/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_device_queue_manager.h" static long kfd_ioctl(struct file *, unsigned int, unsigned long); static int kfd_open(struct inode *, struct file *); static int kfd_mmap(struct file *, struct vm_area_struct *); static const char kfd_dev_name[] = "kfd"; static const struct file_operations kfd_fops = { .owner = THIS_MODULE, .unlocked_ioctl = kfd_ioctl, .compat_ioctl = kfd_ioctl, .open = kfd_open, .mmap = kfd_mmap, }; static int kfd_char_dev_major = -1; static struct class *kfd_class; struct device *kfd_device; int kfd_chardev_init(void) { int err = 0; kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); err = kfd_char_dev_major; if (err < 0) goto err_register_chrdev; kfd_class = class_create(THIS_MODULE, kfd_dev_name); err = PTR_ERR(kfd_class); if (IS_ERR(kfd_class)) goto err_class_create; kfd_device = device_create(kfd_class, NULL, MKDEV(kfd_char_dev_major, 0), NULL, kfd_dev_name); err = PTR_ERR(kfd_device); if (IS_ERR(kfd_device)) goto err_device_create; return 0; err_device_create: class_destroy(kfd_class); err_class_create: unregister_chrdev(kfd_char_dev_major, kfd_dev_name); err_register_chrdev: return err; } void kfd_chardev_exit(void) { device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); class_destroy(kfd_class); unregister_chrdev(kfd_char_dev_major, kfd_dev_name); } struct device *kfd_chardev(void) { return kfd_device; } static int kfd_open(struct inode *inode, struct file *filep) { struct kfd_process *process; bool is_32bit_user_mode; if (iminor(inode) != 0) return -ENODEV; is_32bit_user_mode = is_compat_task(); if (is_32bit_user_mode == true) { dev_warn(kfd_device, "Process %d (32-bit) failed to open /dev/kfd\n" "32-bit processes are not supported by amdkfd\n", current->pid); return -EPERM; } process = kfd_create_process(current); if (IS_ERR(process)) return PTR_ERR(process); dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", process->pasid, process->is_32bit_user_mode); return 0; } static long kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, void __user *arg) { struct kfd_ioctl_get_version_args args; int err = 0; args.major_version = KFD_IOCTL_MAJOR_VERSION; args.minor_version = KFD_IOCTL_MINOR_VERSION; if (copy_to_user(arg, &args, sizeof(args))) err = -EFAULT; return err; } static int set_queue_properties_from_user(struct queue_properties *q_properties, struct kfd_ioctl_create_queue_args *args) { void *tmp; if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("kfd: queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("kfd: queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok(VERIFY_WRITE, (const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("kfd: can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("kfd: ring size must be a power of 2 or 0\n"); return -EINVAL; } if (!access_ok(VERIFY_WRITE, (const void __user *) args->read_pointer_address, sizeof(uint32_t))) { pr_err("kfd: can't access read pointer\n"); return -EFAULT; } if (!access_ok(VERIFY_WRITE, (const void __user *) args->write_pointer_address, sizeof(uint32_t))) { pr_err("kfd: can't access write pointer\n"); return -EFAULT; } tmp = (void *)(uintptr_t)args->eop_buffer_address; if (tmp != NULL && !access_ok(VERIFY_WRITE, tmp, sizeof(uint32_t))) { pr_debug("kfd: can't access eop buffer"); return -EFAULT; } tmp = (void *)(uintptr_t)args->ctx_save_restore_address; if (tmp != NULL && !access_ok(VERIFY_WRITE, tmp, sizeof(uint32_t))) { pr_debug("kfd: can't access ctx save restore buffer"); return -EFAULT; } q_properties->is_interop = false; q_properties->queue_percent = args->queue_percentage; q_properties->priority = args->queue_priority; q_properties->queue_address = args->ring_base_address; q_properties->queue_size = args->ring_size; q_properties->read_ptr = (uint32_t *) args->read_pointer_address; q_properties->write_ptr = (uint32_t *) args->write_pointer_address; q_properties->eop_ring_buffer_address = args->eop_buffer_address; q_properties->eop_ring_buffer_size = args->eop_buffer_size; q_properties->ctx_save_restore_area_address = args->ctx_save_restore_address; q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->type = KFD_QUEUE_TYPE_COMPUTE; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) q_properties->type = KFD_QUEUE_TYPE_SDMA; else return -ENOTSUPP; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->format = KFD_QUEUE_FORMAT_AQL; else q_properties->format = KFD_QUEUE_FORMAT_PM4; pr_debug("Queue Percentage (%d, %d)\n", q_properties->queue_percent, args->queue_percentage); pr_debug("Queue Priority (%d, %d)\n", q_properties->priority, args->queue_priority); pr_debug("Queue Address (0x%llX, 0x%llX)\n", q_properties->queue_address, args->ring_base_address); pr_debug("Queue Size (0x%llX, %u)\n", q_properties->queue_size, args->ring_size); pr_debug("Queue r/w Pointers (0x%llX, 0x%llX)\n", (uint64_t) q_properties->read_ptr, (uint64_t) q_properties->write_ptr); pr_debug("Queue Format (%d)\n", q_properties->format); pr_debug("Queue EOP (0x%llX)\n", q_properties->eop_ring_buffer_address); pr_debug("Queue CTX save arex (0x%llX)\n", q_properties->ctx_save_restore_area_address); return 0; } static long kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, void __user *arg) { struct kfd_ioctl_create_queue_args args; struct kfd_dev *dev; int err = 0; unsigned int queue_id; struct kfd_process_device *pdd; struct queue_properties q_properties; memset(&q_properties, 0, sizeof(struct queue_properties)); if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; pr_debug("kfd: creating queue ioctl\n"); err = set_queue_properties_from_user(&q_properties, &args); if (err) return err; pr_debug("kfd: looking for gpu id 0x%x\n", args.gpu_id); dev = kfd_device_by_id(args.gpu_id); if (dev == NULL) { pr_debug("kfd: gpu id 0x%x was not found\n", args.gpu_id); return -EINVAL; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto err_bind_process; } pr_debug("kfd: creating queue for PASID %d on GPU 0x%x\n", p->pasid, dev->id); err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, 0, q_properties.type, &queue_id); if (err != 0) goto err_create_queue; args.queue_id = queue_id; /* Return gpu_id as doorbell offset for mmap usage */ args.doorbell_offset = args.gpu_id << PAGE_SHIFT; if (copy_to_user(arg, &args, sizeof(args))) { err = -EFAULT; goto err_copy_args_out; } mutex_unlock(&p->mutex); pr_debug("kfd: queue id %d was created successfully\n", args.queue_id); pr_debug("ring buffer address == 0x%016llX\n", args.ring_base_address); pr_debug("read ptr address == 0x%016llX\n", args.read_pointer_address); pr_debug("write ptr address == 0x%016llX\n", args.write_pointer_address); return 0; err_copy_args_out: pqm_destroy_queue(&p->pqm, queue_id); err_create_queue: err_bind_process: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, void __user *arg) { int retval; struct kfd_ioctl_destroy_queue_args args; if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; pr_debug("kfd: destroying queue id %d for PASID %d\n", args.queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_destroy_queue(&p->pqm, args.queue_id); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, void __user *arg) { int retval; struct kfd_ioctl_update_queue_args args; struct queue_properties properties; if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; if (args.queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("kfd: queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args.queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("kfd: queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args.ring_base_address) && (!access_ok(VERIFY_WRITE, (const void __user *) args.ring_base_address, sizeof(uint64_t)))) { pr_err("kfd: can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args.ring_size) && (args.ring_size != 0)) { pr_err("kfd: ring size must be a power of 2 or 0\n"); return -EINVAL; } properties.queue_address = args.ring_base_address; properties.queue_size = args.ring_size; properties.queue_percent = args.queue_percentage; properties.priority = args.queue_priority; pr_debug("kfd: updating queue id %d for PASID %d\n", args.queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_update_queue(&p->pqm, args.queue_id, &properties); mutex_unlock(&p->mutex); return retval; } static long kfd_ioctl_set_memory_policy(struct file *filep, struct kfd_process *p, void __user *arg) { struct kfd_ioctl_set_memory_policy_args args; struct kfd_dev *dev; int err = 0; struct kfd_process_device *pdd; enum cache_policy default_policy, alternate_policy; if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; if (args.default_policy != KFD_IOC_CACHE_POLICY_COHERENT && args.default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } if (args.alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT && args.alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } dev = kfd_device_by_id(args.gpu_id); if (dev == NULL) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto out; } default_policy = (args.default_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; alternate_policy = (args.alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm, &pdd->qpd, default_policy, alternate_policy, (void __user *)args.alternate_aperture_base, args.alternate_aperture_size)) err = -EINVAL; out: mutex_unlock(&p->mutex); return err; } static long kfd_ioctl_get_clock_counters(struct file *filep, struct kfd_process *p, void __user *arg) { struct kfd_ioctl_get_clock_counters_args args; struct kfd_dev *dev; struct timespec time; if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; dev = kfd_device_by_id(args.gpu_id); if (dev == NULL) return -EINVAL; /* Reading GPU clock counter from KGD */ args.gpu_clock_counter = kfd2kgd->get_gpu_clock_counter(dev->kgd); /* No access to rdtsc. Using raw monotonic time */ getrawmonotonic(&time); args.cpu_clock_counter = (uint64_t)timespec_to_ns(&time); get_monotonic_boottime(&time); args.system_clock_counter = (uint64_t)timespec_to_ns(&time); /* Since the counter is in nano-seconds we use 1GHz frequency */ args.system_clock_freq = 1000000000; if (copy_to_user(arg, &args, sizeof(args))) return -EFAULT; return 0; } static int kfd_ioctl_get_process_apertures(struct file *filp, struct kfd_process *p, void __user *arg) { struct kfd_ioctl_get_process_apertures_args args; struct kfd_process_device_apertures *pAperture; struct kfd_process_device *pdd; dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid); if (copy_from_user(&args, arg, sizeof(args))) return -EFAULT; args.num_of_nodes = 0; mutex_lock(&p->mutex); /*if the process-device list isn't empty*/ if (kfd_has_process_device_data(p)) { /* Run over all pdd of the process */ pdd = kfd_get_first_process_device_data(p); do { pAperture = &args.process_apertures[args.num_of_nodes]; pAperture->gpu_id = pdd->dev->id; pAperture->lds_base = pdd->lds_base; pAperture->lds_limit = pdd->lds_limit; pAperture->gpuvm_base = pdd->gpuvm_base; pAperture->gpuvm_limit = pdd->gpuvm_limit; pAperture->scratch_base = pdd->scratch_base; pAperture->scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "node id %u\n", args.num_of_nodes); dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); args.num_of_nodes++; } while ((pdd = kfd_get_next_process_device_data(p, pdd)) != NULL && (args.num_of_nodes < NUM_OF_SUPPORTED_GPUS)); } mutex_unlock(&p->mutex); if (copy_to_user(arg, &args, sizeof(args))) return -EFAULT; return 0; } static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct kfd_process *process; long err = -EINVAL; dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, _IOC_NR(cmd), arg); process = kfd_get_process(current); if (IS_ERR(process)) return PTR_ERR(process); switch (cmd) { case KFD_IOC_GET_VERSION: err = kfd_ioctl_get_version(filep, process, (void __user *)arg); break; case KFD_IOC_CREATE_QUEUE: err = kfd_ioctl_create_queue(filep, process, (void __user *)arg); break; case KFD_IOC_DESTROY_QUEUE: err = kfd_ioctl_destroy_queue(filep, process, (void __user *)arg); break; case KFD_IOC_SET_MEMORY_POLICY: err = kfd_ioctl_set_memory_policy(filep, process, (void __user *)arg); break; case KFD_IOC_GET_CLOCK_COUNTERS: err = kfd_ioctl_get_clock_counters(filep, process, (void __user *)arg); break; case KFD_IOC_GET_PROCESS_APERTURES: err = kfd_ioctl_get_process_apertures(filep, process, (void __user *)arg); break; case KFD_IOC_UPDATE_QUEUE: err = kfd_ioctl_update_queue(filep, process, (void __user *)arg); break; default: dev_err(kfd_device, "unknown ioctl cmd 0x%x, arg 0x%lx)\n", cmd, arg); err = -EINVAL; break; } if (err < 0) dev_err(kfd_device, "ioctl error %ld for ioctl cmd 0x%x (#%d)\n", err, cmd, _IOC_NR(cmd)); return err; } static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) { struct kfd_process *process; process = kfd_get_process(current); if (IS_ERR(process)) return PTR_ERR(process); return kfd_doorbell_mmap(process, vma); }