/* * Copyright © 2014-2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "i915_drv.h" #define QUIET (__GFP_NORETRY | __GFP_NOWARN) /* convert swiotlb segment size into sensible units (pages)! */ #define IO_TLB_SEGPAGES (IO_TLB_SEGSIZE << IO_TLB_SHIFT >> PAGE_SHIFT) static void internal_free_pages(struct sg_table *st) { struct scatterlist *sg; for (sg = st->sgl; sg; sg = __sg_next(sg)) __free_pages(sg_page(sg), get_order(sg->length)); sg_free_table(st); kfree(st); } static struct sg_table * i915_gem_object_get_pages_internal(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); unsigned int npages = obj->base.size / PAGE_SIZE; struct sg_table *st; struct scatterlist *sg; int max_order; gfp_t gfp; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) return ERR_PTR(-ENOMEM); if (sg_alloc_table(st, npages, GFP_KERNEL)) { kfree(st); return ERR_PTR(-ENOMEM); } sg = st->sgl; st->nents = 0; max_order = MAX_ORDER; #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) /* minimum max swiotlb size is IO_TLB_SEGSIZE */ max_order = min(max_order, ilog2(IO_TLB_SEGPAGES)); #endif gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_RECLAIMABLE; if (IS_I965GM(i915) || IS_I965G(i915)) { /* 965gm cannot relocate objects above 4GiB. */ gfp &= ~__GFP_HIGHMEM; gfp |= __GFP_DMA32; } do { int order = min(fls(npages) - 1, max_order); struct page *page; do { page = alloc_pages(gfp | (order ? QUIET : 0), order); if (page) break; if (!order--) goto err; /* Limit subsequent allocations as well */ max_order = order; } while (1); sg_set_page(sg, page, PAGE_SIZE << order, 0); st->nents++; npages -= 1 << order; if (!npages) { sg_mark_end(sg); break; } sg = __sg_next(sg); } while (1); if (i915_gem_gtt_prepare_pages(obj, st)) goto err; /* Mark the pages as dontneed whilst they are still pinned. As soon * as they are unpinned they are allowed to be reaped by the shrinker, * and the caller is expected to repopulate - the contents of this * object are only valid whilst active and pinned. */ obj->mm.madv = I915_MADV_DONTNEED; return st; err: sg_mark_end(sg); internal_free_pages(st); return ERR_PTR(-ENOMEM); } static void i915_gem_object_put_pages_internal(struct drm_i915_gem_object *obj, struct sg_table *pages) { i915_gem_gtt_finish_pages(obj, pages); internal_free_pages(pages); obj->mm.dirty = false; obj->mm.madv = I915_MADV_WILLNEED; } static const struct drm_i915_gem_object_ops i915_gem_object_internal_ops = { .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = i915_gem_object_get_pages_internal, .put_pages = i915_gem_object_put_pages_internal, }; /** * Creates a new object that wraps some internal memory for private use. * This object is not backed by swappable storage, and as such its contents * are volatile and only valid whilst pinned. If the object is reaped by the * shrinker, its pages and data will be discarded. Equally, it is not a full * GEM object and so not valid for access from userspace. This makes it useful * for hardware interfaces like ringbuffers (which are pinned from the time * the request is written to the time the hardware stops accessing it), but * not for contexts (which need to be preserved when not active for later * reuse). Note that it is not cleared upon allocation. */ struct drm_i915_gem_object * i915_gem_object_create_internal(struct drm_i915_private *i915, phys_addr_t size) { struct drm_i915_gem_object *obj; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE)); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(i915); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); i915_gem_object_init(obj, &i915_gem_object_internal_ops); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->cache_level = HAS_LLC(i915) ? I915_CACHE_LLC : I915_CACHE_NONE; return obj; }