/* * Copyright 2013 Emilio López * * Emilio López * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include "clk-factors.h" static DEFINE_SPINLOCK(clk_lock); /* Maximum number of parents our clocks have */ #define SUNXI_MAX_PARENTS 5 /** * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1 * PLL1 rate is calculated as follows * rate = (parent_rate * n * (k + 1) >> p) / (m + 1); * parent_rate is always 24Mhz */ static void sun4i_get_pll1_factors(struct factors_request *req) { u8 div; /* Normalize value to a 6M multiple */ div = req->rate / 6000000; req->rate = 6000000 * div; /* m is always zero for pll1 */ req->m = 0; /* k is 1 only on these cases */ if (req->rate >= 768000000 || req->rate == 42000000 || req->rate == 54000000) req->k = 1; else req->k = 0; /* p will be 3 for divs under 10 */ if (div < 10) req->p = 3; /* p will be 2 for divs between 10 - 20 and odd divs under 32 */ else if (div < 20 || (div < 32 && (div & 1))) req->p = 2; /* p will be 1 for even divs under 32, divs under 40 and odd pairs * of divs between 40-62 */ else if (div < 40 || (div < 64 && (div & 2))) req->p = 1; /* any other entries have p = 0 */ else req->p = 0; /* calculate a suitable n based on k and p */ div <<= req->p; div /= (req->k + 1); req->n = div / 4; } /** * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1 * PLL1 rate is calculated as follows * rate = parent_rate * (n + 1) * (k + 1) / (m + 1); * parent_rate should always be 24MHz */ static void sun6i_a31_get_pll1_factors(struct factors_request *req) { /* * We can operate only on MHz, this will make our life easier * later. */ u32 freq_mhz = req->rate / 1000000; u32 parent_freq_mhz = req->parent_rate / 1000000; /* * Round down the frequency to the closest multiple of either * 6 or 16 */ u32 round_freq_6 = round_down(freq_mhz, 6); u32 round_freq_16 = round_down(freq_mhz, 16); if (round_freq_6 > round_freq_16) freq_mhz = round_freq_6; else freq_mhz = round_freq_16; req->rate = freq_mhz * 1000000; /* If the frequency is a multiple of 32 MHz, k is always 3 */ if (!(freq_mhz % 32)) req->k = 3; /* If the frequency is a multiple of 9 MHz, k is always 2 */ else if (!(freq_mhz % 9)) req->k = 2; /* If the frequency is a multiple of 8 MHz, k is always 1 */ else if (!(freq_mhz % 8)) req->k = 1; /* Otherwise, we don't use the k factor */ else req->k = 0; /* * If the frequency is a multiple of 2 but not a multiple of * 3, m is 3. This is the first time we use 6 here, yet we * will use it on several other places. * We use this number because it's the lowest frequency we can * generate (with n = 0, k = 0, m = 3), so every other frequency * somehow relates to this frequency. */ if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4) req->m = 2; /* * If the frequency is a multiple of 6MHz, but the factor is * odd, m will be 3 */ else if ((freq_mhz / 6) & 1) req->m = 3; /* Otherwise, we end up with m = 1 */ else req->m = 1; /* Calculate n thanks to the above factors we already got */ req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz) - 1; /* * If n end up being outbound, and that we can still decrease * m, do it. */ if ((req->n + 1) > 31 && (req->m + 1) > 1) { req->n = (req->n + 1) / 2 - 1; req->m = (req->m + 1) / 2 - 1; } } /** * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1 * PLL1 rate is calculated as follows * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1); * parent_rate is always 24Mhz */ static void sun8i_a23_get_pll1_factors(struct factors_request *req) { u8 div; /* Normalize value to a 6M multiple */ div = req->rate / 6000000; req->rate = 6000000 * div; /* m is always zero for pll1 */ req->m = 0; /* k is 1 only on these cases */ if (req->rate >= 768000000 || req->rate == 42000000 || req->rate == 54000000) req->k = 1; else req->k = 0; /* p will be 2 for divs under 20 and odd divs under 32 */ if (div < 20 || (div < 32 && (div & 1))) req->p = 2; /* p will be 1 for even divs under 32, divs under 40 and odd pairs * of divs between 40-62 */ else if (div < 40 || (div < 64 && (div & 2))) req->p = 1; /* any other entries have p = 0 */ else req->p = 0; /* calculate a suitable n based on k and p */ div <<= req->p; div /= (req->k + 1); req->n = div / 4 - 1; } /** * sun4i_get_pll5_factors() - calculates n, k factors for PLL5 * PLL5 rate is calculated as follows * rate = parent_rate * n * (k + 1) * parent_rate is always 24Mhz */ static void sun4i_get_pll5_factors(struct factors_request *req) { u8 div; /* Normalize value to a parent_rate multiple (24M) */ div = req->rate / req->parent_rate; req->rate = req->parent_rate * div; if (div < 31) req->k = 0; else if (div / 2 < 31) req->k = 1; else if (div / 3 < 31) req->k = 2; else req->k = 3; req->n = DIV_ROUND_UP(div, (req->k + 1)); } /** * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2 * PLL6x2 rate is calculated as follows * rate = parent_rate * (n + 1) * (k + 1) * parent_rate is always 24Mhz */ static void sun6i_a31_get_pll6_factors(struct factors_request *req) { u8 div; /* Normalize value to a parent_rate multiple (24M) */ div = req->rate / req->parent_rate; req->rate = req->parent_rate * div; req->k = div / 32; if (req->k > 3) req->k = 3; req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1; } /** * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB * AHB rate is calculated as follows * rate = parent_rate >> p */ static void sun5i_a13_get_ahb_factors(struct factors_request *req) { u32 div; /* divide only */ if (req->parent_rate < req->rate) req->rate = req->parent_rate; /* * user manual says valid speed is 8k ~ 276M, but tests show it * can work at speeds up to 300M, just after reparenting to pll6 */ if (req->rate < 8000) req->rate = 8000; if (req->rate > 300000000) req->rate = 300000000; div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate)); /* p = 0 ~ 3 */ if (div > 3) div = 3; req->rate = req->parent_rate >> div; req->p = div; } #define SUN6I_AHB1_PARENT_PLL6 3 /** * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB * AHB rate is calculated as follows * rate = parent_rate >> p * * if parent is pll6, then * parent_rate = pll6 rate / (m + 1) */ static void sun6i_get_ahb1_factors(struct factors_request *req) { u8 div, calcp, calcm = 1; /* * clock can only divide, so we will never be able to achieve * frequencies higher than the parent frequency */ if (req->parent_rate && req->rate > req->parent_rate) req->rate = req->parent_rate; div = DIV_ROUND_UP(req->parent_rate, req->rate); /* calculate pre-divider if parent is pll6 */ if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) { if (div < 4) calcp = 0; else if (div / 2 < 4) calcp = 1; else if (div / 4 < 4) calcp = 2; else calcp = 3; calcm = DIV_ROUND_UP(div, 1 << calcp); } else { calcp = __roundup_pow_of_two(div); calcp = calcp > 3 ? 3 : calcp; } req->rate = (req->parent_rate / calcm) >> calcp; req->p = calcp; req->m = calcm - 1; } /** * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and * parent index */ static void sun6i_ahb1_recalc(struct factors_request *req) { req->rate = req->parent_rate; /* apply pre-divider first if parent is pll6 */ if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) req->rate /= req->m + 1; /* clk divider */ req->rate >>= req->p; } /** * sun4i_get_apb1_factors() - calculates m, p factors for APB1 * APB1 rate is calculated as follows * rate = (parent_rate >> p) / (m + 1); */ static void sun4i_get_apb1_factors(struct factors_request *req) { u8 calcm, calcp; int div; if (req->parent_rate < req->rate) req->rate = req->parent_rate; div = DIV_ROUND_UP(req->parent_rate, req->rate); /* Invalid rate! */ if (div > 32) return; if (div <= 4) calcp = 0; else if (div <= 8) calcp = 1; else if (div <= 16) calcp = 2; else calcp = 3; calcm = (req->parent_rate >> calcp) - 1; req->rate = (req->parent_rate >> calcp) / (calcm + 1); req->m = calcm; req->p = calcp; } /** * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B * CLK_OUT rate is calculated as follows * rate = (parent_rate >> p) / (m + 1); */ static void sun7i_a20_get_out_factors(struct factors_request *req) { u8 div, calcm, calcp; /* These clocks can only divide, so we will never be able to achieve * frequencies higher than the parent frequency */ if (req->rate > req->parent_rate) req->rate = req->parent_rate; div = DIV_ROUND_UP(req->parent_rate, req->rate); if (div < 32) calcp = 0; else if (div / 2 < 32) calcp = 1; else if (div / 4 < 32) calcp = 2; else calcp = 3; calcm = DIV_ROUND_UP(div, 1 << calcp); req->rate = (req->parent_rate >> calcp) / calcm; req->m = calcm - 1; req->p = calcp; } /** * sunxi_factors_clk_setup() - Setup function for factor clocks */ static const struct clk_factors_config sun4i_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, .pshift = 16, .pwidth = 2, }; static const struct clk_factors_config sun6i_a31_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, .n_start = 1, }; static const struct clk_factors_config sun8i_a23_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, .pshift = 16, .pwidth = 2, .n_start = 1, }; static const struct clk_factors_config sun4i_pll5_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, }; static const struct clk_factors_config sun6i_a31_pll6_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .n_start = 1, }; static const struct clk_factors_config sun5i_a13_ahb_config = { .pshift = 4, .pwidth = 2, }; static const struct clk_factors_config sun6i_ahb1_config = { .mshift = 6, .mwidth = 2, .pshift = 4, .pwidth = 2, }; static const struct clk_factors_config sun4i_apb1_config = { .mshift = 0, .mwidth = 5, .pshift = 16, .pwidth = 2, }; /* user manual says "n" but it's really "p" */ static const struct clk_factors_config sun7i_a20_out_config = { .mshift = 8, .mwidth = 5, .pshift = 20, .pwidth = 2, }; static const struct factors_data sun4i_pll1_data __initconst = { .enable = 31, .table = &sun4i_pll1_config, .getter = sun4i_get_pll1_factors, }; static const struct factors_data sun6i_a31_pll1_data __initconst = { .enable = 31, .table = &sun6i_a31_pll1_config, .getter = sun6i_a31_get_pll1_factors, }; static const struct factors_data sun8i_a23_pll1_data __initconst = { .enable = 31, .table = &sun8i_a23_pll1_config, .getter = sun8i_a23_get_pll1_factors, }; static const struct factors_data sun7i_a20_pll4_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, }; static const struct factors_data sun4i_pll5_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, .name = "pll5", }; static const struct factors_data sun4i_pll6_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, .name = "pll6", }; static const struct factors_data sun6i_a31_pll6_data __initconst = { .enable = 31, .table = &sun6i_a31_pll6_config, .getter = sun6i_a31_get_pll6_factors, .name = "pll6x2", }; static const struct factors_data sun5i_a13_ahb_data __initconst = { .mux = 6, .muxmask = BIT(1) | BIT(0), .table = &sun5i_a13_ahb_config, .getter = sun5i_a13_get_ahb_factors, }; static const struct factors_data sun6i_ahb1_data __initconst = { .mux = 12, .muxmask = BIT(1) | BIT(0), .table = &sun6i_ahb1_config, .getter = sun6i_get_ahb1_factors, .recalc = sun6i_ahb1_recalc, }; static const struct factors_data sun4i_apb1_data __initconst = { .mux = 24, .muxmask = BIT(1) | BIT(0), .table = &sun4i_apb1_config, .getter = sun4i_get_apb1_factors, }; static const struct factors_data sun7i_a20_out_data __initconst = { .enable = 31, .mux = 24, .muxmask = BIT(1) | BIT(0), .table = &sun7i_a20_out_config, .getter = sun7i_a20_get_out_factors, }; static struct clk * __init sunxi_factors_clk_setup(struct device_node *node, const struct factors_data *data) { void __iomem *reg; reg = of_iomap(node, 0); if (!reg) { pr_err("Could not get registers for factors-clk: %s\n", node->name); return NULL; } return sunxi_factors_register(node, data, &clk_lock, reg); } static void __init sun4i_pll1_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun4i_pll1_data); } CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk", sun4i_pll1_clk_setup); static void __init sun6i_pll1_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data); } CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk", sun6i_pll1_clk_setup); static void __init sun8i_pll1_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data); } CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk", sun8i_pll1_clk_setup); static void __init sun7i_pll4_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data); } CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk", sun7i_pll4_clk_setup); static void __init sun5i_ahb_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data); } CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk", sun5i_ahb_clk_setup); static void __init sun6i_ahb1_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun6i_ahb1_data); } CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup); static void __init sun4i_apb1_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun4i_apb1_data); } CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk", sun4i_apb1_clk_setup); static void __init sun7i_out_clk_setup(struct device_node *node) { sunxi_factors_clk_setup(node, &sun7i_a20_out_data); } CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk", sun7i_out_clk_setup); /** * sunxi_mux_clk_setup() - Setup function for muxes */ #define SUNXI_MUX_GATE_WIDTH 2 struct mux_data { u8 shift; }; static const struct mux_data sun4i_cpu_mux_data __initconst = { .shift = 16, }; static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = { .shift = 12, }; static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = { .shift = 0, }; static struct clk * __init sunxi_mux_clk_setup(struct device_node *node, const struct mux_data *data) { struct clk *clk; const char *clk_name = node->name; const char *parents[SUNXI_MAX_PARENTS]; void __iomem *reg; int i; reg = of_iomap(node, 0); i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS); if (of_property_read_string(node, "clock-output-names", &clk_name)) { pr_warn("%s: could not read clock-output-names for \"%s\"\n", __func__, clk_name); goto out_unmap; } clk = clk_register_mux(NULL, clk_name, parents, i, CLK_SET_RATE_PARENT, reg, data->shift, SUNXI_MUX_GATE_WIDTH, 0, &clk_lock); if (IS_ERR(clk)) { pr_warn("%s: failed to register mux clock %s: %ld\n", __func__, clk_name, PTR_ERR(clk)); goto out_unmap; } of_clk_add_provider(node, of_clk_src_simple_get, clk); clk_register_clkdev(clk, clk_name, NULL); return clk; out_unmap: iounmap(reg); return NULL; } static void __init sun4i_cpu_clk_setup(struct device_node *node) { struct clk *clk; clk = sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data); if (!clk) return; /* Protect CPU clock */ __clk_get(clk); clk_prepare_enable(clk); } CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk", sun4i_cpu_clk_setup); static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node) { sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data); } CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk", sun6i_ahb1_mux_clk_setup); static void __init sun8i_ahb2_clk_setup(struct device_node *node) { sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data); } CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk", sun8i_ahb2_clk_setup); /** * sunxi_divider_clk_setup() - Setup function for simple divider clocks */ struct div_data { u8 shift; u8 pow; u8 width; const struct clk_div_table *table; }; static const struct div_data sun4i_axi_data __initconst = { .shift = 0, .pow = 0, .width = 2, }; static const struct clk_div_table sun8i_a23_axi_table[] __initconst = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 3 }, { .val = 3, .div = 4 }, { .val = 4, .div = 4 }, { .val = 5, .div = 4 }, { .val = 6, .div = 4 }, { .val = 7, .div = 4 }, { } /* sentinel */ }; static const struct div_data sun8i_a23_axi_data __initconst = { .width = 3, .table = sun8i_a23_axi_table, }; static const struct div_data sun4i_ahb_data __initconst = { .shift = 4, .pow = 1, .width = 2, }; static const struct clk_div_table sun4i_apb0_table[] __initconst = { { .val = 0, .div = 2 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { .val = 3, .div = 8 }, { } /* sentinel */ }; static const struct div_data sun4i_apb0_data __initconst = { .shift = 8, .pow = 1, .width = 2, .table = sun4i_apb0_table, }; static void __init sunxi_divider_clk_setup(struct device_node *node, const struct div_data *data) { struct clk *clk; const char *clk_name = node->name; const char *clk_parent; void __iomem *reg; reg = of_iomap(node, 0); clk_parent = of_clk_get_parent_name(node, 0); of_property_read_string(node, "clock-output-names", &clk_name); clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0, reg, data->shift, data->width, data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0, data->table, &clk_lock); if (clk) { of_clk_add_provider(node, of_clk_src_simple_get, clk); clk_register_clkdev(clk, clk_name, NULL); } } static void __init sun4i_ahb_clk_setup(struct device_node *node) { sunxi_divider_clk_setup(node, &sun4i_ahb_data); } CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk", sun4i_ahb_clk_setup); static void __init sun4i_apb0_clk_setup(struct device_node *node) { sunxi_divider_clk_setup(node, &sun4i_apb0_data); } CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk", sun4i_apb0_clk_setup); static void __init sun4i_axi_clk_setup(struct device_node *node) { sunxi_divider_clk_setup(node, &sun4i_axi_data); } CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk", sun4i_axi_clk_setup); static void __init sun8i_axi_clk_setup(struct device_node *node) { sunxi_divider_clk_setup(node, &sun8i_a23_axi_data); } CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk", sun8i_axi_clk_setup); /** * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks */ #define SUNXI_GATES_MAX_SIZE 64 struct gates_data { DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE); }; /** * sunxi_divs_clk_setup() helper data */ #define SUNXI_DIVS_MAX_QTY 4 #define SUNXI_DIVISOR_WIDTH 2 struct divs_data { const struct factors_data *factors; /* data for the factor clock */ int ndivs; /* number of outputs */ /* * List of outputs. Refer to the diagram for sunxi_divs_clk_setup(): * self or base factor clock refers to the output from the pll * itself. The remaining refer to fixed or configurable divider * outputs. */ struct { u8 self; /* is it the base factor clock? (only one) */ u8 fixed; /* is it a fixed divisor? if not... */ struct clk_div_table *table; /* is it a table based divisor? */ u8 shift; /* otherwise it's a normal divisor with this shift */ u8 pow; /* is it power-of-two based? */ u8 gate; /* is it independently gateable? */ } div[SUNXI_DIVS_MAX_QTY]; }; static struct clk_div_table pll6_sata_tbl[] = { { .val = 0, .div = 6, }, { .val = 1, .div = 12, }, { .val = 2, .div = 18, }, { .val = 3, .div = 24, }, { } /* sentinel */ }; static const struct divs_data pll5_divs_data __initconst = { .factors = &sun4i_pll5_data, .ndivs = 2, .div = { { .shift = 0, .pow = 0, }, /* M, DDR */ { .shift = 16, .pow = 1, }, /* P, other */ /* No output for the base factor clock */ } }; static const struct divs_data pll6_divs_data __initconst = { .factors = &sun4i_pll6_data, .ndivs = 4, .div = { { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */ { .fixed = 2 }, /* P, other */ { .self = 1 }, /* base factor clock, 2x */ { .fixed = 4 }, /* pll6 / 4, used as ahb input */ } }; static const struct divs_data sun6i_a31_pll6_divs_data __initconst = { .factors = &sun6i_a31_pll6_data, .ndivs = 2, .div = { { .fixed = 2 }, /* normal output */ { .self = 1 }, /* base factor clock, 2x */ } }; /** * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks * * These clocks look something like this * ________________________ * | ___divisor 1---|----> to consumer * parent >--| pll___/___divisor 2---|----> to consumer * | \_______________|____> to consumer * |________________________| */ static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node, const struct divs_data *data) { struct clk_onecell_data *clk_data; const char *parent; const char *clk_name; struct clk **clks, *pclk; struct clk_hw *gate_hw, *rate_hw; const struct clk_ops *rate_ops; struct clk_gate *gate = NULL; struct clk_fixed_factor *fix_factor; struct clk_divider *divider; void __iomem *reg; int ndivs = SUNXI_DIVS_MAX_QTY, i = 0; int flags, clkflags; /* if number of children known, use it */ if (data->ndivs) ndivs = data->ndivs; /* Set up factor clock that we will be dividing */ pclk = sunxi_factors_clk_setup(node, data->factors); parent = __clk_get_name(pclk); reg = of_iomap(node, 0); clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); if (!clk_data) return NULL; clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL); if (!clks) goto free_clkdata; clk_data->clks = clks; /* It's not a good idea to have automatic reparenting changing * our RAM clock! */ clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT; for (i = 0; i < ndivs; i++) { if (of_property_read_string_index(node, "clock-output-names", i, &clk_name) != 0) break; /* If this is the base factor clock, only update clks */ if (data->div[i].self) { clk_data->clks[i] = pclk; continue; } gate_hw = NULL; rate_hw = NULL; rate_ops = NULL; /* If this leaf clock can be gated, create a gate */ if (data->div[i].gate) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) goto free_clks; gate->reg = reg; gate->bit_idx = data->div[i].gate; gate->lock = &clk_lock; gate_hw = &gate->hw; } /* Leaves can be fixed or configurable divisors */ if (data->div[i].fixed) { fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL); if (!fix_factor) goto free_gate; fix_factor->mult = 1; fix_factor->div = data->div[i].fixed; rate_hw = &fix_factor->hw; rate_ops = &clk_fixed_factor_ops; } else { divider = kzalloc(sizeof(*divider), GFP_KERNEL); if (!divider) goto free_gate; flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0; divider->reg = reg; divider->shift = data->div[i].shift; divider->width = SUNXI_DIVISOR_WIDTH; divider->flags = flags; divider->lock = &clk_lock; divider->table = data->div[i].table; rate_hw = ÷r->hw; rate_ops = &clk_divider_ops; } /* Wrap the (potential) gate and the divisor on a composite * clock to unify them */ clks[i] = clk_register_composite(NULL, clk_name, &parent, 1, NULL, NULL, rate_hw, rate_ops, gate_hw, &clk_gate_ops, clkflags); WARN_ON(IS_ERR(clk_data->clks[i])); clk_register_clkdev(clks[i], clk_name, NULL); } /* Adjust to the real max */ clk_data->clk_num = i; of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); return clks; free_gate: kfree(gate); free_clks: kfree(clks); free_clkdata: kfree(clk_data); return NULL; } static void __init sun4i_pll5_clk_setup(struct device_node *node) { struct clk **clks; clks = sunxi_divs_clk_setup(node, &pll5_divs_data); if (!clks) return; /* Protect PLL5_DDR */ __clk_get(clks[0]); clk_prepare_enable(clks[0]); } CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk", sun4i_pll5_clk_setup); static void __init sun4i_pll6_clk_setup(struct device_node *node) { sunxi_divs_clk_setup(node, &pll6_divs_data); } CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk", sun4i_pll6_clk_setup); static void __init sun6i_pll6_clk_setup(struct device_node *node) { sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data); } CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk", sun6i_pll6_clk_setup); /* Matches for factors clocks */ static const struct of_device_id clk_factors_match[] __initconst = { {} }; /* Matches for divider clocks */ static const struct of_device_id clk_div_match[] __initconst = { {} }; /* Matches for divided outputs */ static const struct of_device_id clk_divs_match[] __initconst = { {} }; /* Matches for mux clocks */ static const struct of_device_id clk_mux_match[] __initconst = { {} }; static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match, void *function) { struct device_node *np; const struct div_data *data; const struct of_device_id *match; void (*setup_function)(struct device_node *, const void *) = function; for_each_matching_node_and_match(np, clk_match, &match) { data = match->data; setup_function(np, data); } } static void __init sunxi_init_clocks(const char *clocks[], int nclocks) { unsigned int i; /* Register divided output clocks */ of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup); /* Register factor clocks */ of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup); /* Register divider clocks */ of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup); /* Register mux clocks */ of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup); /* Protect the clocks that needs to stay on */ for (i = 0; i < nclocks; i++) { struct clk *clk = clk_get(NULL, clocks[i]); if (!IS_ERR(clk)) clk_prepare_enable(clk); } } static const char *sun4i_a10_critical_clocks[] __initdata = { "pll5_ddr", }; static void __init sun4i_a10_init_clocks(struct device_node *node) { sunxi_init_clocks(sun4i_a10_critical_clocks, ARRAY_SIZE(sun4i_a10_critical_clocks)); } CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks); static const char *sun5i_critical_clocks[] __initdata = { "cpu", "pll5_ddr", }; static void __init sun5i_init_clocks(struct device_node *node) { sunxi_init_clocks(sun5i_critical_clocks, ARRAY_SIZE(sun5i_critical_clocks)); } CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks); CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks); CLK_OF_DECLARE(sun5i_r8_clk_init, "allwinner,sun5i-r8", sun5i_init_clocks); CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks); static const char *sun6i_critical_clocks[] __initdata = { "cpu", }; static void __init sun6i_init_clocks(struct device_node *node) { sunxi_init_clocks(sun6i_critical_clocks, ARRAY_SIZE(sun6i_critical_clocks)); } CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks); CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks); CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks); CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks); CLK_OF_DECLARE(sun8i_h3_clk_init, "allwinner,sun8i-h3", sun6i_init_clocks); static void __init sun9i_init_clocks(struct device_node *node) { sunxi_init_clocks(NULL, 0); } CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);