/* * Copyright 2004-2009 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTD_UCLINUX #include #include #include #include #endif #include #include #include #include #include #include #include #include u16 _bfin_swrst; EXPORT_SYMBOL(_bfin_swrst); unsigned long memory_start, memory_end, physical_mem_end; unsigned long _rambase, _ramstart, _ramend; unsigned long reserved_mem_dcache_on; unsigned long reserved_mem_icache_on; EXPORT_SYMBOL(memory_start); EXPORT_SYMBOL(memory_end); EXPORT_SYMBOL(physical_mem_end); EXPORT_SYMBOL(_ramend); EXPORT_SYMBOL(reserved_mem_dcache_on); #ifdef CONFIG_MTD_UCLINUX extern struct map_info uclinux_ram_map; unsigned long memory_mtd_end, memory_mtd_start, mtd_size; unsigned long _ebss; EXPORT_SYMBOL(memory_mtd_end); EXPORT_SYMBOL(memory_mtd_start); EXPORT_SYMBOL(mtd_size); #endif char __initdata command_line[COMMAND_LINE_SIZE]; void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat, *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr; /* boot memmap, for parsing "memmap=" */ #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */ #define BFIN_MEMMAP_RAM 1 #define BFIN_MEMMAP_RESERVED 2 static struct bfin_memmap { int nr_map; struct bfin_memmap_entry { unsigned long long addr; /* start of memory segment */ unsigned long long size; unsigned long type; } map[BFIN_MEMMAP_MAX]; } bfin_memmap __initdata; /* for memmap sanitization */ struct change_member { struct bfin_memmap_entry *pentry; /* pointer to original entry */ unsigned long long addr; /* address for this change point */ }; static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata; static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata; static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata; static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata; DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data); static int early_init_clkin_hz(char *buf); #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) void __init generate_cplb_tables(void) { unsigned int cpu; generate_cplb_tables_all(); /* Generate per-CPU I&D CPLB tables */ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) generate_cplb_tables_cpu(cpu); } #endif void __cpuinit bfin_setup_caches(unsigned int cpu) { #ifdef CONFIG_BFIN_ICACHE bfin_icache_init(icplb_tbl[cpu]); #endif #ifdef CONFIG_BFIN_DCACHE bfin_dcache_init(dcplb_tbl[cpu]); #endif /* * In cache coherence emulation mode, we need to have the * D-cache enabled before running any atomic operation which * might involve cache invalidation (i.e. spinlock, rwlock). * So printk's are deferred until then. */ #ifdef CONFIG_BFIN_ICACHE printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu); printk(KERN_INFO " External memory:" # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE " cacheable" # else " uncacheable" # endif " in instruction cache\n"); if (L2_LENGTH) printk(KERN_INFO " L2 SRAM :" # ifdef CONFIG_BFIN_L2_ICACHEABLE " cacheable" # else " uncacheable" # endif " in instruction cache\n"); #else printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu); #endif #ifdef CONFIG_BFIN_DCACHE printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu); printk(KERN_INFO " External memory:" # if defined CONFIG_BFIN_EXTMEM_WRITEBACK " cacheable (write-back)" # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH " cacheable (write-through)" # else " uncacheable" # endif " in data cache\n"); if (L2_LENGTH) printk(KERN_INFO " L2 SRAM :" # if defined CONFIG_BFIN_L2_WRITEBACK " cacheable (write-back)" # elif defined CONFIG_BFIN_L2_WRITETHROUGH " cacheable (write-through)" # else " uncacheable" # endif " in data cache\n"); #else printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu); #endif } void __cpuinit bfin_setup_cpudata(unsigned int cpu) { struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu); cpudata->idle = current; cpudata->imemctl = bfin_read_IMEM_CONTROL(); cpudata->dmemctl = bfin_read_DMEM_CONTROL(); } void __init bfin_cache_init(void) { #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) generate_cplb_tables(); #endif bfin_setup_caches(0); } void __init bfin_relocate_l1_mem(void) { unsigned long text_l1_len = (unsigned long)_text_l1_len; unsigned long data_l1_len = (unsigned long)_data_l1_len; unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len; unsigned long l2_len = (unsigned long)_l2_len; early_shadow_stamp(); /* * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S * we know that everything about l1 text/data is nice and aligned, * so copy by 4 byte chunks, and don't worry about overlapping * src/dest. * * We can't use the dma_memcpy functions, since they can call * scheduler functions which might be in L1 :( and core writes * into L1 instruction cause bad access errors, so we are stuck, * we are required to use DMA, but can't use the common dma * functions. We can't use memcpy either - since that might be * going to be in the relocated L1 */ blackfin_dma_early_init(); /* if necessary, copy L1 text to L1 instruction SRAM */ if (L1_CODE_LENGTH && text_l1_len) early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len); /* if necessary, copy L1 data to L1 data bank A SRAM */ if (L1_DATA_A_LENGTH && data_l1_len) early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len); /* if necessary, copy L1 data B to L1 data bank B SRAM */ if (L1_DATA_B_LENGTH && data_b_l1_len) early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len); early_dma_memcpy_done(); /* if necessary, copy L2 text/data to L2 SRAM */ if (L2_LENGTH && l2_len) memcpy(_stext_l2, _l2_lma, l2_len); } /* add_memory_region to memmap */ static void __init add_memory_region(unsigned long long start, unsigned long long size, int type) { int i; i = bfin_memmap.nr_map; if (i == BFIN_MEMMAP_MAX) { printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); return; } bfin_memmap.map[i].addr = start; bfin_memmap.map[i].size = size; bfin_memmap.map[i].type = type; bfin_memmap.nr_map++; } /* * Sanitize the boot memmap, removing overlaps. */ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map) { struct change_member *change_tmp; unsigned long current_type, last_type; unsigned long long last_addr; int chgidx, still_changing; int overlap_entries; int new_entry; int old_nr, new_nr, chg_nr; int i; /* Visually we're performing the following (1,2,3,4 = memory types) Sample memory map (w/overlaps): ____22__________________ ______________________4_ ____1111________________ _44_____________________ 11111111________________ ____________________33__ ___________44___________ __________33333_________ ______________22________ ___________________2222_ _________111111111______ _____________________11_ _________________4______ Sanitized equivalent (no overlap): 1_______________________ _44_____________________ ___1____________________ ____22__________________ ______11________________ _________1______________ __________3_____________ ___________44___________ _____________33_________ _______________2________ ________________1_______ _________________4______ ___________________2____ ____________________33__ ______________________4_ */ /* if there's only one memory region, don't bother */ if (*pnr_map < 2) return -1; old_nr = *pnr_map; /* bail out if we find any unreasonable addresses in memmap */ for (i = 0; i < old_nr; i++) if (map[i].addr + map[i].size < map[i].addr) return -1; /* create pointers for initial change-point information (for sorting) */ for (i = 0; i < 2*old_nr; i++) change_point[i] = &change_point_list[i]; /* record all known change-points (starting and ending addresses), omitting those that are for empty memory regions */ chgidx = 0; for (i = 0; i < old_nr; i++) { if (map[i].size != 0) { change_point[chgidx]->addr = map[i].addr; change_point[chgidx++]->pentry = &map[i]; change_point[chgidx]->addr = map[i].addr + map[i].size; change_point[chgidx++]->pentry = &map[i]; } } chg_nr = chgidx; /* true number of change-points */ /* sort change-point list by memory addresses (low -> high) */ still_changing = 1; while (still_changing) { still_changing = 0; for (i = 1; i < chg_nr; i++) { /* if > , swap */ /* or, if current= & last=, swap */ if ((change_point[i]->addr < change_point[i-1]->addr) || ((change_point[i]->addr == change_point[i-1]->addr) && (change_point[i]->addr == change_point[i]->pentry->addr) && (change_point[i-1]->addr != change_point[i-1]->pentry->addr)) ) { change_tmp = change_point[i]; change_point[i] = change_point[i-1]; change_point[i-1] = change_tmp; still_changing = 1; } } } /* create a new memmap, removing overlaps */ overlap_entries = 0; /* number of entries in the overlap table */ new_entry = 0; /* index for creating new memmap entries */ last_type = 0; /* start with undefined memory type */ last_addr = 0; /* start with 0 as last starting address */ /* loop through change-points, determining affect on the new memmap */ for (chgidx = 0; chgidx < chg_nr; chgidx++) { /* keep track of all overlapping memmap entries */ if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) { /* add map entry to overlap list (> 1 entry implies an overlap) */ overlap_list[overlap_entries++] = change_point[chgidx]->pentry; } else { /* remove entry from list (order independent, so swap with last) */ for (i = 0; i < overlap_entries; i++) { if (overlap_list[i] == change_point[chgidx]->pentry) overlap_list[i] = overlap_list[overlap_entries-1]; } overlap_entries--; } /* if there are overlapping entries, decide which "type" to use */ /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ current_type = 0; for (i = 0; i < overlap_entries; i++) if (overlap_list[i]->type > current_type) current_type = overlap_list[i]->type; /* continue building up new memmap based on this information */ if (current_type != last_type) { if (last_type != 0) { new_map[new_entry].size = change_point[chgidx]->addr - last_addr; /* move forward only if the new size was non-zero */ if (new_map[new_entry].size != 0) if (++new_entry >= BFIN_MEMMAP_MAX) break; /* no more space left for new entries */ } if (current_type != 0) { new_map[new_entry].addr = change_point[chgidx]->addr; new_map[new_entry].type = current_type; last_addr = change_point[chgidx]->addr; } last_type = current_type; } } new_nr = new_entry; /* retain count for new entries */ /* copy new mapping into original location */ memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry)); *pnr_map = new_nr; return 0; } static void __init print_memory_map(char *who) { int i; for (i = 0; i < bfin_memmap.nr_map; i++) { printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who, bfin_memmap.map[i].addr, bfin_memmap.map[i].addr + bfin_memmap.map[i].size); switch (bfin_memmap.map[i].type) { case BFIN_MEMMAP_RAM: printk(KERN_CONT "(usable)\n"); break; case BFIN_MEMMAP_RESERVED: printk(KERN_CONT "(reserved)\n"); break; default: printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type); break; } } } static __init int parse_memmap(char *arg) { unsigned long long start_at, mem_size; if (!arg) return -EINVAL; mem_size = memparse(arg, &arg); if (*arg == '@') { start_at = memparse(arg+1, &arg); add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM); } else if (*arg == '$') { start_at = memparse(arg+1, &arg); add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED); } return 0; } /* * Initial parsing of the command line. Currently, we support: * - Controlling the linux memory size: mem=xxx[KMG] * - Controlling the physical memory size: max_mem=xxx[KMG][$][#] * $ -> reserved memory is dcacheable * # -> reserved memory is icacheable * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region * @ from to +, type RAM * $ from to +, type RESERVED */ static __init void parse_cmdline_early(char *cmdline_p) { char c = ' ', *to = cmdline_p; unsigned int memsize; for (;;) { if (c == ' ') { if (!memcmp(to, "mem=", 4)) { to += 4; memsize = memparse(to, &to); if (memsize) _ramend = memsize; } else if (!memcmp(to, "max_mem=", 8)) { to += 8; memsize = memparse(to, &to); if (memsize) { physical_mem_end = memsize; if (*to != ' ') { if (*to == '$' || *(to + 1) == '$') reserved_mem_dcache_on = 1; if (*to == '#' || *(to + 1) == '#') reserved_mem_icache_on = 1; } } } else if (!memcmp(to, "clkin_hz=", 9)) { to += 9; early_init_clkin_hz(to); #ifdef CONFIG_EARLY_PRINTK } else if (!memcmp(to, "earlyprintk=", 12)) { to += 12; setup_early_printk(to); #endif } else if (!memcmp(to, "memmap=", 7)) { to += 7; parse_memmap(to); } } c = *(to++); if (!c) break; } } /* * Setup memory defaults from user config. * The physical memory layout looks like: * * [_rambase, _ramstart]: kernel image * [memory_start, memory_end]: dynamic memory managed by kernel * [memory_end, _ramend]: reserved memory * [memory_mtd_start(memory_end), * memory_mtd_start + mtd_size]: rootfs (if any) * [_ramend - DMA_UNCACHED_REGION, * _ramend]: uncached DMA region * [_ramend, physical_mem_end]: memory not managed by kernel */ static __init void memory_setup(void) { #ifdef CONFIG_MTD_UCLINUX unsigned long mtd_phys = 0; #endif unsigned long max_mem; _rambase = (unsigned long)_stext; _ramstart = (unsigned long)_end; if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) { console_init(); panic("DMA region exceeds memory limit: %lu.", _ramend - _ramstart); } max_mem = memory_end = _ramend - DMA_UNCACHED_REGION; #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263) /* Due to a Hardware Anomaly we need to limit the size of usable * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on * 05000263 - Hardware loop corrupted when taking an ICPLB exception */ # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO)) if (max_mem >= 56 * 1024 * 1024) max_mem = 56 * 1024 * 1024; # else if (max_mem >= 60 * 1024 * 1024) max_mem = 60 * 1024 * 1024; # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */ #endif /* ANOMALY_05000263 */ #ifdef CONFIG_MPU /* Round up to multiple of 4MB */ memory_start = (_ramstart + 0x3fffff) & ~0x3fffff; #else memory_start = PAGE_ALIGN(_ramstart); #endif #if defined(CONFIG_MTD_UCLINUX) /* generic memory mapped MTD driver */ memory_mtd_end = memory_end; mtd_phys = _ramstart; mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8))); # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS) if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC) mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10); # endif # if defined(CONFIG_CRAMFS) if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC) mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4))); # endif # if defined(CONFIG_ROMFS_FS) if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) { mtd_size = PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2])); /* ROM_FS is XIP, so if we found it, we need to limit memory */ if (memory_end > max_mem) { pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20); memory_end = max_mem; } } # endif /* CONFIG_ROMFS_FS */ /* Since the default MTD_UCLINUX has no magic number, we just blindly * read 8 past the end of the kernel's image, and look at it. * When no image is attached, mtd_size is set to a random number * Do some basic sanity checks before operating on things */ if (mtd_size == 0 || memory_end <= mtd_size) { pr_emerg("Could not find valid ram mtd attached.\n"); } else { memory_end -= mtd_size; /* Relocate MTD image to the top of memory after the uncached memory area */ uclinux_ram_map.phys = memory_mtd_start = memory_end; uclinux_ram_map.size = mtd_size; pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n", _end, mtd_size, (void *)memory_mtd_start); dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size); } #endif /* CONFIG_MTD_UCLINUX */ /* We need lo limit memory, since everything could have a text section * of userspace in it, and expose anomaly 05000263. If the anomaly * doesn't exist, or we don't need to - then dont. */ if (memory_end > max_mem) { pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20); memory_end = max_mem; } #ifdef CONFIG_MPU page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32; page_mask_order = get_order(3 * page_mask_nelts * sizeof(long)); #endif init_mm.start_code = (unsigned long)_stext; init_mm.end_code = (unsigned long)_etext; init_mm.end_data = (unsigned long)_edata; init_mm.brk = (unsigned long)0; printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20); printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20); printk(KERN_INFO "Memory map:\n" " fixedcode = 0x%p-0x%p\n" " text = 0x%p-0x%p\n" " rodata = 0x%p-0x%p\n" " bss = 0x%p-0x%p\n" " data = 0x%p-0x%p\n" " stack = 0x%p-0x%p\n" " init = 0x%p-0x%p\n" " available = 0x%p-0x%p\n" #ifdef CONFIG_MTD_UCLINUX " rootfs = 0x%p-0x%p\n" #endif #if DMA_UNCACHED_REGION > 0 " DMA Zone = 0x%p-0x%p\n" #endif , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END, _stext, _etext, __start_rodata, __end_rodata, __bss_start, __bss_stop, _sdata, _edata, (void *)&init_thread_union, (void *)((int)(&init_thread_union) + 0x2000), __init_begin, __init_end, (void *)_ramstart, (void *)memory_end #ifdef CONFIG_MTD_UCLINUX , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size) #endif #if DMA_UNCACHED_REGION > 0 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend) #endif ); } /* * Find the lowest, highest page frame number we have available */ void __init find_min_max_pfn(void) { int i; max_pfn = 0; min_low_pfn = memory_end; for (i = 0; i < bfin_memmap.nr_map; i++) { unsigned long start, end; /* RAM? */ if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM) continue; start = PFN_UP(bfin_memmap.map[i].addr); end = PFN_DOWN(bfin_memmap.map[i].addr + bfin_memmap.map[i].size); if (start >= end) continue; if (end > max_pfn) max_pfn = end; if (start < min_low_pfn) min_low_pfn = start; } } static __init void setup_bootmem_allocator(void) { int bootmap_size; int i; unsigned long start_pfn, end_pfn; unsigned long curr_pfn, last_pfn, size; /* mark memory between memory_start and memory_end usable */ add_memory_region(memory_start, memory_end - memory_start, BFIN_MEMMAP_RAM); /* sanity check for overlap */ sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map); print_memory_map("boot memmap"); /* initialize globals in linux/bootmem.h */ find_min_max_pfn(); /* pfn of the last usable page frame */ if (max_pfn > memory_end >> PAGE_SHIFT) max_pfn = memory_end >> PAGE_SHIFT; /* pfn of last page frame directly mapped by kernel */ max_low_pfn = max_pfn; /* pfn of the first usable page frame after kernel image*/ if (min_low_pfn < memory_start >> PAGE_SHIFT) min_low_pfn = memory_start >> PAGE_SHIFT; start_pfn = PAGE_OFFSET >> PAGE_SHIFT; end_pfn = memory_end >> PAGE_SHIFT; /* * give all the memory to the bootmap allocator, tell it to put the * boot mem_map at the start of memory. */ bootmap_size = init_bootmem_node(NODE_DATA(0), memory_start >> PAGE_SHIFT, /* map goes here */ start_pfn, end_pfn); /* register the memmap regions with the bootmem allocator */ for (i = 0; i < bfin_memmap.nr_map; i++) { /* * Reserve usable memory */ if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM) continue; /* * We are rounding up the start address of usable memory: */ curr_pfn = PFN_UP(bfin_memmap.map[i].addr); if (curr_pfn >= end_pfn) continue; /* * ... and at the end of the usable range downwards: */ last_pfn = PFN_DOWN(bfin_memmap.map[i].addr + bfin_memmap.map[i].size); if (last_pfn > end_pfn) last_pfn = end_pfn; /* * .. finally, did all the rounding and playing * around just make the area go away? */ if (last_pfn <= curr_pfn) continue; size = last_pfn - curr_pfn; free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size)); } /* reserve memory before memory_start, including bootmap */ reserve_bootmem(PAGE_OFFSET, memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET, BOOTMEM_DEFAULT); } #define EBSZ_TO_MEG(ebsz) \ ({ \ int meg = 0; \ switch (ebsz & 0xf) { \ case 0x1: meg = 16; break; \ case 0x3: meg = 32; break; \ case 0x5: meg = 64; break; \ case 0x7: meg = 128; break; \ case 0x9: meg = 256; break; \ case 0xb: meg = 512; break; \ } \ meg; \ }) static inline int __init get_mem_size(void) { #if defined(EBIU_SDBCTL) # if defined(BF561_FAMILY) int ret = 0; u32 sdbctl = bfin_read_EBIU_SDBCTL(); ret += EBSZ_TO_MEG(sdbctl >> 0); ret += EBSZ_TO_MEG(sdbctl >> 8); ret += EBSZ_TO_MEG(sdbctl >> 16); ret += EBSZ_TO_MEG(sdbctl >> 24); return ret; # else return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL()); # endif #elif defined(EBIU_DDRCTL1) u32 ddrctl = bfin_read_EBIU_DDRCTL1(); int ret = 0; switch (ddrctl & 0xc0000) { case DEVSZ_64: ret = 64 / 8; case DEVSZ_128: ret = 128 / 8; case DEVSZ_256: ret = 256 / 8; case DEVSZ_512: ret = 512 / 8; } switch (ddrctl & 0x30000) { case DEVWD_4: ret *= 2; case DEVWD_8: ret *= 2; case DEVWD_16: break; } if ((ddrctl & 0xc000) == 0x4000) ret *= 2; return ret; #endif BUG(); } __attribute__((weak)) void __init native_machine_early_platform_add_devices(void) { } void __init setup_arch(char **cmdline_p) { unsigned long sclk, cclk; native_machine_early_platform_add_devices(); enable_shadow_console(); /* Check to make sure we are running on the right processor */ if (unlikely(CPUID != bfin_cpuid())) printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n", CPU, bfin_cpuid(), bfin_revid()); #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif #if defined(CONFIG_CMDLINE_BOOL) strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line)); command_line[sizeof(command_line) - 1] = 0; #endif /* Keep a copy of command line */ *cmdline_p = &command_line[0]; memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); boot_command_line[COMMAND_LINE_SIZE - 1] = '\0'; memset(&bfin_memmap, 0, sizeof(bfin_memmap)); /* If the user does not specify things on the command line, use * what the bootloader set things up as */ physical_mem_end = 0; parse_cmdline_early(&command_line[0]); if (_ramend == 0) _ramend = get_mem_size() * 1024 * 1024; if (physical_mem_end == 0) physical_mem_end = _ramend; memory_setup(); /* Initialize Async memory banks */ bfin_write_EBIU_AMBCTL0(AMBCTL0VAL); bfin_write_EBIU_AMBCTL1(AMBCTL1VAL); bfin_write_EBIU_AMGCTL(AMGCTLVAL); #ifdef CONFIG_EBIU_MBSCTLVAL bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL); bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL); bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL); #endif cclk = get_cclk(); sclk = get_sclk(); if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk) panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK"); #ifdef BF561_FAMILY if (ANOMALY_05000266) { bfin_read_IMDMA_D0_IRQ_STATUS(); bfin_read_IMDMA_D1_IRQ_STATUS(); } #endif printk(KERN_INFO "Hardware Trace "); if (bfin_read_TBUFCTL() & 0x1) printk(KERN_CONT "Active "); else printk(KERN_CONT "Off "); if (bfin_read_TBUFCTL() & 0x2) printk(KERN_CONT "and Enabled\n"); else printk(KERN_CONT "and Disabled\n"); printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF); /* Newer parts mirror SWRST bits in SYSCR */ #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \ defined(CONFIG_BF538) || defined(CONFIG_BF539) _bfin_swrst = bfin_read_SWRST(); #else /* Clear boot mode field */ _bfin_swrst = bfin_read_SYSCR() & ~0xf; #endif #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT); #endif #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT); #endif #ifdef CONFIG_SMP if (_bfin_swrst & SWRST_DBL_FAULT_A) { #else if (_bfin_swrst & RESET_DOUBLE) { #endif printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n"); #ifdef CONFIG_DEBUG_DOUBLEFAULT /* We assume the crashing kernel, and the current symbol table match */ printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n", (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx); printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr); printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr); #endif printk(KERN_NOTICE " The instruction at %pF caused a double exception\n", init_retx); } else if (_bfin_swrst & RESET_WDOG) printk(KERN_INFO "Recovering from Watchdog event\n"); else if (_bfin_swrst & RESET_SOFTWARE) printk(KERN_NOTICE "Reset caused by Software reset\n"); printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n"); if (bfin_compiled_revid() == 0xffff) printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid()); else if (bfin_compiled_revid() == -1) printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU); else printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid()); if (likely(CPUID == bfin_cpuid())) { if (bfin_revid() != bfin_compiled_revid()) { if (bfin_compiled_revid() == -1) printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n", bfin_revid()); else if (bfin_compiled_revid() != 0xffff) { printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n", bfin_compiled_revid(), bfin_revid()); if (bfin_compiled_revid() > bfin_revid()) panic("Error: you are missing anomaly workarounds for this rev"); } } if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX) printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n", CPU, bfin_revid()); } printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n"); printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n", cclk / 1000000, sclk / 1000000); setup_bootmem_allocator(); paging_init(); /* Copy atomic sequences to their fixed location, and sanity check that these locations are the ones that we advertise to userspace. */ memcpy((void *)FIXED_CODE_START, &fixed_code_start, FIXED_CODE_END - FIXED_CODE_START); BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start != SIGRETURN_STUB - FIXED_CODE_START); BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start != ATOMIC_XCHG32 - FIXED_CODE_START); BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start != ATOMIC_CAS32 - FIXED_CODE_START); BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start != ATOMIC_ADD32 - FIXED_CODE_START); BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start != ATOMIC_SUB32 - FIXED_CODE_START); BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start != ATOMIC_IOR32 - FIXED_CODE_START); BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start != ATOMIC_AND32 - FIXED_CODE_START); BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start != ATOMIC_XOR32 - FIXED_CODE_START); BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start != SAFE_USER_INSTRUCTION - FIXED_CODE_START); #ifdef CONFIG_SMP platform_init_cpus(); #endif init_exception_vectors(); bfin_cache_init(); /* Initialize caches for the boot CPU */ } static int __init topology_init(void) { unsigned int cpu; /* Record CPU-private information for the boot processor. */ bfin_setup_cpudata(0); for_each_possible_cpu(cpu) { register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu); } return 0; } subsys_initcall(topology_init); /* Get the input clock frequency */ static u_long cached_clkin_hz = CONFIG_CLKIN_HZ; static u_long get_clkin_hz(void) { return cached_clkin_hz; } static int __init early_init_clkin_hz(char *buf) { cached_clkin_hz = simple_strtoul(buf, NULL, 0); #ifdef BFIN_KERNEL_CLOCK if (cached_clkin_hz != CONFIG_CLKIN_HZ) panic("cannot change clkin_hz when reprogramming clocks"); #endif return 1; } early_param("clkin_hz=", early_init_clkin_hz); /* Get the voltage input multiplier */ static u_long get_vco(void) { static u_long cached_vco; u_long msel, pll_ctl; /* The assumption here is that VCO never changes at runtime. * If, someday, we support that, then we'll have to change this. */ if (cached_vco) return cached_vco; pll_ctl = bfin_read_PLL_CTL(); msel = (pll_ctl >> 9) & 0x3F; if (0 == msel) msel = 64; cached_vco = get_clkin_hz(); cached_vco >>= (1 & pll_ctl); /* DF bit */ cached_vco *= msel; return cached_vco; } /* Get the Core clock */ u_long get_cclk(void) { static u_long cached_cclk_pll_div, cached_cclk; u_long csel, ssel; if (bfin_read_PLL_STAT() & 0x1) return get_clkin_hz(); ssel = bfin_read_PLL_DIV(); if (ssel == cached_cclk_pll_div) return cached_cclk; else cached_cclk_pll_div = ssel; csel = ((ssel >> 4) & 0x03); ssel &= 0xf; if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */ cached_cclk = get_vco() / ssel; else cached_cclk = get_vco() >> csel; return cached_cclk; } EXPORT_SYMBOL(get_cclk); /* Get the System clock */ u_long get_sclk(void) { static u_long cached_sclk; u_long ssel; /* The assumption here is that SCLK never changes at runtime. * If, someday, we support that, then we'll have to change this. */ if (cached_sclk) return cached_sclk; if (bfin_read_PLL_STAT() & 0x1) return get_clkin_hz(); ssel = bfin_read_PLL_DIV() & 0xf; if (0 == ssel) { printk(KERN_WARNING "Invalid System Clock\n"); ssel = 1; } cached_sclk = get_vco() / ssel; return cached_sclk; } EXPORT_SYMBOL(get_sclk); unsigned long sclk_to_usecs(unsigned long sclk) { u64 tmp = USEC_PER_SEC * (u64)sclk; do_div(tmp, get_sclk()); return tmp; } EXPORT_SYMBOL(sclk_to_usecs); unsigned long usecs_to_sclk(unsigned long usecs) { u64 tmp = get_sclk() * (u64)usecs; do_div(tmp, USEC_PER_SEC); return tmp; } EXPORT_SYMBOL(usecs_to_sclk); /* * Get CPU information for use by the procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { char *cpu, *mmu, *fpu, *vendor, *cache; uint32_t revid; int cpu_num = *(unsigned int *)v; u_long sclk, cclk; u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0; struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num); cpu = CPU; mmu = "none"; fpu = "none"; revid = bfin_revid(); sclk = get_sclk(); cclk = get_cclk(); switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) { case 0xca: vendor = "Analog Devices"; break; default: vendor = "unknown"; break; } seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor); if (CPUID == bfin_cpuid()) seq_printf(m, "cpu family\t: 0x%04x\n", CPUID); else seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n", CPUID, bfin_cpuid()); seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n" "stepping\t: %d ", cpu, cclk/1000000, sclk/1000000, #ifdef CONFIG_MPU "mpu on", #else "mpu off", #endif revid); if (bfin_revid() != bfin_compiled_revid()) { if (bfin_compiled_revid() == -1) seq_printf(m, "(Compiled for Rev none)"); else if (bfin_compiled_revid() == 0xffff) seq_printf(m, "(Compiled for Rev any)"); else seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid()); } seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n", cclk/1000000, cclk%1000000, sclk/1000000, sclk%1000000); seq_printf(m, "bogomips\t: %lu.%02lu\n" "Calibration\t: %lu loops\n", (loops_per_jiffy * HZ) / 500000, ((loops_per_jiffy * HZ) / 5000) % 100, (loops_per_jiffy * HZ)); /* Check Cache configutation */ switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) { case ACACHE_BSRAM: cache = "dbank-A/B\t: cache/sram"; dcache_size = 16; dsup_banks = 1; break; case ACACHE_BCACHE: cache = "dbank-A/B\t: cache/cache"; dcache_size = 32; dsup_banks = 2; break; case ASRAM_BSRAM: cache = "dbank-A/B\t: sram/sram"; dcache_size = 0; dsup_banks = 0; break; default: cache = "unknown"; dcache_size = 0; dsup_banks = 0; break; } /* Is it turned on? */ if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE)) dcache_size = 0; if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB)) icache_size = 0; seq_printf(m, "cache size\t: %d KB(L1 icache) " "%d KB(L1 dcache) %d KB(L2 cache)\n", icache_size, dcache_size, 0); seq_printf(m, "%s\n", cache); seq_printf(m, "external memory\t: " #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) "cacheable" #else "uncacheable" #endif " in instruction cache\n"); seq_printf(m, "external memory\t: " #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK) "cacheable (write-back)" #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH) "cacheable (write-through)" #else "uncacheable" #endif " in data cache\n"); if (icache_size) seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n", BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES); else seq_printf(m, "icache setup\t: off\n"); seq_printf(m, "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n", dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS, BFIN_DLINES); #ifdef __ARCH_SYNC_CORE_DCACHE seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count); #endif #ifdef __ARCH_SYNC_CORE_ICACHE seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count); #endif if (cpu_num != num_possible_cpus() - 1) return 0; if (L2_LENGTH) { seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400); seq_printf(m, "L2 SRAM\t\t: " #if defined(CONFIG_BFIN_L2_ICACHEABLE) "cacheable" #else "uncacheable" #endif " in instruction cache\n"); seq_printf(m, "L2 SRAM\t\t: " #if defined(CONFIG_BFIN_L2_WRITEBACK) "cacheable (write-back)" #elif defined(CONFIG_BFIN_L2_WRITETHROUGH) "cacheable (write-through)" #else "uncacheable" #endif " in data cache\n"); } seq_printf(m, "board name\t: %s\n", bfin_board_name); seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n", physical_mem_end >> 10, (void *)0, (void *)physical_mem_end); seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n", ((int)memory_end - (int)_stext) >> 10, _stext, (void *)memory_end); seq_printf(m, "\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { if (*pos == 0) *pos = first_cpu(cpu_online_map); if (*pos >= num_online_cpus()) return NULL; return pos; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { *pos = next_cpu(*pos, cpu_online_map); return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; void __init cmdline_init(const char *r0) { early_shadow_stamp(); if (r0) strncpy(command_line, r0, COMMAND_LINE_SIZE); }