR(lp, 0, len + 6); /* send the actual data */ SMC_PUSH_DATA(lp, buf, len & ~1); /* Send final ctl word with the last byte if there is one */ SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr, DATA_REG(lp)); /* * If THROTTLE_TX_PKTS is set, we stop the queue here. This will * have the effect of having at most one packet queued for TX * in the chip's memory at all time. * * If THROTTLE_TX_PKTS is not set then the queue is stopped only * when memory allocation (MC_ALLOC) does not succeed right away. */ if (THROTTLE_TX_PKTS) netif_stop_queue(dev); /* queue the packet for TX */ SMC_SET_MMU_CMD(lp, MC_ENQUEUE); smc_special_unlock(&lp->lock, flags); netif_trans_update(dev); dev->stats.tx_packets++; dev->stats.tx_bytes += len; SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); done: if (!THROTTLE_TX_PKTS) netif_wake_queue(dev); dev_consume_skb_any(skb); } /* * Since I am not sure if I will have enough room in the chip's ram * to store the packet, I call this routine which either sends it * now, or set the card to generates an interrupt when ready * for the packet. */ static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int numPages, poll_count, status; unsigned long flags; DBG(3, dev, "%s\n", __func__); BUG_ON(lp->pending_tx_skb != NULL); /* * The MMU wants the number of pages to be the number of 256 bytes * 'pages', minus 1 (since a packet can't ever have 0 pages :)) * * The 91C111 ignores the size bits, but earlier models don't. * * Pkt size for allocating is data length +6 (for additional status * words, length and ctl) * * If odd size then last byte is included in ctl word. */ numPages = ((skb->len & ~1) + (6 - 1)) >> 8; if (unlikely(numPages > 7)) { netdev_warn(dev, "Far too big packet error.\n"); dev->stats.tx_errors++; dev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } smc_special_lock(&lp->lock, flags); /* now, try to allocate the memory */ SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); /* * Poll the chip for a short amount of time in case the * allocation succeeds quickly. */ poll_count = MEMORY_WAIT_TIME; do { status = SMC_GET_INT(lp); if (status & IM_ALLOC_INT) { SMC_ACK_INT(lp, IM_ALLOC_INT); break; } } while (--poll_count); smc_special_unlock(&lp->lock, flags); lp->pending_tx_skb = skb; if (!poll_count) { /* oh well, wait until the chip finds memory later */ netif_stop_queue(dev); DBG(2, dev, "TX memory allocation deferred.\n"); SMC_ENABLE_INT(lp, IM_ALLOC_INT); } else { /* * Allocation succeeded: push packet to the chip's own memory * immediately. */ smc_hardware_send_pkt((unsigned long)dev); } return NETDEV_TX_OK; } /* * This handles a TX interrupt, which is only called when: * - a TX error occurred, or * - CTL_AUTO_RELEASE is not set and TX of a packet completed. */ static void smc_tx(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int saved_packet, packet_no, tx_status, pkt_len; DBG(3, dev, "%s\n", __func__); /* If the TX FIFO is empty then nothing to do */ packet_no = SMC_GET_TXFIFO(lp); if (unlikely(packet_no & TXFIFO_TEMPTY)) { PRINTK(dev, "smc_tx with nothing on FIFO.\n"); return; } /* select packet to read from */ saved_packet = SMC_GET_PN(lp); SMC_SET_PN(lp, packet_no); /* read the first word (status word) from this packet */ SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); SMC_GET_PKT_HDR(lp, tx_status, pkt_len); DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", tx_status, packet_no); if (!(tx_status & ES_TX_SUC)) dev->stats.tx_errors++; if (tx_status & ES_LOSTCARR) dev->stats.tx_carrier_errors++; if (tx_status & (ES_LATCOL | ES_16COL)) { PRINTK(dev, "%s occurred on last xmit\n", (tx_status & ES_LATCOL) ? "late collision" : "too many collisions"); dev->stats.tx_window_errors++; if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); } } /* kill the packet */ SMC_WAIT_MMU_BUSY(lp); SMC_SET_MMU_CMD(lp, MC_FREEPKT); /* Don't restore Packet Number Reg until busy bit is cleared */ SMC_WAIT_MMU_BUSY(lp); SMC_SET_PN(lp, saved_packet); /* re-enable transmit */ SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); SMC_SELECT_BANK(lp, 2); } /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int mii_reg, mask; mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); mii_reg |= MII_MDOE; for (mask = 1 << (bits - 1); mask; mask >>= 1) { if (val & mask) mii_reg |= MII_MDO; else mii_reg &= ~MII_MDO; SMC_SET_MII(lp, mii_reg); udelay(MII_DELAY); SMC_SET_MII(lp, mii_reg | MII_MCLK); udelay(MII_DELAY); } } static unsigned int smc_mii_in(struct net_device *dev, int bits) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int mii_reg, mask, val; mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); SMC_SET_MII(lp, mii_reg); for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { if (SMC_GET_MII(lp) & MII_MDI) val |= mask; SMC_SET_MII(lp, mii_reg); udelay(MII_DELAY); SMC_SET_MII(lp, mii_reg | MII_MCLK); udelay(MII_DELAY); } return val; } /* * Reads a register from the MII Management serial interface */ static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int phydata; SMC_SELECT_BANK(lp, 3); /* Idle - 32 ones */ smc_mii_out(dev, 0xffffffff, 32); /* Start code (01) + read (10) + phyaddr + phyreg */ smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); /* Turnaround (2bits) + phydata */ phydata = smc_mii_in(dev, 18); /* Return to idle state */ SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); return phydata; } /* * Writes a register to the MII Management serial interface */ static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, int phydata) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; SMC_SELECT_BANK(lp, 3); /* Idle - 32 ones */ smc_mii_out(dev, 0xffffffff, 32); /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); /* Return to idle state */ SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); } /* * Finds and reports the PHY address */ static void smc_phy_detect(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); int phyaddr; DBG(2, dev, "%s\n", __func__); lp->phy_type = 0; /* * Scan all 32 PHY addresses if necessary, starting at * PHY#1 to PHY#31, and then PHY#0 last. */ for (phyaddr = 1; phyaddr < 33; ++phyaddr) { unsigned int id1, id2; /* Read the PHY identifiers */ id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", id1, id2); /* Make sure it is a valid identifier */ if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { /* Save the PHY's address */ lp->mii.phy_id = phyaddr & 31; lp->phy_type = id1 << 16 | id2; break; } } } /* * Sets the PHY to a configuration as determined by the user */ static int smc_phy_fixed(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int phyaddr = lp->mii.phy_id; int bmcr, cfg1; DBG(3, dev, "%s\n", __func__); /* Enter Link Disable state */ cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); cfg1 |= PHY_CFG1_LNKDIS; smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); /* * Set our fixed capabilities * Disable auto-negotiation */ bmcr = 0; if (lp->ctl_rfduplx) bmcr |= BMCR_FULLDPLX; if (lp->ctl_rspeed == 100) bmcr |= BMCR_SPEED100; /* Write our capabilities to the phy control register */ smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); /* Re-Configure the Receive/Phy Control register */ SMC_SELECT_BANK(lp, 0); SMC_SET_RPC(lp, lp->rpc_cur_mode); SMC_SELECT_BANK(lp, 2); return 1; } /** * smc_phy_reset - reset the phy * @dev: net device * @phy: phy address * * Issue a software reset for the specified PHY and * wait up to 100ms for the reset to complete. We should * not access the PHY for 50ms after issuing the reset. * * The time to wait appears to be dependent on the PHY. * * Must be called with lp->lock locked. */ static int smc_phy_reset(struct net_device *dev, int phy) { struct smc_local *lp = netdev_priv(dev); unsigned int bmcr; int timeout; smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); for (timeout = 2; timeout; timeout--) { spin_unlock_irq(&lp->lock); msleep(50); spin_lock_irq(&lp->lock); bmcr = smc_phy_read(dev, phy, MII_BMCR); if (!(bmcr & BMCR_RESET)) break; } return bmcr & BMCR_RESET; } /** * smc_phy_powerdown - powerdown phy * @dev: net device * * Power down the specified PHY */ static void smc_phy_powerdown(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); unsigned int bmcr; int phy = lp->mii.phy_id; if (lp->phy_type == 0) return; /* We need to ensure that no calls to smc_phy_configure are pending. */ cancel_work_sync(&lp->phy_configure); bmcr = smc_phy_read(dev, phy, MII_BMCR); smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); } /** * smc_phy_check_media - check the media status and adjust TCR * @dev: net device * @init: set true for initialisation * * Select duplex mode depending on negotiation state. This * also updates our carrier state. */ static void smc_phy_check_media(struct net_device *dev, int init) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { /* duplex state has changed */ if (lp->mii.full_duplex) { lp->tcr_cur_mode |= TCR_SWFDUP; } else { lp->tcr_cur_mode &= ~TCR_SWFDUP; } SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); } } /* * Configures the specified PHY through the MII management interface * using Autonegotiation. * Calls smc_phy_fixed() if the user has requested a certain config. * If RPC ANEG bit is set, the media selection is dependent purely on * the selection by the MII (either in the MII BMCR reg or the result * of autonegotiation.) If the RPC ANEG bit is cleared, the selection * is controlled by the RPC SPEED and RPC DPLX bits. */ static void smc_phy_configure(struct work_struct *work) { struct smc_local *lp = container_of(work, struct smc_local, phy_configure); struct net_device *dev = lp->dev; void __iomem *ioaddr = lp->base; int phyaddr = lp->mii.phy_id; int my_phy_caps; /* My PHY capabilities */ int my_ad_caps; /* My Advertised capabilities */ int status; DBG(3, dev, "smc_program_phy()\n"); spin_lock_irq(&lp->lock); /* * We should not be called if phy_type is zero. */ if (lp->phy_type == 0) goto smc_phy_configure_exit; if (smc_phy_reset(dev, phyaddr)) { netdev_info(dev, "PHY reset timed out\n"); goto smc_phy_configure_exit; } /* * Enable PHY Interrupts (for register 18) * Interrupts listed here are disabled */ smc_phy_write(dev, phyaddr, PHY_MASK_REG, PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | PHY_INT_SPDDET | PHY_INT_DPLXDET); /* Configure the Receive/Phy Control register */ SMC_SELECT_BANK(lp, 0); SMC_SET_RPC(lp, lp->rpc_cur_mode); /* If the user requested no auto neg, then go set his request */ if (lp->mii.force_media) { smc_phy_fixed(dev); goto smc_phy_configure_exit; } /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { netdev_info(dev, "Auto negotiation NOT supported\n"); smc_phy_fixed(dev); goto smc_phy_configure_exit; } my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ if (my_phy_caps & BMSR_100BASE4) my_ad_caps |= ADVERTISE_100BASE4; if (my_phy_caps & BMSR_100FULL) my_ad_caps |= ADVERTISE_100FULL; if (my_phy_caps & BMSR_100HALF) my_ad_caps |= ADVERTISE_100HALF; if (my_phy_caps & BMSR_10FULL) my_ad_caps |= ADVERTISE_10FULL; if (my_phy_caps & BMSR_10HALF) my_ad_caps |= ADVERTISE_10HALF; /* Disable capabilities not selected by our user */ if (lp->ctl_rspeed != 100) my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); if (!lp->ctl_rfduplx) my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); /* Update our Auto-Neg Advertisement Register */ smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); lp->mii.advertising = my_ad_caps; /* * Read the register back. Without this, it appears that when * auto-negotiation is restarted, sometimes it isn't ready and * the link does not come up. */ status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); DBG(2, dev, "phy caps=%x\n", my_phy_caps); DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); /* Restart auto-negotiation process in order to advertise my caps */ smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); smc_phy_check_media(dev, 1); smc_phy_configure_exit: SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); } /* * smc_phy_interrupt * * Purpose: Handle interrupts relating to PHY register 18. This is * called from the "hard" interrupt handler under our private spinlock. */ static void smc_phy_interrupt(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); int phyaddr = lp->mii.phy_id; int phy18; DBG(2, dev, "%s\n", __func__); if (lp->phy_type == 0) return; for(;;) { smc_phy_check_media(dev, 0); /* Read PHY Register 18, Status Output */ phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); if ((phy18 & PHY_INT_INT) == 0) break; } } /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ static void smc_10bt_check_media(struct net_device *dev, int init) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int old_carrier, new_carrier; old_carrier = netif_carrier_ok(dev) ? 1 : 0; SMC_SELECT_BANK(lp, 0); new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; SMC_SELECT_BANK(lp, 2); if (init || (old_carrier != new_carrier)) { if (!new_carrier) { netif_carrier_off(dev); } else { netif_carrier_on(dev); } if (netif_msg_link(lp)) netdev_info(dev, "link %s\n", new_carrier ? "up" : "down"); } } static void smc_eph_interrupt(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int ctl; smc_10bt_check_media(dev, 0); SMC_SELECT_BANK(lp, 1); ctl = SMC_GET_CTL(lp); SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); SMC_SET_CTL(lp, ctl); SMC_SELECT_BANK(lp, 2); } /* * This is the main routine of the driver, to handle the device when * it needs some attention. */ static irqreturn_t smc_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int status, mask, timeout, card_stats; int saved_pointer; DBG(3, dev, "%s\n", __func__); spin_lock(&lp->lock); /* A preamble may be used when there is a potential race * between the interruptible transmit functions and this * ISR. */ SMC_INTERRUPT_PREAMBLE; saved_pointer = SMC_GET_PTR(lp); mask = SMC_GET_INT_MASK(lp); SMC_SET_INT_MASK(lp, 0); /* set a timeout value, so I don't stay here forever */ timeout = MAX_IRQ_LOOPS; do { status = SMC_GET_INT(lp); DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", status, mask, ({ int meminfo; SMC_SELECT_BANK(lp, 0); meminfo = SMC_GET_MIR(lp); SMC_SELECT_BANK(lp, 2); meminfo; }), SMC_GET_FIFO(lp)); status &= mask; if (!status) break; if (status & IM_TX_INT) { /* do this before RX as it will free memory quickly */ DBG(3, dev, "TX int\n"); smc_tx(dev); SMC_ACK_INT(lp, IM_TX_INT); if (THROTTLE_TX_PKTS) netif_wake_queue(dev); } else if (status & IM_RCV_INT) { DBG(3, dev, "RX irq\n"); smc_rcv(dev); } else if (status & IM_ALLOC_INT) { DBG(3, dev, "Allocation irq\n"); tasklet_hi_schedule(&lp->tx_task); mask &= ~IM_ALLOC_INT; } else if (status & IM_TX_EMPTY_INT) { DBG(3, dev, "TX empty\n"); mask &= ~IM_TX_EMPTY_INT; /* update stats */ SMC_SELECT_BANK(lp, 0); card_stats = SMC_GET_COUNTER(lp); SMC_SELECT_BANK(lp, 2); /* single collisions */ dev->stats.collisions += card_stats & 0xF; card_stats >>= 4; /* multiple collisions */ dev->stats.collisions += card_stats & 0xF; } else if (status & IM_RX_OVRN_INT) { DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", ({ int eph_st; SMC_SELECT_BANK(lp, 0); eph_st = SMC_GET_EPH_STATUS(lp); SMC_SELECT_BANK(lp, 2); eph_st; })); SMC_ACK_INT(lp, IM_RX_OVRN_INT); dev->stats.rx_errors++; dev->stats.rx_fifo_errors++; } else if (status & IM_EPH_INT) { smc_eph_interrupt(dev); } else if (status & IM_MDINT) { SMC_ACK_INT(lp, IM_MDINT); smc_phy_interrupt(dev); } else if (status & IM_ERCV_INT) { SMC_ACK_INT(lp, IM_ERCV_INT); PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); } } while (--timeout); /* restore register states */ SMC_SET_PTR(lp, saved_pointer); SMC_SET_INT_MASK(lp, mask); spin_unlock(&lp->lock); #ifndef CONFIG_NET_POLL_CONTROLLER if (timeout == MAX_IRQ_LOOPS) PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", mask); #endif DBG(3, dev, "Interrupt done (%d loops)\n", MAX_IRQ_LOOPS - timeout); /* * We return IRQ_HANDLED unconditionally here even if there was * nothing to do. There is a possibility that a packet might * get enqueued into the chip right after TX_EMPTY_INT is raised * but just before the CPU acknowledges the IRQ. * Better take an unneeded IRQ in some occasions than complexifying * the code for all cases. */ return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling receive - used by netconsole and other diagnostic tools * to allow network i/o with interrupts disabled. */ static void smc_poll_controller(struct net_device *dev) { disable_irq(dev->irq); smc_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* Our watchdog timed out. Called by the networking layer */ static void smc_timeout(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int status, mask, eph_st, meminfo, fifo; DBG(2, dev, "%s\n", __func__); spin_lock_irq(&lp->lock); status = SMC_GET_INT(lp); mask = SMC_GET_INT_MASK(lp); fifo = SMC_GET_FIFO(lp); SMC_SELECT_BANK(lp, 0); eph_st = SMC_GET_EPH_STATUS(lp); meminfo = SMC_GET_MIR(lp); SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", status, mask, meminfo, fifo, eph_st); smc_reset(dev); smc_enable(dev); /* * Reconfiguring the PHY doesn't seem like a bad idea here, but * smc_phy_configure() calls msleep() which calls schedule_timeout() * which calls schedule(). Hence we use a work queue. */ if (lp->phy_type != 0) schedule_work(&lp->phy_configure); /* We can accept TX packets again */ netif_trans_update(dev); /* prevent tx timeout */ netif_wake_queue(dev); } /* * This routine will, depending on the values passed to it, * either make it accept multicast packets, go into * promiscuous mode (for TCPDUMP and cousins) or accept * a select set of multicast packets */ static void smc_set_multicast_list(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned char multicast_table[8]; int update_multicast = 0; DBG(2, dev, "%s\n", __func__); if (dev->flags & IFF_PROMISC) { DBG(2, dev, "RCR_PRMS\n"); lp->rcr_cur_mode |= RCR_PRMS; } /* BUG? I never disable promiscuous mode if multicasting was turned on. Now, I turn off promiscuous mode, but I don't do anything to multicasting when promiscuous mode is turned on. */ /* * Here, I am setting this to accept all multicast packets. * I don't need to zero the multicast table, because the flag is * checked before the table is */ else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { DBG(2, dev, "RCR_ALMUL\n"); lp->rcr_cur_mode |= RCR_ALMUL; } /* * This sets the internal hardware table to filter out unwanted * multicast packets before they take up memory. * * The SMC chip uses a hash table where the high 6 bits of the CRC of * address are the offset into the table. If that bit is 1, then the * multicast packet is accepted. Otherwise, it's dropped silently. * * To use the 6 bits as an offset into the table, the high 3 bits are * the number of the 8 bit register, while the low 3 bits are the bit * within that register. */ else if (!netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; /* table for flipping the order of 3 bits */ static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; /* start with a table of all zeros: reject all */ memset(multicast_table, 0, sizeof(multicast_table)); netdev_for_each_mc_addr(ha, dev) { int position; /* only use the low order bits */ position = crc32_le(~0, ha->addr, 6) & 0x3f; /* do some messy swapping to put the bit in the right spot */ multicast_table[invert3[position&7]] |= (1<>3)&7]); } /* be sure I get rid of flags I might have set */ lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); /* now, the table can be loaded into the chipset */ update_multicast = 1; } else { DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); /* * since I'm disabling all multicast entirely, I need to * clear the multicast list */ memset(multicast_table, 0, sizeof(multicast_table)); update_multicast = 1; } spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, lp->rcr_cur_mode); if (update_multicast) { SMC_SELECT_BANK(lp, 3); SMC_SET_MCAST(lp, multicast_table); } SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); } /* * Open and Initialize the board * * Set up everything, reset the card, etc.. */ static int smc_open(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); DBG(2, dev, "%s\n", __func__); /* Setup the default Register Modes */ lp->tcr_cur_mode = TCR_DEFAULT; lp->rcr_cur_mode = RCR_DEFAULT; lp->rpc_cur_mode = RPC_DEFAULT | lp->cfg.leda << RPC_LSXA_SHFT | lp->cfg.ledb << RPC_LSXB_SHFT; /* * If we are not using a MII interface, we need to * monitor our own carrier signal to detect faults. */ if (lp->phy_type == 0) lp->tcr_cur_mode |= TCR_MON_CSN; /* reset the hardware */ smc_reset(dev); smc_enable(dev); /* Configure the PHY, initialize the link state */ if (lp->phy_type != 0) smc_phy_configure(&lp->phy_configure); else { spin_lock_irq(&lp->lock); smc_10bt_check_media(dev, 1); spin_unlock_irq(&lp->lock); } netif_start_queue(dev); return 0; } /* * smc_close * * this makes the board clean up everything that it can * and not talk to the outside world. Caused by * an 'ifconfig ethX down' */ static int smc_close(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); DBG(2, dev, "%s\n", __func__); netif_stop_queue(dev); netif_carrier_off(dev); /* clear everything */ smc_shutdown(dev); tasklet_kill(&lp->tx_task); smc_phy_powerdown(dev); return 0; } /* * Ethtool support */ static int smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct smc_local *lp = netdev_priv(dev); int ret; cmd->maxtxpkt = 1; cmd->maxrxpkt = 1; if (lp->phy_type != 0) { spin_lock_irq(&lp->lock); ret = mii_ethtool_gset(&lp->mii, cmd); spin_unlock_irq(&lp->lock); } else { cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_TP | SUPPORTED_AUI; if (lp->ctl_rspeed == 10) ethtool_cmd_speed_set(cmd, SPEED_10); else if (lp->ctl_rspeed == 100) ethtool_cmd_speed_set(cmd, SPEED_100); cmd->autoneg = AUTONEG_DISABLE; cmd->transceiver = XCVR_INTERNAL; cmd->port = 0; cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF; ret = 0; } return ret; } static int smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct smc_local *lp = netdev_priv(dev); int ret; if (lp->phy_type != 0) { spin_lock_irq(&lp->lock); ret = mii_ethtool_sset(&lp->mii, cmd); spin_unlock_irq(&lp->lock); } else { if (cmd->autoneg != AUTONEG_DISABLE || cmd->speed != SPEED_10 || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) || (cmd->port != PORT_TP && cmd->port != PORT_AUI)) return -EINVAL; // lp->port = cmd->port; lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL; // if (netif_running(dev)) // smc_set_port(dev); ret = 0; } return ret; } static void smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, CARDNAME, sizeof(info->driver)); strlcpy(info->version, version, sizeof(info->version)); strlcpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info)); } static int smc_ethtool_nwayreset(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); int ret = -EINVAL; if (lp->phy_type != 0) { spin_lock_irq(&lp->lock); ret = mii_nway_restart(&lp->mii); spin_unlock_irq(&lp->lock); } return ret; } static u32 smc_ethtool_getmsglevel(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); return lp->msg_enable; } static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) { struct smc_local *lp = netdev_priv(dev); lp->msg_enable = level; } static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) { u16 ctl; struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; spin_lock_irq(&lp->lock); /* load word into GP register */ SMC_SELECT_BANK(lp, 1); SMC_SET_GP(lp, word); /* set the address to put the data in EEPROM */ SMC_SELECT_BANK(lp, 2); SMC_SET_PTR(lp, addr); /* tell it to write */ SMC_SELECT_BANK(lp, 1); ctl = SMC_GET_CTL(lp); SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); /* wait for it to finish */ do { udelay(1); } while (SMC_GET_CTL(lp) & CTL_STORE); /* clean up */ SMC_SET_CTL(lp, ctl); SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); return 0; } static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) { u16 ctl; struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; spin_lock_irq(&lp->lock); /* set the EEPROM address to get the data from */ SMC_SELECT_BANK(lp, 2); SMC_SET_PTR(lp, addr | PTR_READ); /* tell it to load */ SMC_SELECT_BANK(lp, 1); SMC_SET_GP(lp, 0xffff); /* init to known */ ctl = SMC_GET_CTL(lp); SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); /* wait for it to finish */ do { udelay(1); } while (SMC_GET_CTL(lp) & CTL_RELOAD); /* read word from GP register */ *word = SMC_GET_GP(lp); /* clean up */ SMC_SET_CTL(lp, ctl); SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); return 0; } static int smc_ethtool_geteeprom_len(struct net_device *dev) { return 0x23 * 2; } static int smc_ethtool_geteeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { int i; int imax; DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", eeprom->len, eeprom->offset, eeprom->offset); imax = smc_ethtool_geteeprom_len(dev); for (i = 0; i < eeprom->len; i += 2) { int ret; u16 wbuf; int offset = i + eeprom->offset; if (offset > imax) break; ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); if (ret != 0) return ret; DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); data[i] = (wbuf >> 8) & 0xff; data[i+1] = wbuf & 0xff; } return 0; } static int smc_ethtool_seteeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { int i; int imax; DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", eeprom->len, eeprom->offset, eeprom->offset); imax = smc_ethtool_geteeprom_len(dev); for (i = 0; i < eeprom->len; i += 2) { int ret; u16 wbuf; int offset = i + eeprom->offset; if (offset > imax) break; wbuf = (data[i] << 8) | data[i + 1]; DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); if (ret != 0) return ret; } return 0; } static const struct ethtool_ops smc_ethtool_ops = { .get_settings = smc_ethtool_getsettings, .set_settings = smc_ethtool_setsettings, .get_drvinfo = smc_ethtool_getdrvinfo, .get_msglevel = smc_ethtool_getmsglevel, .set_msglevel = smc_ethtool_setmsglevel, .nway_reset = smc_ethtool_nwayreset, .get_link = ethtool_op_get_link, .get_eeprom_len = smc_ethtool_geteeprom_len, .get_eeprom = smc_ethtool_geteeprom, .set_eeprom = smc_ethtool_seteeprom, }; static const struct net_device_ops smc_netdev_ops = { .ndo_open = smc_open, .ndo_stop = smc_close, .ndo_start_xmit = smc_hard_start_xmit, .ndo_tx_timeout = smc_timeout, .ndo_set_rx_mode = smc_set_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = smc_poll_controller, #endif }; /* * smc_findirq * * This routine has a simple purpose -- make the SMC chip generate an * interrupt, so an auto-detect routine can detect it, and find the IRQ, */ /* * does this still work? * * I just deleted auto_irq.c, since it was never built... * --jgarzik */ static int smc_findirq(struct smc_local *lp) { void __iomem *ioaddr = lp->base; int timeout = 20; unsigned long cookie; DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); cookie = probe_irq_on(); /* * What I try to do here is trigger an ALLOC_INT. This is done * by allocating a small chunk of memory, which will give an interrupt * when done. */ /* enable ALLOCation interrupts ONLY */ SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, IM_ALLOC_INT); /* * Allocate 512 bytes of memory. Note that the chip was just * reset so all the memory is available */ SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); /* * Wait until positive that the interrupt has been generated */ do { int int_status; udelay(10); int_status = SMC_GET_INT(lp); if (int_status & IM_ALLOC_INT) break; /* got the interrupt */ } while (--timeout); /* * there is really nothing that I can do here if timeout fails, * as autoirq_report will return a 0 anyway, which is what I * want in this case. Plus, the clean up is needed in both * cases. */ /* and disable all interrupts again */ SMC_SET_INT_MASK(lp, 0); /* and return what I found */ return probe_irq_off(cookie); } /* * Function: smc_probe(unsigned long ioaddr) * * Purpose: * Tests to see if a given ioaddr points to an SMC91x chip. * Returns a 0 on success * * Algorithm: * (1) see if the high byte of BANK_SELECT is 0x33 * (2) compare the ioaddr with the base register's address * (3) see if I recognize the chip ID in the appropriate register * * Here I do typical initialization tasks. * * o Initialize the structure if needed * o print out my vanity message if not done so already * o print out what type of hardware is detected * o print out the ethernet address * o find the IRQ * o set up my private data * o configure the dev structure with my subroutines * o actually GRAB the irq. * o GRAB the region */ static int smc_probe(struct net_device *dev, void __iomem *ioaddr, unsigned long irq_flags) { struct smc_local *lp = netdev_priv(dev); int retval; unsigned int val, revision_register; const char *version_string; DBG(2, dev, "%s: %s\n", CARDNAME, __func__); /* First, see if the high byte is 0x33 */ val = SMC_CURRENT_BANK(lp); DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val); if ((val & 0xFF00) != 0x3300) { if ((val & 0xFF) == 0x33) { netdev_warn(dev, "%s: Detected possible byte-swapped interface at IOADDR %p\n", CARDNAME, ioaddr); } retval = -ENODEV; goto err_out; } /* * The above MIGHT indicate a device, but I need to write to * further test this. */ SMC_SELECT_BANK(lp, 0); val = SMC_CURRENT_BANK(lp); if ((val & 0xFF00) != 0x3300) { retval = -ENODEV; goto err_out; } /* * well, we've already written once, so hopefully another * time won't hurt. This time, I need to switch the bank * register to bank 1, so I can access the base address * register */ SMC_SELECT_BANK(lp, 1); val = SMC_GET_BASE(lp); val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", CARDNAME, ioaddr, val); } /* * check if the revision register is something that I * recognize. These might need to be added to later, * as future revisions could be added. */ SMC_SELECT_BANK(lp, 3); revision_register = SMC_GET_REV(lp); DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); version_string = chip_ids[ (revision_register >> 4) & 0xF]; if (!version_string || (revision_register & 0xff00) != 0x3300) { /* I don't recognize this chip, so... */ netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", CARDNAME, ioaddr, revision_register); retval = -ENODEV; goto err_out; } /* At this point I'll assume that the chip is an SMC91x. */ pr_info_once("%s\n", version); /* fill in some of the fields */ dev->base_addr = (unsigned long)ioaddr; lp->base = ioaddr; lp->version = revision_register & 0xff; spin_lock_init(&lp->lock); /* Get the MAC address */ SMC_SELECT_BANK(lp, 1); SMC_GET_MAC_ADDR(lp, dev->dev_addr); /* now, reset the chip, and put it into a known state */ smc_reset(dev); /* * If dev->irq is 0, then the device has to be banged on to see * what the IRQ is. * * This banging doesn't always detect the IRQ, for unknown reasons. * a workaround is to reset the chip and try again. * * Interestingly, the DOS packet driver *SETS* the IRQ on the card to * be what is requested on the command line. I don't do that, mostly * because the card that I have uses a non-standard method of accessing * the IRQs, and because this _should_ work in most configurations. * * Specifying an IRQ is done with the assumption that the user knows * what (s)he is doing. No checking is done!!!! */ if (dev->irq < 1) { int trials; trials = 3; while (trials--) { dev->irq = smc_findirq(lp); if (dev->irq) break; /* kick the card and try again */ smc_reset(dev); } } if (dev->irq == 0) { netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); retval = -ENODEV; goto err_out; } dev->irq = irq_canonicalize(dev->irq); dev->watchdog_timeo = msecs_to_jiffies(watchdog); dev->netdev_ops = &smc_netdev_ops; dev->ethtool_ops = &smc_ethtool_ops; tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev); INIT_WORK(&lp->phy_configure, smc_phy_configure); lp->dev = dev; lp->mii.phy_id_mask = 0x1f; lp->mii.reg_num_mask = 0x1f; lp->mii.force_media = 0; lp->mii.full_duplex = 0; lp->mii.dev = dev; lp->mii.mdio_read = smc_phy_read; lp->mii.mdio_write = smc_phy_write; /* * Locate the phy, if any. */ if (lp->version >= (CHIP_91100 << 4)) smc_phy_detect(dev); /* then shut everything down to save power */ smc_shutdown(dev); smc_phy_powerdown(dev); /* Set default parameters */ lp->msg_enable = NETIF_MSG_LINK; lp->ctl_rfduplx = 0; lp->ctl_rspeed = 10; if (lp->version >= (CHIP_91100 << 4)) { lp->ctl_rfduplx = 1; lp->ctl_rspeed = 100; } /* Grab the IRQ */ retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); if (retval) goto err_out; #ifdef CONFIG_ARCH_PXA # ifdef SMC_USE_PXA_DMA lp->cfg.flags |= SMC91X_USE_DMA; # endif if (lp->cfg.flags & SMC91X_USE_DMA) { dma_cap_mask_t mask; struct pxad_param param; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); param.prio = PXAD_PRIO_LOWEST; param.drcmr = -1UL; lp->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn, ¶m, &dev->dev, "data"); } #endif retval = register_netdev(dev); if (retval == 0) { /* now, print out the card info, in a short format.. */ netdev_info(dev, "%s (rev %d) at %p IRQ %d", version_string, revision_register & 0x0f, lp->base, dev->irq); if (lp->dma_chan) pr_cont(" DMA %p", lp->dma_chan); pr_cont("%s%s\n", lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); if (!is_valid_ether_addr(dev->dev_addr)) { netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); } else { /* Print the Ethernet address */ netdev_info(dev, "Ethernet addr: %pM\n", dev->dev_addr); } if (lp->phy_type == 0) { PRINTK(dev, "No PHY found\n"); } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { PRINTK(dev, "PHY LAN83C180\n"); } } err_out: #ifdef CONFIG_ARCH_PXA if (retval && lp->dma_chan) dma_release_channel(lp->dma_chan); #endif return retval; } static int smc_enable_device(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smc_local *lp = netdev_priv(ndev); unsigned long flags; unsigned char ecor, ecsr; void __iomem *addr; struct resource * res; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); if (!res) return 0; /* * Map the attribute space. This is overkill, but clean. */ addr = ioremap(res->start, ATTRIB_SIZE); if (!addr) return -ENOMEM; /* * Reset the device. We must disable IRQs around this * since a reset causes the IRQ line become active. */ local_irq_save(flags); ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); readb(addr + (ECOR << SMC_IO_SHIFT)); /* * Wait 100us for the chip to reset. */ udelay(100); /* * The device will ignore all writes to the enable bit while * reset is asserted, even if the reset bit is cleared in the * same write. Must clear reset first, then enable the device. */ writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); /* * Set the appropriate byte/word mode. */ ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; if (!SMC_16BIT(lp)) ecsr |= ECSR_IOIS8; writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); local_irq_restore(flags); iounmap(addr); /* * Wait for the chip to wake up. We could poll the control * register in the main register space, but that isn't mapped * yet. We know this is going to take 750us. */ msleep(1); return 0; } static int smc_request_attrib(struct platform_device *pdev, struct net_device *ndev) { struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); struct smc_local *lp __maybe_unused = netdev_priv(ndev); if (!res) return 0; if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) return -EBUSY; return 0; } static void smc_release_attrib(struct platform_device *pdev, struct net_device *ndev) { struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); struct smc_local *lp __maybe_unused = netdev_priv(ndev); if (res) release_mem_region(res->start, ATTRIB_SIZE); } static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) { if (SMC_CAN_USE_DATACS) { struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); struct smc_local *lp = netdev_priv(ndev); if (!res) return; if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { netdev_info(ndev, "%s: failed to request datacs memory region.\n", CARDNAME); return; } lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); } } static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) { if (SMC_CAN_USE_DATACS) { struct smc_local *lp = netdev_priv(ndev); struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); if (lp->datacs) iounmap(lp->datacs); lp->datacs = NULL; if (res) release_mem_region(res->start, SMC_DATA_EXTENT); } } static const struct acpi_device_id smc91x_acpi_match[] = { { "LNRO0003", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match); #if IS_BUILTIN(CONFIG_OF) static const struct of_device_id smc91x_match[] = { { .compatible = "smsc,lan91c94", }, { .compatible = "smsc,lan91c111", }, {}, }; MODULE_DEVICE_TABLE(of, smc91x_match); /** * of_try_set_control_gpio - configure a gpio if it exists */ static int try_toggle_control_gpio(struct device *dev, struct gpio_desc **desc, const char *name, int index, int value, unsigned int nsdelay) { struct gpio_desc *gpio = *desc; enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; gpio = devm_gpiod_get_index_optional(dev, name, index, flags); if (IS_ERR(gpio)) return PTR_ERR(gpio); if (gpio) { if (nsdelay) usleep_range(nsdelay, 2 * nsdelay); gpiod_set_value_cansleep(gpio, value); } *desc = gpio; return 0; } #endif /* * smc_init(void) * Input parameters: * dev->base_addr == 0, try to find all possible locations * dev->base_addr > 0x1ff, this is the address to check * dev->base_addr == , return failure code * * Output: * 0 --> there is a device * anything else, error */ static int smc_drv_probe(struct platform_device *pdev) { struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); const struct of_device_id *match = NULL; struct smc_local *lp; struct net_device *ndev; struct resource *res; unsigned int __iomem *addr; unsigned long irq_flags = SMC_IRQ_FLAGS; unsigned long irq_resflags; int ret; ndev = alloc_etherdev(sizeof(struct smc_local)); if (!ndev) { ret = -ENOMEM; goto out; } SET_NETDEV_DEV(ndev, &pdev->dev); /* get configuration from platform data, only allow use of * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. */ lp = netdev_priv(ndev); lp->cfg.flags = 0; if (pd) { memcpy(&lp->cfg, pd, sizeof(lp->cfg)); lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) { dev_err(&pdev->dev, "at least one of 8-bit or 16-bit access support is required.\n"); ret = -ENXIO; goto out_free_netdev; } } #if IS_BUILTIN(CONFIG_OF) match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); if (match) { u32 val; /* Optional pwrdwn GPIO configured? */ ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, "power", 0, 0, 100); if (ret) return ret; /* * Optional reset GPIO configured? Minimum 100 ns reset needed * according to LAN91C96 datasheet page 14. */ ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, "reset", 0, 0, 100); if (ret) return ret; /* * Need to wait for optional EEPROM to load, max 750 us according * to LAN91C96 datasheet page 55. */ if (lp->reset_gpio) usleep_range(750, 1000); /* Combination of IO widths supported, default to 16-bit */ if (!device_property_read_u32(&pdev->dev, "reg-io-width", &val)) { if (val & 1) lp->cfg.flags |= SMC91X_USE_8BIT; if ((val == 0) || (val & 2)) lp->cfg.flags |= SMC91X_USE_16BIT; if (val & 4) lp->cfg.flags |= SMC91X_USE_32BIT; } else { lp->cfg.flags |= SMC91X_USE_16BIT; } if (!device_property_read_u32(&pdev->dev, "reg-shift", &val)) lp->io_shift = val; } #endif if (!pd && !match) { lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; } if (!lp->cfg.leda && !lp->cfg.ledb) { lp->cfg.leda = RPC_LSA_DEFAULT; lp->cfg.ledb = RPC_LSB_DEFAULT; } ndev->dma = (unsigned char)-1; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { ret = -ENODEV; goto out_free_netdev; } if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { ret = -EBUSY; goto out_free_netdev; } ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq < 0) { ret = ndev->irq; goto out_release_io; } /* * If this platform does not specify any special irqflags, or if * the resource supplies a trigger, override the irqflags with * the trigger flags from the resource. */ irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) irq_flags = irq_resflags & IRQF_TRIGGER_MASK; ret = smc_request_attrib(pdev, ndev); if (ret) goto out_release_io; #if defined(CONFIG_ASSABET_NEPONSET) if (machine_is_assabet() && machine_has_neponset()) neponset_ncr_set(NCR_ENET_OSC_EN); #endif platform_set_drvdata(pdev, ndev); ret = smc_enable_device(pdev); if (ret) goto out_release_attrib; addr = ioremap(res->start, SMC_IO_EXTENT); if (!addr) { ret = -ENOMEM; goto out_release_attrib; } #ifdef CONFIG_ARCH_PXA { struct smc_local *lp = netdev_priv(ndev); lp->device = &pdev->dev; lp->physaddr = res->start; } #endif ret = smc_probe(ndev, addr, irq_flags); if (ret != 0) goto out_iounmap; smc_request_datacs(pdev, ndev); return 0; out_iounmap: iounmap(addr); out_release_attrib: smc_release_attrib(pdev, ndev); out_release_io: release_mem_region(res->start, SMC_IO_EXTENT); out_free_netdev: free_netdev(ndev); out: pr_info("%s: not found (%d).\n", CARDNAME, ret); return ret; } static int smc_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smc_local *lp = netdev_priv(ndev); struct resource *res; unregister_netdev(ndev); free_irq(ndev->irq, ndev); #ifdef CONFIG_ARCH_PXA if (lp->dma_chan) dma_release_channel(lp->dma_chan); #endif iounmap(lp->base); smc_release_datacs(pdev,ndev); smc_release_attrib(pdev,ndev); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, SMC_IO_EXTENT); free_netdev(ndev); return 0; } static int smc_drv_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct net_device *ndev = platform_get_drvdata(pdev); if (ndev) { if (netif_running(ndev)) { netif_device_detach(ndev); smc_shutdown(ndev); smc_phy_powerdown(ndev); } } return 0; } static int smc_drv_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct net_device *ndev = platform_get_drvdata(pdev); if (ndev) { struct smc_local *lp = netdev_priv(ndev); smc_enable_device(pdev); if (netif_running(ndev)) { smc_reset(ndev); smc_enable(ndev); if (lp->phy_type != 0) smc_phy_configure(&lp->phy_configure); netif_device_attach(ndev); } } return 0; } static struct dev_pm_ops smc_drv_pm_ops = { .suspend = smc_drv_suspend, .resume = smc_drv_resume, }; static struct platform_driver smc_driver = { .probe = smc_drv_probe, .remove = smc_drv_remove, .driver = { .name = CARDNAME, .pm = &smc_drv_pm_ops, .of_match_table = of_match_ptr(smc91x_match), .acpi_match_table = smc91x_acpi_match, }, }; module_platform_driver(smc_driver);