/* * libata-bmdma.c - helper library for PCI IDE BMDMA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2006 Red Hat, Inc. All rights reserved. * Copyright 2003-2006 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include "libata.h" /** * ata_tf_load_pio - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller. * * LOCKING: * Inherited from caller. */ static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { outb(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { outb(tf->hob_feature, ioaddr->feature_addr); outb(tf->hob_nsect, ioaddr->nsect_addr); outb(tf->hob_lbal, ioaddr->lbal_addr); outb(tf->hob_lbam, ioaddr->lbam_addr); outb(tf->hob_lbah, ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { outb(tf->feature, ioaddr->feature_addr); outb(tf->nsect, ioaddr->nsect_addr); outb(tf->lbal, ioaddr->lbal_addr); outb(tf->lbam, ioaddr->lbam_addr); outb(tf->lbah, ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { outb(tf->device, ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_tf_load_mmio - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller using MMIO. * * LOCKING: * Inherited from caller. */ static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr); writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr); writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr); writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr); writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { writeb(tf->feature, (void __iomem *) ioaddr->feature_addr); writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr); writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr); writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr); writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { writeb(tf->device, (void __iomem *) ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_tf_load - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller using MMIO * or PIO as indicated by the ATA_FLAG_MMIO flag. * Writes the control, feature, nsect, lbal, lbam, and lbah registers. * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect, * hob_lbal, hob_lbam, and hob_lbah. * * This function waits for idle (!BUSY and !DRQ) after writing * registers. If the control register has a new value, this * function also waits for idle after writing control and before * writing the remaining registers. * * May be used as the tf_load() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_tf_load_mmio(ap, tf); else ata_tf_load_pio(ap, tf); } /** * ata_exec_command_pio - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues PIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command); outb(tf->command, ap->ioaddr.command_addr); ata_pause(ap); } /** * ata_exec_command_mmio - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues MMIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * FIXME: missing write posting for 400nS delay enforcement * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command); writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr); ata_pause(ap); } /** * ata_exec_command - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues PIO/MMIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_exec_command_mmio(ap, tf); else ata_exec_command_pio(ap, tf); } /** * ata_tf_read_pio - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. * * LOCKING: * Inherited from caller. */ static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_check_status(ap); tf->feature = inb(ioaddr->error_addr); tf->nsect = inb(ioaddr->nsect_addr); tf->lbal = inb(ioaddr->lbal_addr); tf->lbam = inb(ioaddr->lbam_addr); tf->lbah = inb(ioaddr->lbah_addr); tf->device = inb(ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr); tf->hob_feature = inb(ioaddr->error_addr); tf->hob_nsect = inb(ioaddr->nsect_addr); tf->hob_lbal = inb(ioaddr->lbal_addr); tf->hob_lbam = inb(ioaddr->lbam_addr); tf->hob_lbah = inb(ioaddr->lbah_addr); } } /** * ata_tf_read_mmio - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf via MMIO. * * LOCKING: * Inherited from caller. */ static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_check_status(ap); tf->feature = readb((void __iomem *)ioaddr->error_addr); tf->nsect = readb((void __iomem *)ioaddr->nsect_addr); tf->lbal = readb((void __iomem *)ioaddr->lbal_addr); tf->lbam = readb((void __iomem *)ioaddr->lbam_addr); tf->lbah = readb((void __iomem *)ioaddr->lbah_addr); tf->device = readb((void __iomem *)ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr); tf->hob_feature = readb((void __iomem *)ioaddr->error_addr); tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr); tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr); tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr); tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr); } } /** * ata_tf_read - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. * * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48 * is set, also reads the hob registers. * * May be used as the tf_read() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_tf_read_mmio(ap, tf); else ata_tf_read_pio(ap, tf); } /** * ata_check_status_pio - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ static u8 ata_check_status_pio(struct ata_port *ap) { return inb(ap->ioaddr.status_addr); } /** * ata_check_status_mmio - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * via MMIO and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ static u8 ata_check_status_mmio(struct ata_port *ap) { return readb((void __iomem *) ap->ioaddr.status_addr); } /** * ata_check_status - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * May be used as the check_status() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_check_status(struct ata_port *ap) { if (ap->flags & ATA_FLAG_MMIO) return ata_check_status_mmio(ap); return ata_check_status_pio(ap); } /** * ata_altstatus - Read device alternate status reg * @ap: port where the device is * * Reads ATA taskfile alternate status register for * currently-selected device and return its value. * * Note: may NOT be used as the check_altstatus() entry in * ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_altstatus(struct ata_port *ap) { if (ap->ops->check_altstatus) return ap->ops->check_altstatus(ap); if (ap->flags & ATA_FLAG_MMIO) return readb((void __iomem *)ap->ioaddr.altstatus_addr); return inb(ap->ioaddr.altstatus_addr); } /** * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; /* load PRD table addr. */ mb(); /* make sure PRD table writes are visible to controller */ writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = readb(mmio + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; writeb(dmactl, mmio + ATA_DMA_CMD); /* issue r/w command */ ap->ops->exec_command(ap, &qc->tf); } /** * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; u8 dmactl; /* start host DMA transaction */ dmactl = readb(mmio + ATA_DMA_CMD); writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD); /* Strictly, one may wish to issue a readb() here, to * flush the mmio write. However, control also passes * to the hardware at this point, and it will interrupt * us when we are to resume control. So, in effect, * we don't care when the mmio write flushes. * Further, a read of the DMA status register _immediately_ * following the write may not be what certain flaky hardware * is expected, so I think it is best to not add a readb() * without first all the MMIO ATA cards/mobos. * Or maybe I'm just being paranoid. */ } /** * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO) * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; /* load PRD table addr. */ outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* issue r/w command */ ap->ops->exec_command(ap, &qc->tf); } /** * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO) * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_bmdma_start_pio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 dmactl; /* start host DMA transaction */ dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); outb(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); } /** * ata_bmdma_start - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * Writes the ATA_DMA_START flag to the DMA command register. * * May be used as the bmdma_start() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_start(struct ata_queued_cmd *qc) { if (qc->ap->flags & ATA_FLAG_MMIO) ata_bmdma_start_mmio(qc); else ata_bmdma_start_pio(qc); } /** * ata_bmdma_setup - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * Writes address of PRD table to device's PRD Table Address * register, sets the DMA control register, and calls * ops->exec_command() to start the transfer. * * May be used as the bmdma_setup() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_setup(struct ata_queued_cmd *qc) { if (qc->ap->flags & ATA_FLAG_MMIO) ata_bmdma_setup_mmio(qc); else ata_bmdma_setup_pio(qc); } /** * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. * @ap: Port associated with this ATA transaction. * * Clear interrupt and error flags in DMA status register. * * May be used as the irq_clear() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_irq_clear(struct ata_port *ap) { if (!ap->ioaddr.bmdma_addr) return; if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS; writeb(readb(mmio), mmio); } else { unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS; outb(inb(addr), addr); } } /** * ata_bmdma_status - Read PCI IDE BMDMA status * @ap: Port associated with this ATA transaction. * * Read and return BMDMA status register. * * May be used as the bmdma_status() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ u8 ata_bmdma_status(struct ata_port *ap) { u8 host_stat; if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; host_stat = readb(mmio + ATA_DMA_STATUS); } else host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); return host_stat; } /** * ata_bmdma_stop - Stop PCI IDE BMDMA transfer * @qc: Command we are ending DMA for * * Clears the ATA_DMA_START flag in the dma control register * * May be used as the bmdma_stop() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; /* clear start/stop bit */ writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, mmio + ATA_DMA_CMD); } else { /* clear start/stop bit */ outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); } /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_altstatus(ap); /* dummy read */ } /** * ata_bmdma_freeze - Freeze BMDMA controller port * @ap: port to freeze * * Freeze BMDMA controller port. * * LOCKING: * Inherited from caller. */ void ata_bmdma_freeze(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; ap->ctl |= ATA_NIEN; ap->last_ctl = ap->ctl; if (ap->flags & ATA_FLAG_MMIO) writeb(ap->ctl, (void __iomem *)ioaddr->ctl_addr); else outb(ap->ctl, ioaddr->ctl_addr); } /** * ata_bmdma_thaw - Thaw BMDMA controller port * @ap: port to thaw * * Thaw BMDMA controller port. * * LOCKING: * Inherited from caller. */ void ata_bmdma_thaw(struct ata_port *ap) { /* clear & re-enable interrupts */ ata_chk_status(ap); ap->ops->irq_clear(ap); if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ ata_irq_on(ap); } /** * ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller * @ap: port to handle error for * @prereset: prereset method (can be NULL) * @softreset: softreset method (can be NULL) * @hardreset: hardreset method (can be NULL) * @postreset: postreset method (can be NULL) * * Handle error for ATA BMDMA controller. It can handle both * PATA and SATA controllers. Many controllers should be able to * use this EH as-is or with some added handling before and * after. * * This function is intended to be used for constructing * ->error_handler callback by low level drivers. * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset) { struct ata_eh_context *ehc = &ap->eh_context; struct ata_queued_cmd *qc; unsigned long flags; int thaw = 0; qc = __ata_qc_from_tag(ap, ap->active_tag); if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) qc = NULL; /* reset PIO HSM and stop DMA engine */ spin_lock_irqsave(ap->lock, flags); ap->hsm_task_state = HSM_ST_IDLE; if (qc && (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATA_PROT_ATAPI_DMA)) { u8 host_stat; host_stat = ata_bmdma_status(ap); ata_ehi_push_desc(&ehc->i, "BMDMA stat 0x%x", host_stat); /* BMDMA controllers indicate host bus error by * setting DMA_ERR bit and timing out. As it wasn't * really a timeout event, adjust error mask and * cancel frozen state. */ if (qc->err_mask == AC_ERR_TIMEOUT && host_stat & ATA_DMA_ERR) { qc->err_mask = AC_ERR_HOST_BUS; thaw = 1; } ap->ops->bmdma_stop(qc); } ata_altstatus(ap); ata_chk_status(ap); ap->ops->irq_clear(ap); spin_unlock_irqrestore(ap->lock, flags); if (thaw) ata_eh_thaw_port(ap); /* PIO and DMA engines have been stopped, perform recovery */ ata_do_eh(ap, prereset, softreset, hardreset, postreset); } /** * ata_bmdma_error_handler - Stock error handler for BMDMA controller * @ap: port to handle error for * * Stock error handler for BMDMA controller. * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_error_handler(struct ata_port *ap) { ata_reset_fn_t hardreset; hardreset = NULL; if (sata_scr_valid(ap)) hardreset = sata_std_hardreset; ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset, ata_std_postreset); } /** * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for * BMDMA controller * @qc: internal command to clean up * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) { ata_bmdma_stop(qc); } #ifdef CONFIG_PCI /** * ata_pci_init_native_mode - Initialize native-mode driver * @pdev: pci device to be initialized * @port: array[2] of pointers to port info structures. * @ports: bitmap of ports present * * Utility function which allocates and initializes an * ata_probe_ent structure for a standard dual-port * PIO-based IDE controller. The returned ata_probe_ent * structure can be passed to ata_device_add(). The returned * ata_probe_ent structure should then be freed with kfree(). * * The caller need only pass the address of the primary port, the * secondary will be deduced automatically. If the device has non * standard secondary port mappings this function can be called twice, * once for each interface. */ struct ata_probe_ent * ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports) { struct ata_probe_ent *probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); int p = 0; unsigned long bmdma; if (!probe_ent) return NULL; probe_ent->irq = pdev->irq; probe_ent->irq_flags = IRQF_SHARED; probe_ent->private_data = port[0]->private_data; if (ports & ATA_PORT_PRIMARY) { probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0); probe_ent->port[p].altstatus_addr = probe_ent->port[p].ctl_addr = pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS; bmdma = pci_resource_start(pdev, 4); if (bmdma) { if (inb(bmdma + 2) & 0x80) probe_ent->_host_flags |= ATA_HOST_SIMPLEX; probe_ent->port[p].bmdma_addr = bmdma; } ata_std_ports(&probe_ent->port[p]); p++; } if (ports & ATA_PORT_SECONDARY) { probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2); probe_ent->port[p].altstatus_addr = probe_ent->port[p].ctl_addr = pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS; bmdma = pci_resource_start(pdev, 4); if (bmdma) { bmdma += 8; if(inb(bmdma + 2) & 0x80) probe_ent->_host_flags |= ATA_HOST_SIMPLEX; probe_ent->port[p].bmdma_addr = bmdma; } ata_std_ports(&probe_ent->port[p]); probe_ent->pinfo2 = port[1]; p++; } probe_ent->n_ports = p; return probe_ent; } static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info **port, int port_mask) { struct ata_probe_ent *probe_ent; unsigned long bmdma = pci_resource_start(pdev, 4); probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); if (!probe_ent) return NULL; probe_ent->n_ports = 2; probe_ent->private_data = port[0]->private_data; if (port_mask & ATA_PORT_PRIMARY) { probe_ent->irq = ATA_PRIMARY_IRQ; probe_ent->port[0].cmd_addr = ATA_PRIMARY_CMD; probe_ent->port[0].altstatus_addr = probe_ent->port[0].ctl_addr = ATA_PRIMARY_CTL; if (bmdma) { probe_ent->port[0].bmdma_addr = bmdma; if (inb(bmdma + 2) & 0x80) probe_ent->_host_flags |= ATA_HOST_SIMPLEX; } ata_std_ports(&probe_ent->port[0]); } else probe_ent->dummy_port_mask |= ATA_PORT_PRIMARY; if (port_mask & ATA_PORT_SECONDARY) { if (probe_ent->irq) probe_ent->irq2 = ATA_SECONDARY_IRQ; else probe_ent->irq = ATA_SECONDARY_IRQ; probe_ent->port[1].cmd_addr = ATA_SECONDARY_CMD; probe_ent->port[1].altstatus_addr = probe_ent->port[1].ctl_addr = ATA_SECONDARY_CTL; if (bmdma) { probe_ent->port[1].bmdma_addr = bmdma + 8; if (inb(bmdma + 10) & 0x80) probe_ent->_host_flags |= ATA_HOST_SIMPLEX; } ata_std_ports(&probe_ent->port[1]); probe_ent->pinfo2 = port[1]; } else probe_ent->dummy_port_mask |= ATA_PORT_SECONDARY; return probe_ent; } /** * ata_pci_init_one - Initialize/register PCI IDE host controller * @pdev: Controller to be initialized * @port_info: Information from low-level host driver * @n_ports: Number of ports attached to host controller * * This is a helper function which can be called from a driver's * xxx_init_one() probe function if the hardware uses traditional * IDE taskfile registers. * * This function calls pci_enable_device(), reserves its register * regions, sets the dma mask, enables bus master mode, and calls * ata_device_add() * * ASSUMPTION: * Nobody makes a single channel controller that appears solely as * the secondary legacy port on PCI. * * LOCKING: * Inherited from PCI layer (may sleep). * * RETURNS: * Zero on success, negative on errno-based value on error. */ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, unsigned int n_ports) { struct ata_probe_ent *probe_ent = NULL; struct ata_port_info *port[2]; u8 mask; unsigned int legacy_mode = 0; int disable_dev_on_err = 1; int rc; DPRINTK("ENTER\n"); BUG_ON(n_ports < 1 || n_ports > 2); port[0] = port_info[0]; if (n_ports > 1) port[1] = port_info[1]; else port[1] = port[0]; /* FIXME: Really for ATA it isn't safe because the device may be multi-purpose and we want to leave it alone if it was already enabled. Secondly for shared use as Arjan says we want refcounting Checking dev->is_enabled is insufficient as this is not set at boot for the primary video which is BIOS enabled */ rc = pci_enable_device(pdev); if (rc) return rc; if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { u8 tmp8; /* TODO: What if one channel is in native mode ... */ pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); mask = (1 << 2) | (1 << 0); if ((tmp8 & mask) != mask) legacy_mode = (1 << 3); } rc = pci_request_regions(pdev, DRV_NAME); if (rc) { disable_dev_on_err = 0; goto err_out; } if (legacy_mode) { if (!request_region(ATA_PRIMARY_CMD, 8, "libata")) { struct resource *conflict, res; res.start = ATA_PRIMARY_CMD; res.end = ATA_PRIMARY_CMD + 8 - 1; conflict = ____request_resource(&ioport_resource, &res); while (conflict->child) conflict = ____request_resource(conflict, &res); if (!strcmp(conflict->name, "libata")) legacy_mode |= ATA_PORT_PRIMARY; else { disable_dev_on_err = 0; printk(KERN_WARNING "ata: 0x%0X IDE port busy\n" \ "ata: conflict with %s\n", ATA_PRIMARY_CMD, conflict->name); } } else legacy_mode |= ATA_PORT_PRIMARY; if (!request_region(ATA_SECONDARY_CMD, 8, "libata")) { struct resource *conflict, res; res.start = ATA_SECONDARY_CMD; res.end = ATA_SECONDARY_CMD + 8 - 1; conflict = ____request_resource(&ioport_resource, &res); while (conflict->child) conflict = ____request_resource(conflict, &res); if (!strcmp(conflict->name, "libata")) legacy_mode |= ATA_PORT_SECONDARY; else { disable_dev_on_err = 0; printk(KERN_WARNING "ata: 0x%X IDE port busy\n" \ "ata: conflict with %s\n", ATA_SECONDARY_CMD, conflict->name); } } else legacy_mode |= ATA_PORT_SECONDARY; } /* we have legacy mode, but all ports are unavailable */ if (legacy_mode == (1 << 3)) { rc = -EBUSY; goto err_out_regions; } /* TODO: If we get no DMA mask we should fall back to PIO */ rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); if (rc) goto err_out_regions; rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); if (rc) goto err_out_regions; if (legacy_mode) { probe_ent = ata_pci_init_legacy_port(pdev, port, legacy_mode); } else { if (n_ports == 2) probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); else probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY); } if (!probe_ent) { rc = -ENOMEM; goto err_out_regions; } pci_set_master(pdev); if (!ata_device_add(probe_ent)) { rc = -ENODEV; goto err_out_ent; } kfree(probe_ent); return 0; err_out_ent: kfree(probe_ent); err_out_regions: if (legacy_mode & ATA_PORT_PRIMARY) release_region(ATA_PRIMARY_CMD, 8); if (legacy_mode & ATA_PORT_SECONDARY) release_region(ATA_SECONDARY_CMD, 8); pci_release_regions(pdev); err_out: if (disable_dev_on_err) pci_disable_device(pdev); return rc; } /** * ata_pci_clear_simplex - attempt to kick device out of simplex * @pdev: PCI device * * Some PCI ATA devices report simplex mode but in fact can be told to * enter non simplex mode. This implements the neccessary logic to * perform the task on such devices. Calling it on other devices will * have -undefined- behaviour. */ int ata_pci_clear_simplex(struct pci_dev *pdev) { unsigned long bmdma = pci_resource_start(pdev, 4); u8 simplex; if (bmdma == 0) return -ENOENT; simplex = inb(bmdma + 0x02); outb(simplex & 0x60, bmdma + 0x02); simplex = inb(bmdma + 0x02); if (simplex & 0x80) return -EOPNOTSUPP; return 0; } unsigned long ata_pci_default_filter(const struct ata_port *ap, struct ata_device *adev, unsigned long xfer_mask) { /* Filter out DMA modes if the device has been configured by the BIOS as PIO only */ if (ap->ioaddr.bmdma_addr == 0) xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); return xfer_mask; } #endif /* CONFIG_PCI */