// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * nozomi.c -- HSDPA driver Broadband Wireless Data Card - Globe Trotter * * Written by: Ulf Jakobsson, * Jan Ã…kerfeldt, * Stefan Thomasson, * * Maintained by: Paul Hardwick (p.hardwick@option.com) * * Patches: * Locking code changes for Vodafone by Sphere Systems Ltd, * Andrew Bird (ajb@spheresystems.co.uk ) * & Phil Sanderson * * Source has been ported from an implementation made by Filip Aben @ Option * * -------------------------------------------------------------------------- * * Copyright (c) 2005,2006 Option Wireless Sweden AB * Copyright (c) 2006 Sphere Systems Ltd * Copyright (c) 2006 Option Wireless n/v * All rights Reserved. * * -------------------------------------------------------------------------- */ /* Enable this to have a lot of debug printouts */ #define DEBUG #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/ioport.h> #include <linux/tty.h> #include <linux/tty_driver.h> #include <linux/tty_flip.h> #include <linux/sched.h> #include <linux/serial.h> #include <linux/interrupt.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/kfifo.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <asm/byteorder.h> #include <linux/delay.h> #define VERSION_STRING DRIVER_DESC " 2.1d" /* Default debug printout level */ #define NOZOMI_DEBUG_LEVEL 0x00 static int debug = NOZOMI_DEBUG_LEVEL; module_param(debug, int, S_IRUGO | S_IWUSR); /* Macros definitions */ #define DBG_(lvl, fmt, args...) \ do { \ if (lvl & debug) \ pr_debug("[%d] %s(): " fmt "\n", \ __LINE__, __func__, ##args); \ } while (0) #define DBG1(args...) DBG_(0x01, ##args) #define DBG2(args...) DBG_(0x02, ##args) #define DBG3(args...) DBG_(0x04, ##args) #define DBG4(args...) DBG_(0x08, ##args) /* TODO: rewrite to optimize macros... */ #define TMP_BUF_MAX 256 #define DUMP(buf__, len__) \ do { \ char tbuf[TMP_BUF_MAX] = {0}; \ if (len__ > 1) { \ u32 data_len = min_t(u32, len__, TMP_BUF_MAX); \ strscpy(tbuf, buf__, data_len); \ if (tbuf[data_len - 2] == '\r') \ tbuf[data_len - 2] = 'r'; \ DBG1("SENDING: '%s' (%d+n)", tbuf, len__); \ } else { \ DBG1("SENDING: '%s' (%d)", tbuf, len__); \ } \ } while (0) /* Defines */ #define NOZOMI_NAME "nozomi" #define NOZOMI_NAME_TTY "nozomi_tty" #define DRIVER_DESC "Nozomi driver" #define NTTY_TTY_MAXMINORS 256 #define NTTY_FIFO_BUFFER_SIZE 8192 /* Must be power of 2 */ #define FIFO_BUFFER_SIZE_UL 8192 /* Size of tmp send buffer to card */ #define SEND_BUF_MAX 1024 #define RECEIVE_BUF_MAX 4 #define R_IIR 0x0000 /* Interrupt Identity Register */ #define R_FCR 0x0000 /* Flow Control Register */ #define R_IER 0x0004 /* Interrupt Enable Register */ #define NOZOMI_CONFIG_MAGIC 0xEFEFFEFE #define TOGGLE_VALID 0x0000 /* Definition of interrupt tokens */ #define MDM_DL1 0x0001 #define MDM_UL1 0x0002 #define MDM_DL2 0x0004 #define MDM_UL2 0x0008 #define DIAG_DL1 0x0010 #define DIAG_DL2 0x0020 #define DIAG_UL 0x0040 #define APP1_DL 0x0080 #define APP1_UL 0x0100 #define APP2_DL 0x0200 #define APP2_UL 0x0400 #define CTRL_DL 0x0800 #define CTRL_UL 0x1000 #define RESET 0x8000 #define MDM_DL (MDM_DL1 | MDM_DL2) #define MDM_UL (MDM_UL1 | MDM_UL2) #define DIAG_DL (DIAG_DL1 | DIAG_DL2) /* modem signal definition */ #define CTRL_DSR 0x0001 #define CTRL_DCD 0x0002 #define CTRL_RI 0x0004 #define CTRL_CTS 0x0008 #define CTRL_DTR 0x0001 #define CTRL_RTS 0x0002 #define MAX_PORT 4 #define NOZOMI_MAX_PORTS 5 #define NOZOMI_MAX_CARDS (NTTY_TTY_MAXMINORS / MAX_PORT) /* Type definitions */ /* * There are two types of nozomi cards, * one with 2048 memory and with 8192 memory */ enum card_type { F32_2 = 2048, /* 512 bytes downlink + uplink * 2 -> 2048 */ F32_8 = 8192, /* 3072 bytes downl. + 1024 bytes uplink * 2 -> 8192 */ }; /* Initialization states a card can be in */ enum card_state { NOZOMI_STATE_UNKNOWN = 0, NOZOMI_STATE_ENABLED = 1, /* pci device enabled */ NOZOMI_STATE_ALLOCATED = 2, /* config setup done */ NOZOMI_STATE_READY = 3, /* flowcontrols received */ }; /* Two different toggle channels exist */ enum channel_type { CH_A = 0, CH_B = 1, }; /* Port definition for the card regarding flow control */ enum ctrl_port_type { CTRL_CMD = 0, CTRL_MDM = 1, CTRL_DIAG = 2, CTRL_APP1 = 3, CTRL_APP2 = 4, CTRL_ERROR = -1, }; /* Ports that the nozomi has */ enum port_type { PORT_MDM = 0, PORT_DIAG = 1, PORT_APP1 = 2, PORT_APP2 = 3, PORT_CTRL = 4, PORT_ERROR = -1, }; #ifdef __BIG_ENDIAN /* Big endian */ struct toggles { unsigned int enabled:5; /* * Toggle fields are valid if enabled is 0, * else A-channels must always be used. */ unsigned int diag_dl:1; unsigned int mdm_dl:1; unsigned int mdm_ul:1; } __attribute__ ((packed)); /* Configuration table to read at startup of card */ /* Is for now only needed during initialization phase */ struct config_table { u32 signature; u16 product_information; u16 version; u8 pad3[3]; struct toggles toggle; u8 pad1[4]; u16 dl_mdm_len1; /* * If this is 64, it can hold * 60 bytes + 4 that is length field */ u16 dl_start; u16 dl_diag_len1; u16 dl_mdm_len2; /* * If this is 64, it can hold * 60 bytes + 4 that is length field */ u16 dl_app1_len; u16 dl_diag_len2; u16 dl_ctrl_len; u16 dl_app2_len; u8 pad2[16]; u16 ul_mdm_len1; u16 ul_start; u16 ul_diag_len; u16 ul_mdm_len2; u16 ul_app1_len; u16 ul_app2_len; u16 ul_ctrl_len; } __attribute__ ((packed)); /* This stores all control downlink flags */ struct ctrl_dl { u8 port; unsigned int reserved:4; unsigned int CTS:1; unsigned int RI:1; unsigned int DCD:1; unsigned int DSR:1; } __attribute__ ((packed)); /* This stores all control uplink flags */ struct ctrl_ul { u8 port; unsigned int reserved:6; unsigned int RTS:1; unsigned int DTR:1; } __attribute__ ((packed)); #else /* Little endian */ /* This represents the toggle information */ struct toggles { unsigned int mdm_ul:1; unsigned int mdm_dl:1; unsigned int diag_dl:1; unsigned int enabled:5; /* * Toggle fields are valid if enabled is 0, * else A-channels must always be used. */ } __attribute__ ((packed)); /* Configuration table to read at startup of card */ struct config_table { u32 signature; u16 version; u16 product_information; struct toggles toggle; u8 pad1[7]; u16 dl_start; u16 dl_mdm_len1; /* * If this is 64, it can hold * 60 bytes + 4 that is length field */ u16 dl_mdm_len2; u16 dl_diag_len1; u16 dl_diag_len2; u16 dl_app1_len; u16 dl_app2_len; u16 dl_ctrl_len; u8 pad2[16]; u16 ul_start; u16 ul_mdm_len2; u16 ul_mdm_len1; u16 ul_diag_len; u16 ul_app1_len; u16 ul_app2_len; u16 ul_ctrl_len; } __attribute__ ((packed)); /* This stores all control downlink flags */ struct ctrl_dl { unsigned int DSR:1; unsigned int DCD:1; unsigned int RI:1; unsigned int CTS:1; unsigned int reserverd:4; u8 port; } __attribute__ ((packed)); /* This stores all control uplink flags */ struct ctrl_ul { unsigned int DTR:1; unsigned int RTS:1; unsigned int reserved:6; u8 port; } __attribute__ ((packed)); #endif /* This holds all information that is needed regarding a port */ struct port { struct tty_port port; u8 update_flow_control; struct ctrl_ul ctrl_ul; struct ctrl_dl ctrl_dl; struct kfifo fifo_ul; void __iomem *dl_addr[2]; u32 dl_size[2]; u8 toggle_dl; void __iomem *ul_addr[2]; u32 ul_size[2]; u8 toggle_ul; u16 token_dl; wait_queue_head_t tty_wait; struct async_icount tty_icount; struct nozomi *dc; }; /* Private data one for each card in the system */ struct nozomi { void __iomem *base_addr; unsigned long flip; /* Pointers to registers */ void __iomem *reg_iir; void __iomem *reg_fcr; void __iomem *reg_ier; u16 last_ier; enum card_type card_type; struct config_table config_table; /* Configuration table */ struct pci_dev *pdev; struct port port[NOZOMI_MAX_PORTS]; u8 *send_buf; spinlock_t spin_mutex; /* secures access to registers and tty */ unsigned int index_start; enum card_state state; u32 open_ttys; }; /* This is a data packet that is read or written to/from card */ struct buffer { u32 size; /* size is the length of the data buffer */ u8 *data; } __attribute__ ((packed)); /* Global variables */ static const struct pci_device_id nozomi_pci_tbl[] = { {PCI_DEVICE(0x1931, 0x000c)}, /* Nozomi HSDPA */ {}, }; MODULE_DEVICE_TABLE(pci, nozomi_pci_tbl); static struct nozomi *ndevs[NOZOMI_MAX_CARDS]; static struct tty_driver *ntty_driver; static const struct tty_port_operations noz_tty_port_ops; /* * find card by tty_index */ static inline struct nozomi *get_dc_by_tty(const struct tty_struct *tty) { return tty ? ndevs[tty->index / MAX_PORT] : NULL; } static inline struct port *get_port_by_tty(const struct tty_struct *tty) { struct nozomi *ndev = get_dc_by_tty(tty); return ndev ? &ndev->port[tty->index % MAX_PORT] : NULL; } /* * TODO: * -Optimize * -Rewrite cleaner */ static void read_mem32(u32 *buf, const void __iomem *mem_addr_start, u32 size_bytes) { u32 i = 0; const u32 __iomem *ptr = mem_addr_start; u16 *buf16; if (unlikely(!ptr || !buf)) goto out; /* shortcut for extremely often used cases */ switch (size_bytes) { case 2: /* 2 bytes */ buf16 = (u16 *) buf; *buf16 = __le16_to_cpu(readw(ptr)); goto out; break; case 4: /* 4 bytes */ *(buf) = __le32_to_cpu(readl(ptr)); goto out; break; } while (i < size_bytes) { if (size_bytes - i == 2) { /* Handle 2 bytes in the end */ buf16 = (u16 *) buf; *(buf16) = __le16_to_cpu(readw(ptr)); i += 2; } else { /* Read 4 bytes */ *(buf) = __le32_to_cpu(readl(ptr)); i += 4; } buf++; ptr++; } out: return; } /* * TODO: * -Optimize * -Rewrite cleaner */ static u32 write_mem32(void __iomem *mem_addr_start, const u32 *buf, u32 size_bytes) { u32 i = 0; u32 __iomem *ptr = mem_addr_start; const u16 *buf16; if (unlikely(!ptr || !buf)) return 0; /* shortcut for extremely often used cases */ switch (size_bytes) { case 2: /* 2 bytes */ buf16 = (const u16 *)buf; writew(__cpu_to_le16(*buf16), ptr); return 2; break; case 1: /* * also needs to write 4 bytes in this case * so falling through.. */ case 4: /* 4 bytes */ writel(__cpu_to_le32(*buf), ptr); return 4; break; } while (i < size_bytes) { if (size_bytes - i == 2) { /* 2 bytes */ buf16 = (const u16 *)buf; writew(__cpu_to_le16(*buf16), ptr); i += 2; } else { /* 4 bytes */ writel(__cpu_to_le32(*buf), ptr); i += 4; } buf++; ptr++; } return i; } /* Setup pointers to different channels and also setup buffer sizes. */ static void nozomi_setup_memory(struct nozomi *dc) { void __iomem *offset = dc->base_addr + dc->config_table.dl_start; /* The length reported is including the length field of 4 bytes, * hence subtract with 4. */ const u16 buff_offset = 4; /* Modem port dl configuration */ dc->port[PORT_MDM].dl_addr[CH_A] = offset; dc->port[PORT_MDM].dl_addr[CH_B] = (offset += dc->config_table.dl_mdm_len1); dc->port[PORT_MDM].dl_size[CH_A] = dc->config_table.dl_mdm_len1 - buff_offset; dc->port[PORT_MDM].dl_size[CH_B] = dc->config_table.dl_mdm_len2 - buff_offset; /* Diag port dl configuration */ dc->port[PORT_DIAG].dl_addr[CH_A] = (offset += dc->config_table.dl_mdm_len2); dc->port[PORT_DIAG].dl_size[CH_A] = dc->config_table.dl_diag_len1 - buff_offset; dc->port[PORT_DIAG].dl_addr[CH_B] = (offset += dc->config_table.dl_diag_len1); dc->port[PORT_DIAG].dl_size[CH_B] = dc->config_table.dl_diag_len2 - buff_offset; /* App1 port dl configuration */ dc->port[PORT_APP1].dl_addr[CH_A] = (offset += dc->config_table.dl_diag_len2); dc->port[PORT_APP1].dl_size[CH_A] = dc->config_table.dl_app1_len - buff_offset; /* App2 port dl configuration */ dc->port[PORT_APP2].dl_addr[CH_A] = (offset += dc->config_table.dl_app1_len); dc->port[PORT_APP2].dl_size[CH_A] = dc->config_table.dl_app2_len - buff_offset; /* Ctrl dl configuration */ dc->port[PORT_CTRL].dl_addr[CH_A] = (offset += dc->config_table.dl_app2_len); dc->port[PORT_CTRL].dl_size[CH_A] = dc->config_table.dl_ctrl_len - buff_offset; offset = dc->base_addr + dc->config_table.ul_start; /* Modem Port ul configuration */ dc->port[PORT_MDM].ul_addr[CH_A] = offset; dc->port[PORT_MDM].ul_size[CH_A] = dc->config_table.ul_mdm_len1 - buff_offset; dc->port[PORT_MDM].ul_addr[CH_B] = (offset += dc->config_table.ul_mdm_len1); dc->port[PORT_MDM].ul_size[CH_B] = dc->config_table.ul_mdm_len2 - buff_offset; /* Diag port ul configuration */ dc->port[PORT_DIAG].ul_addr[CH_A] = (offset += dc->config_table.ul_mdm_len2); dc->port[PORT_DIAG].ul_size[CH_A] = dc->config_table.ul_diag_len - buff_offset; /* App1 port ul configuration */ dc->port[PORT_APP1].ul_addr[CH_A] = (offset += dc->config_table.ul_diag_len); dc->port[PORT_APP1].ul_size[CH_A] = dc->config_table.ul_app1_len - buff_offset; /* App2 port ul configuration */ dc->port[PORT_APP2].ul_addr[CH_A] = (offset += dc->config_table.ul_app1_len); dc->port[PORT_APP2].ul_size[CH_A] = dc->config_table.ul_app2_len - buff_offset; /* Ctrl ul configuration */ dc->port[PORT_CTRL].ul_addr[CH_A] = (offset += dc->config_table.ul_app2_len); dc->port[PORT_CTRL].ul_size[CH_A] = dc->config_table.ul_ctrl_len - buff_offset; } /* Dump config table under initalization phase */ #ifdef DEBUG static void dump_table(const struct nozomi *dc) { DBG3("signature: 0x%08X", dc->config_table.signature); DBG3("version: 0x%04X", dc->config_table.version); DBG3("product_information: 0x%04X", \ dc->config_table.product_information); DBG3("toggle enabled: %d", dc->config_table.toggle.enabled); DBG3("toggle up_mdm: %d", dc->config_table.toggle.mdm_ul); DBG3("toggle dl_mdm: %d", dc->config_table.toggle.mdm_dl); DBG3("toggle dl_dbg: %d", dc->config_table.toggle.diag_dl); DBG3("dl_start: 0x%04X", dc->config_table.dl_start); DBG3("dl_mdm_len0: 0x%04X, %d", dc->config_table.dl_mdm_len1, dc->config_table.dl_mdm_len1); DBG3("dl_mdm_len1: 0x%04X, %d", dc->config_table.dl_mdm_len2, dc->config_table.dl_mdm_len2); DBG3("dl_diag_len0: 0x%04X, %d", dc->config_table.dl_diag_len1, dc->config_table.dl_diag_len1); DBG3("dl_diag_len1: 0x%04X, %d", dc->config_table.dl_diag_len2, dc->config_table.dl_diag_len2); DBG3("dl_app1_len: 0x%04X, %d", dc->config_table.dl_app1_len, dc->config_table.dl_app1_len); DBG3("dl_app2_len: 0x%04X, %d", dc->config_table.dl_app2_len, dc->config_table.dl_app2_len); DBG3("dl_ctrl_len: 0x%04X, %d", dc->config_table.dl_ctrl_len, dc->config_table.dl_ctrl_len); DBG3("ul_start: 0x%04X, %d", dc->config_table.ul_start, dc->config_table.ul_start); DBG3("ul_mdm_len[0]: 0x%04X, %d", dc->config_table.ul_mdm_len1, dc->config_table.ul_mdm_len1); DBG3("ul_mdm_len[1]: 0x%04X, %d", dc->config_table.ul_mdm_len2, dc->config_table.ul_mdm_len2); DBG3("ul_diag_len: 0x%04X, %d", dc->config_table.ul_diag_len, dc->config_table.ul_diag_len); DBG3("ul_app1_len: 0x%04X, %d", dc->config_table.ul_app1_len, dc->config_table.ul_app1_len); DBG3("ul_app2_len: 0x%04X, %d", dc->config_table.ul_app2_len, dc->config_table.ul_app2_len); DBG3("ul_ctrl_len: 0x%04X, %d", dc->config_table.ul_ctrl_len, dc->config_table.ul_ctrl_len); } #else static inline void dump_table(const struct nozomi *dc) { } #endif /* * Read configuration table from card under intalization phase * Returns 1 if ok, else 0 */ static int nozomi_read_config_table(struct nozomi *dc) { read_mem32((u32 *) &dc->config_table, dc->base_addr + 0, sizeof(struct config_table)); if (dc->config_table.signature != NOZOMI_CONFIG_MAGIC) { dev_err(&dc->pdev->dev, "ConfigTable Bad! 0x%08X != 0x%08X\n", dc->config_table.signature, NOZOMI_CONFIG_MAGIC); return 0; } if ((dc->config_table.version == 0) || (dc->config_table.toggle.enabled == TOGGLE_VALID)) { int i; DBG1("Second phase, configuring card"); nozomi_setup_memory(dc); dc->port[PORT_MDM].toggle_ul = dc->config_table.toggle.mdm_ul; dc->port[PORT_MDM].toggle_dl = dc->config_table.toggle.mdm_dl; dc->port[PORT_DIAG].toggle_dl = dc->config_table.toggle.diag_dl; DBG1("toggle ports: MDM UL:%d MDM DL:%d, DIAG DL:%d", dc->port[PORT_MDM].toggle_ul, dc->port[PORT_MDM].toggle_dl, dc->port[PORT_DIAG].toggle_dl); dump_table(dc); for (i = PORT_MDM; i < MAX_PORT; i++) { memset(&dc->port[i].ctrl_dl, 0, sizeof(struct ctrl_dl)); memset(&dc->port[i].ctrl_ul, 0, sizeof(struct ctrl_ul)); } /* Enable control channel */ dc->last_ier = dc->last_ier | CTRL_DL; writew(dc->last_ier, dc->reg_ier); dc->state = NOZOMI_STATE_ALLOCATED; dev_info(&dc->pdev->dev, "Initialization OK!\n"); return 1; } if ((dc->config_table.version > 0) && (dc->config_table.toggle.enabled != TOGGLE_VALID)) { u32 offset = 0; DBG1("First phase: pushing upload buffers, clearing download"); dev_info(&dc->pdev->dev, "Version of card: %d\n", dc->config_table.version); /* Here we should disable all I/O over F32. */ nozomi_setup_memory(dc); /* * We should send ALL channel pair tokens back along * with reset token */ /* push upload modem buffers */ write_mem32(dc->port[PORT_MDM].ul_addr[CH_A], (u32 *) &offset, 4); write_mem32(dc->port[PORT_MDM].ul_addr[CH_B], (u32 *) &offset, 4); writew(MDM_UL | DIAG_DL | MDM_DL, dc->reg_fcr); DBG1("First phase done"); } return 1; } /* Enable uplink interrupts */ static void enable_transmit_ul(enum port_type port, struct nozomi *dc) { static const u16 mask[] = {MDM_UL, DIAG_UL, APP1_UL, APP2_UL, CTRL_UL}; if (port < NOZOMI_MAX_PORTS) { dc->last_ier |= mask[port]; writew(dc->last_ier, dc->reg_ier); } else { dev_err(&dc->pdev->dev, "Called with wrong port?\n"); } } /* Disable uplink interrupts */ static void disable_transmit_ul(enum port_type port, struct nozomi *dc) { static const u16 mask[] = {~MDM_UL, ~DIAG_UL, ~APP1_UL, ~APP2_UL, ~CTRL_UL}; if (port < NOZOMI_MAX_PORTS) { dc->last_ier &= mask[port]; writew(dc->last_ier, dc->reg_ier); } else { dev_err(&dc->pdev->dev, "Called with wrong port?\n"); } } /* Enable downlink interrupts */ static void enable_transmit_dl(enum port_type port, struct nozomi *dc) { static const u16 mask[] = {MDM_DL, DIAG_DL, APP1_DL, APP2_DL, CTRL_DL}; if (port < NOZOMI_MAX_PORTS) { dc->last_ier |= mask[port]; writew(dc->last_ier, dc->reg_ier); } else { dev_err(&dc->pdev->dev, "Called with wrong port?\n"); } } /* Disable downlink interrupts */ static void disable_transmit_dl(enum port_type port, struct nozomi *dc) { static const u16 mask[] = {~MDM_DL, ~DIAG_DL, ~APP1_DL, ~APP2_DL, ~CTRL_DL}; if (port < NOZOMI_MAX_PORTS) { dc->last_ier &= mask[port]; writew(dc->last_ier, dc->reg_ier); } else { dev_err(&dc->pdev->dev, "Called with wrong port?\n"); } } /* * Return 1 - send buffer to card and ack. * Return 0 - don't ack, don't send buffer to card. */ static int send_data(enum port_type index, struct nozomi *dc) { u32 size = 0; struct port *port = &dc->port[index]; const u8 toggle = port->toggle_ul; void __iomem *addr = port->ul_addr[toggle]; const u32 ul_size = port->ul_size[toggle]; /* Get data from tty and place in buf for now */ size = kfifo_out(&port->fifo_ul, dc->send_buf, ul_size < SEND_BUF_MAX ? ul_size : SEND_BUF_MAX); if (size == 0) { DBG4("No more data to send, disable link:"); return 0; } /* DUMP(buf, size); */ /* Write length + data */ write_mem32(addr, (u32 *) &size, 4); write_mem32(addr + 4, (u32 *) dc->send_buf, size); tty_port_tty_wakeup(&port->port); return 1; } /* If all data has been read, return 1, else 0 */ static int receive_data(enum port_type index, struct nozomi *dc) { u8 buf[RECEIVE_BUF_MAX] = { 0 }; int size; u32 offset = 4; struct port *port = &dc->port[index]; void __iomem *addr = port->dl_addr[port->toggle_dl]; struct tty_struct *tty = tty_port_tty_get(&port->port); int i, ret; size = __le32_to_cpu(readl(addr)); /* DBG1( "%d bytes port: %d", size, index); */ if (tty && tty_throttled(tty)) { DBG1("No room in tty, don't read data, don't ack interrupt, " "disable interrupt"); /* disable interrupt in downlink... */ disable_transmit_dl(index, dc); ret = 0; goto put; } if (unlikely(size == 0)) { dev_err(&dc->pdev->dev, "size == 0?\n"); ret = 1; goto put; } while (size > 0) { read_mem32((u32 *) buf, addr + offset, RECEIVE_BUF_MAX); if (size == 1) { tty_insert_flip_char(&port->port, buf[0], TTY_NORMAL); size = 0; } else if (size < RECEIVE_BUF_MAX) { size -= tty_insert_flip_string(&port->port, (char *)buf, size); } else { i = tty_insert_flip_string(&port->port, (char *)buf, RECEIVE_BUF_MAX); size -= i; offset += i; } } set_bit(index, &dc->flip); ret = 1; put: tty_kref_put(tty); return ret; } /* Debug for interrupts */ #ifdef DEBUG static char *interrupt2str(u16 interrupt) { static char buf[TMP_BUF_MAX]; char *p = buf; interrupt & MDM_DL1 ? p += snprintf(p, TMP_BUF_MAX, "MDM_DL1 ") : NULL; interrupt & MDM_DL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "MDM_DL2 ") : NULL; interrupt & MDM_UL1 ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "MDM_UL1 ") : NULL; interrupt & MDM_UL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "MDM_UL2 ") : NULL; interrupt & DIAG_DL1 ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "DIAG_DL1 ") : NULL; interrupt & DIAG_DL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "DIAG_DL2 ") : NULL; interrupt & DIAG_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "DIAG_UL ") : NULL; interrupt & APP1_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "APP1_DL ") : NULL; interrupt & APP2_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "APP2_DL ") : NULL; interrupt & APP1_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "APP1_UL ") : NULL; interrupt & APP2_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "APP2_UL ") : NULL; interrupt & CTRL_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "CTRL_DL ") : NULL; interrupt & CTRL_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "CTRL_UL ") : NULL; interrupt & RESET ? p += snprintf(p, TMP_BUF_MAX - (p - buf), "RESET ") : NULL; return buf; } #endif /* * Receive flow control * Return 1 - If ok, else 0 */ static int receive_flow_control(struct nozomi *dc) { enum port_type port = PORT_MDM; struct ctrl_dl ctrl_dl; struct ctrl_dl old_ctrl; u16 enable_ier = 0; read_mem32((u32 *) &ctrl_dl, dc->port[PORT_CTRL].dl_addr[CH_A], 2); switch (ctrl_dl.port) { case CTRL_CMD: DBG1("The Base Band sends this value as a response to a " "request for IMSI detach sent over the control " "channel uplink (see section 7.6.1)."); break; case CTRL_MDM: port = PORT_MDM; enable_ier = MDM_DL; break; case CTRL_DIAG: port = PORT_DIAG; enable_ier = DIAG_DL; break; case CTRL_APP1: port = PORT_APP1; enable_ier = APP1_DL; break; case CTRL_APP2: port = PORT_APP2; enable_ier = APP2_DL; if (dc->state == NOZOMI_STATE_ALLOCATED) { /* * After card initialization the flow control * received for APP2 is always the last */ dc->state = NOZOMI_STATE_READY; dev_info(&dc->pdev->dev, "Device READY!\n"); } break; default: dev_err(&dc->pdev->dev, "ERROR: flow control received for non-existing port\n"); return 0; } DBG1("0x%04X->0x%04X", *((u16 *)&dc->port[port].ctrl_dl), *((u16 *)&ctrl_dl)); old_ctrl = dc->port[port].ctrl_dl; dc->port[port].ctrl_dl = ctrl_dl; if (old_ctrl.CTS == 1 && ctrl_dl.CTS == 0) { DBG1("Disable interrupt (0x%04X) on port: %d", enable_ier, port); disable_transmit_ul(port, dc); } else if (old_ctrl.CTS == 0 && ctrl_dl.CTS == 1) { if (kfifo_len(&dc->port[port].fifo_ul)) { DBG1("Enable interrupt (0x%04X) on port: %d", enable_ier, port); DBG1("Data in buffer [%d], enable transmit! ", kfifo_len(&dc->port[port].fifo_ul)); enable_transmit_ul(port, dc); } else { DBG1("No data in buffer..."); } } if (*(u16 *)&old_ctrl == *(u16 *)&ctrl_dl) { DBG1(" No change in mctrl"); return 1; } /* Update statistics */ if (old_ctrl.CTS != ctrl_dl.CTS) dc->port[port].tty_icount.cts++; if (old_ctrl.DSR != ctrl_dl.DSR) dc->port[port].tty_icount.dsr++; if (old_ctrl.RI != ctrl_dl.RI) dc->port[port].tty_icount.rng++; if (old_ctrl.DCD != ctrl_dl.DCD) dc->port[port].tty_icount.dcd++; wake_up_interruptible(&dc->port[port].tty_wait); DBG1("port: %d DCD(%d), CTS(%d), RI(%d), DSR(%d)", port, dc->port[port].tty_icount.dcd, dc->port[port].tty_icount.cts, dc->port[port].tty_icount.rng, dc->port[port].tty_icount.dsr); return 1; } static enum ctrl_port_type port2ctrl(enum port_type port, const struct nozomi *dc) { switch (port) { case PORT_MDM: return CTRL_MDM; case PORT_DIAG: return CTRL_DIAG; case PORT_APP1: return CTRL_APP1; case PORT_APP2: return CTRL_APP2; default: dev_err(&dc->pdev->dev, "ERROR: send flow control " \ "received for non-existing port\n"); } return CTRL_ERROR; } /* * Send flow control, can only update one channel at a time * Return 0 - If we have updated all flow control * Return 1 - If we need to update more flow control, ack current enable more */ static int send_flow_control(struct nozomi *dc) { u32 i, more_flow_control_to_be_updated = 0; u16 *ctrl; for (i = PORT_MDM; i < MAX_PORT; i++) { if (dc->port[i].update_flow_control) { if (more_flow_control_to_be_updated) { /* We have more flow control to be updated */ return 1; } dc->port[i].ctrl_ul.port = port2ctrl(i, dc); ctrl = (u16 *)&dc->port[i].ctrl_ul; write_mem32(dc->port[PORT_CTRL].ul_addr[0], \ (u32 *) ctrl, 2); dc->port[i].update_flow_control = 0; more_flow_control_to_be_updated = 1; } } return 0; } /* * Handle downlink data, ports that are handled are modem and diagnostics * Return 1 - ok * Return 0 - toggle fields are out of sync */ static int handle_data_dl(struct nozomi *dc, enum port_type port, u8 *toggle, u16 read_iir, u16 mask1, u16 mask2) { if (*toggle == 0 && read_iir & mask1) { if (receive_data(port, dc)) { writew(mask1, dc->reg_fcr); *toggle = !(*toggle); } if (read_iir & mask2) { if (receive_data(port, dc)) { writew(mask2, dc->reg_fcr); *toggle = !(*toggle); } } } else if (*toggle == 1 && read_iir & mask2) { if (receive_data(port, dc)) { writew(mask2, dc->reg_fcr); *toggle = !(*toggle); } if (read_iir & mask1) { if (receive_data(port, dc)) { writew(mask1, dc->reg_fcr); *toggle = !(*toggle); } } } else { dev_err(&dc->pdev->dev, "port out of sync!, toggle:%d\n", *toggle); return 0; } return 1; } /* * Handle uplink data, this is currently for the modem port * Return 1 - ok * Return 0 - toggle field are out of sync */ static int handle_data_ul(struct nozomi *dc, enum port_type port, u16 read_iir) { u8 *toggle = &(dc->port[port].toggle_ul); if (*toggle == 0 && read_iir & MDM_UL1) { dc->last_ier &= ~MDM_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(port, dc)) { writew(MDM_UL1, dc->reg_fcr); dc->last_ier = dc->last_ier | MDM_UL; writew(dc->last_ier, dc->reg_ier); *toggle = !*toggle; } if (read_iir & MDM_UL2) { dc->last_ier &= ~MDM_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(port, dc)) { writew(MDM_UL2, dc->reg_fcr); dc->last_ier = dc->last_ier | MDM_UL; writew(dc->last_ier, dc->reg_ier); *toggle = !*toggle; } } } else if (*toggle == 1 && read_iir & MDM_UL2) { dc->last_ier &= ~MDM_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(port, dc)) { writew(MDM_UL2, dc->reg_fcr); dc->last_ier = dc->last_ier | MDM_UL; writew(dc->last_ier, dc->reg_ier); *toggle = !*toggle; } if (read_iir & MDM_UL1) { dc->last_ier &= ~MDM_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(port, dc)) { writew(MDM_UL1, dc->reg_fcr); dc->last_ier = dc->last_ier | MDM_UL; writew(dc->last_ier, dc->reg_ier); *toggle = !*toggle; } } } else { writew(read_iir & MDM_UL, dc->reg_fcr); dev_err(&dc->pdev->dev, "port out of sync!\n"); return 0; } return 1; } static irqreturn_t interrupt_handler(int irq, void *dev_id) { struct nozomi *dc = dev_id; unsigned int a; u16 read_iir; if (!dc) return IRQ_NONE; spin_lock(&dc->spin_mutex); read_iir = readw(dc->reg_iir); /* Card removed */ if (read_iir == (u16)-1) goto none; /* * Just handle interrupt enabled in IER * (by masking with dc->last_ier) */ read_iir &= dc->last_ier; if (read_iir == 0) goto none; DBG4("%s irq:0x%04X, prev:0x%04X", interrupt2str(read_iir), read_iir, dc->last_ier); if (read_iir & RESET) { if (unlikely(!nozomi_read_config_table(dc))) { dc->last_ier = 0x0; writew(dc->last_ier, dc->reg_ier); dev_err(&dc->pdev->dev, "Could not read status from " "card, we should disable interface\n"); } else { writew(RESET, dc->reg_fcr); } /* No more useful info if this was the reset interrupt. */ goto exit_handler; } if (read_iir & CTRL_UL) { DBG1("CTRL_UL"); dc->last_ier &= ~CTRL_UL; writew(dc->last_ier, dc->reg_ier); if (send_flow_control(dc)) { writew(CTRL_UL, dc->reg_fcr); dc->last_ier = dc->last_ier | CTRL_UL; writew(dc->last_ier, dc->reg_ier); } } if (read_iir & CTRL_DL) { receive_flow_control(dc); writew(CTRL_DL, dc->reg_fcr); } if (read_iir & MDM_DL) { if (!handle_data_dl(dc, PORT_MDM, &(dc->port[PORT_MDM].toggle_dl), read_iir, MDM_DL1, MDM_DL2)) { dev_err(&dc->pdev->dev, "MDM_DL out of sync!\n"); goto exit_handler; } } if (read_iir & MDM_UL) { if (!handle_data_ul(dc, PORT_MDM, read_iir)) { dev_err(&dc->pdev->dev, "MDM_UL out of sync!\n"); goto exit_handler; } } if (read_iir & DIAG_DL) { if (!handle_data_dl(dc, PORT_DIAG, &(dc->port[PORT_DIAG].toggle_dl), read_iir, DIAG_DL1, DIAG_DL2)) { dev_err(&dc->pdev->dev, "DIAG_DL out of sync!\n"); goto exit_handler; } } if (read_iir & DIAG_UL) { dc->last_ier &= ~DIAG_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(PORT_DIAG, dc)) { writew(DIAG_UL, dc->reg_fcr); dc->last_ier = dc->last_ier | DIAG_UL; writew(dc->last_ier, dc->reg_ier); } } if (read_iir & APP1_DL) { if (receive_data(PORT_APP1, dc)) writew(APP1_DL, dc->reg_fcr); } if (read_iir & APP1_UL) { dc->last_ier &= ~APP1_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(PORT_APP1, dc)) { writew(APP1_UL, dc->reg_fcr); dc->last_ier = dc->last_ier | APP1_UL; writew(dc->last_ier, dc->reg_ier); } } if (read_iir & APP2_DL) { if (receive_data(PORT_APP2, dc)) writew(APP2_DL, dc->reg_fcr); } if (read_iir & APP2_UL) { dc->last_ier &= ~APP2_UL; writew(dc->last_ier, dc->reg_ier); if (send_data(PORT_APP2, dc)) { writew(APP2_UL, dc->reg_fcr); dc->last_ier = dc->last_ier | APP2_UL; writew(dc->last_ier, dc->reg_ier); } } exit_handler: spin_unlock(&dc->spin_mutex); for (a = 0; a < NOZOMI_MAX_PORTS; a++) if (test_and_clear_bit(a, &dc->flip)) tty_flip_buffer_push(&dc->port[a].port); return IRQ_HANDLED; none: spin_unlock(&dc->spin_mutex); return IRQ_NONE; } static void nozomi_get_card_type(struct nozomi *dc) { int i; u32 size = 0; for (i = 0; i < 6; i++) size += pci_resource_len(dc->pdev, i); /* Assume card type F32_8 if no match */ dc->card_type = size == 2048 ? F32_2 : F32_8; dev_info(&dc->pdev->dev, "Card type is: %d\n", dc->card_type); } static void nozomi_setup_private_data(struct nozomi *dc) { void __iomem *offset = dc->base_addr + dc->card_type / 2; unsigned int i; dc->reg_fcr = (void __iomem *)(offset + R_FCR); dc->reg_iir = (void __iomem *)(offset + R_IIR); dc->reg_ier = (void __iomem *)(offset + R_IER); dc->last_ier = 0; dc->flip = 0; dc->port[PORT_MDM].token_dl = MDM_DL; dc->port[PORT_DIAG].token_dl = DIAG_DL; dc->port[PORT_APP1].token_dl = APP1_DL; dc->port[PORT_APP2].token_dl = APP2_DL; for (i = 0; i < MAX_PORT; i++) init_waitqueue_head(&dc->port[i].tty_wait); } static ssize_t card_type_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct nozomi *dc = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", dc->card_type); } static DEVICE_ATTR_RO(card_type); static ssize_t open_ttys_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct nozomi *dc = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%u\n", dc->open_ttys); } static DEVICE_ATTR_RO(open_ttys); static void make_sysfs_files(struct nozomi *dc) { if (device_create_file(&dc->pdev->dev, &dev_attr_card_type)) dev_err(&dc->pdev->dev, "Could not create sysfs file for card_type\n"); if (device_create_file(&dc->pdev->dev, &dev_attr_open_ttys)) dev_err(&dc->pdev->dev, "Could not create sysfs file for open_ttys\n"); } static void remove_sysfs_files(struct nozomi *dc) { device_remove_file(&dc->pdev->dev, &dev_attr_card_type); device_remove_file(&dc->pdev->dev, &dev_attr_open_ttys); } /* Allocate memory for one device */ static int nozomi_card_init(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret; struct nozomi *dc = NULL; int ndev_idx; int i; dev_dbg(&pdev->dev, "Init, new card found\n"); for (ndev_idx = 0; ndev_idx < ARRAY_SIZE(ndevs); ndev_idx++) if (!ndevs[ndev_idx]) break; if (ndev_idx >= ARRAY_SIZE(ndevs)) { dev_err(&pdev->dev, "no free tty range for this card left\n"); ret = -EIO; goto err; } dc = kzalloc(sizeof(struct nozomi), GFP_KERNEL); if (unlikely(!dc)) { dev_err(&pdev->dev, "Could not allocate memory\n"); ret = -ENOMEM; goto err_free; } dc->pdev = pdev; ret = pci_enable_device(dc->pdev); if (ret) { dev_err(&pdev->dev, "Failed to enable PCI Device\n"); goto err_free; } ret = pci_request_regions(dc->pdev, NOZOMI_NAME); if (ret) { dev_err(&pdev->dev, "I/O address 0x%04x already in use\n", (int) /* nozomi_private.io_addr */ 0); goto err_disable_device; } /* Find out what card type it is */ nozomi_get_card_type(dc); dc->base_addr = pci_iomap(dc->pdev, 0, dc->card_type); if (!dc->base_addr) { dev_err(&pdev->dev, "Unable to map card MMIO\n"); ret = -ENODEV; goto err_rel_regs; } dc->send_buf = kmalloc(SEND_BUF_MAX, GFP_KERNEL); if (!dc->send_buf) { dev_err(&pdev->dev, "Could not allocate send buffer?\n"); ret = -ENOMEM; goto err_free_sbuf; } for (i = PORT_MDM; i < MAX_PORT; i++) { if (kfifo_alloc(&dc->port[i].fifo_ul, FIFO_BUFFER_SIZE_UL, GFP_KERNEL)) { dev_err(&pdev->dev, "Could not allocate kfifo buffer\n"); ret = -ENOMEM; goto err_free_kfifo; } } spin_lock_init(&dc->spin_mutex); nozomi_setup_private_data(dc); /* Disable all interrupts */ dc->last_ier = 0; writew(dc->last_ier, dc->reg_ier); ret = request_irq(pdev->irq, &interrupt_handler, IRQF_SHARED, NOZOMI_NAME, dc); if (unlikely(ret)) { dev_err(&pdev->dev, "can't request irq %d\n", pdev->irq); goto err_free_kfifo; } DBG1("base_addr: %p", dc->base_addr); make_sysfs_files(dc); dc->index_start = ndev_idx * MAX_PORT; ndevs[ndev_idx] = dc; pci_set_drvdata(pdev, dc); /* Enable RESET interrupt */ dc->last_ier = RESET; iowrite16(dc->last_ier, dc->reg_ier); dc->state = NOZOMI_STATE_ENABLED; for (i = 0; i < MAX_PORT; i++) { struct device *tty_dev; struct port *port = &dc->port[i]; port->dc = dc; tty_port_init(&port->port); port->port.ops = &noz_tty_port_ops; tty_dev = tty_port_register_device(&port->port, ntty_driver, dc->index_start + i, &pdev->dev); if (IS_ERR(tty_dev)) { ret = PTR_ERR(tty_dev); dev_err(&pdev->dev, "Could not allocate tty?\n"); tty_port_destroy(&port->port); goto err_free_tty; } } return 0; err_free_tty: for (i = 0; i < MAX_PORT; ++i) { tty_unregister_device(ntty_driver, dc->index_start + i); tty_port_destroy(&dc->port[i].port); } err_free_kfifo: for (i = 0; i < MAX_PORT; i++) kfifo_free(&dc->port[i].fifo_ul); err_free_sbuf: kfree(dc->send_buf); iounmap(dc->base_addr); err_rel_regs: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); err_free: kfree(dc); err: return ret; } static void tty_exit(struct nozomi *dc) { unsigned int i; DBG1(" "); for (i = 0; i < MAX_PORT; ++i) tty_port_tty_hangup(&dc->port[i].port, false); /* Racy below - surely should wait for scheduled work to be done or complete off a hangup method ? */ while (dc->open_ttys) msleep(1); for (i = 0; i < MAX_PORT; ++i) { tty_unregister_device(ntty_driver, dc->index_start + i); tty_port_destroy(&dc->port[i].port); } } /* Deallocate memory for one device */ static void nozomi_card_exit(struct pci_dev *pdev) { int i; struct ctrl_ul ctrl; struct nozomi *dc = pci_get_drvdata(pdev); /* Disable all interrupts */ dc->last_ier = 0; writew(dc->last_ier, dc->reg_ier); tty_exit(dc); /* Send 0x0001, command card to resend the reset token. */ /* This is to get the reset when the module is reloaded. */ ctrl.port = 0x00; ctrl.reserved = 0; ctrl.RTS = 0; ctrl.DTR = 1; DBG1("sending flow control 0x%04X", *((u16 *)&ctrl)); /* Setup dc->reg addresses to we can use defines here */ write_mem32(dc->port[PORT_CTRL].ul_addr[0], (u32 *)&ctrl, 2); writew(CTRL_UL, dc->reg_fcr); /* push the token to the card. */ remove_sysfs_files(dc); free_irq(pdev->irq, dc); for (i = 0; i < MAX_PORT; i++) kfifo_free(&dc->port[i].fifo_ul); kfree(dc->send_buf); iounmap(dc->base_addr); pci_release_regions(pdev); pci_disable_device(pdev); ndevs[dc->index_start / MAX_PORT] = NULL; kfree(dc); } static void set_rts(const struct tty_struct *tty, int rts) { struct port *port = get_port_by_tty(tty); port->ctrl_ul.RTS = rts; port->update_flow_control = 1; enable_transmit_ul(PORT_CTRL, get_dc_by_tty(tty)); } static void set_dtr(const struct tty_struct *tty, int dtr) { struct port *port = get_port_by_tty(tty); DBG1("SETTING DTR index: %d, dtr: %d", tty->index, dtr); port->ctrl_ul.DTR = dtr; port->update_flow_control = 1; enable_transmit_ul(PORT_CTRL, get_dc_by_tty(tty)); } /* * ---------------------------------------------------------------------------- * TTY code * ---------------------------------------------------------------------------- */ static int ntty_install(struct tty_driver *driver, struct tty_struct *tty) { struct port *port = get_port_by_tty(tty); struct nozomi *dc = get_dc_by_tty(tty); int ret; if (!port || !dc || dc->state != NOZOMI_STATE_READY) return -ENODEV; ret = tty_standard_install(driver, tty); if (ret == 0) tty->driver_data = port; return ret; } static void ntty_cleanup(struct tty_struct *tty) { tty->driver_data = NULL; } static int ntty_activate(struct tty_port *tport, struct tty_struct *tty) { struct port *port = container_of(tport, struct port, port); struct nozomi *dc = port->dc; unsigned long flags; DBG1("open: %d", port->token_dl); spin_lock_irqsave(&dc->spin_mutex, flags); dc->last_ier = dc->last_ier | port->token_dl; writew(dc->last_ier, dc->reg_ier); dc->open_ttys++; spin_unlock_irqrestore(&dc->spin_mutex, flags); printk("noz: activated %d: %p\n", tty->index, tport); return 0; } static int ntty_open(struct tty_struct *tty, struct file *filp) { struct port *port = tty->driver_data; return tty_port_open(&port->port, tty, filp); } static void ntty_shutdown(struct tty_port *tport) { struct port *port = container_of(tport, struct port, port); struct nozomi *dc = port->dc; unsigned long flags; DBG1("close: %d", port->token_dl); spin_lock_irqsave(&dc->spin_mutex, flags); dc->last_ier &= ~(port->token_dl); writew(dc->last_ier, dc->reg_ier); dc->open_ttys--; spin_unlock_irqrestore(&dc->spin_mutex, flags); printk("noz: shutdown %p\n", tport); } static void ntty_close(struct tty_struct *tty, struct file *filp) { struct port *port = tty->driver_data; if (port) tty_port_close(&port->port, tty, filp); } static void ntty_hangup(struct tty_struct *tty) { struct port *port = tty->driver_data; tty_port_hangup(&port->port); } /* * called when the userspace process writes to the tty (/dev/noz*). * Data is inserted into a fifo, which is then read and transferred to the modem. */ static int ntty_write(struct tty_struct *tty, const unsigned char *buffer, int count) { int rval = -EINVAL; struct nozomi *dc = get_dc_by_tty(tty); struct port *port = tty->driver_data; unsigned long flags; /* DBG1( "WRITEx: %d, index = %d", count, index); */ if (!dc || !port) return -ENODEV; rval = kfifo_in(&port->fifo_ul, (unsigned char *)buffer, count); spin_lock_irqsave(&dc->spin_mutex, flags); /* CTS is only valid on the modem channel */ if (port == &(dc->port[PORT_MDM])) { if (port->ctrl_dl.CTS) { DBG4("Enable interrupt"); enable_transmit_ul(tty->index % MAX_PORT, dc); } else { dev_err(&dc->pdev->dev, "CTS not active on modem port?\n"); } } else { enable_transmit_ul(tty->index % MAX_PORT, dc); } spin_unlock_irqrestore(&dc->spin_mutex, flags); return rval; } /* * Calculate how much is left in device * This method is called by the upper tty layer. * #according to sources N_TTY.c it expects a value >= 0 and * does not check for negative values. * * If the port is unplugged report lots of room and let the bits * dribble away so we don't block anything. */ static int ntty_write_room(struct tty_struct *tty) { struct port *port = tty->driver_data; int room = 4096; const struct nozomi *dc = get_dc_by_tty(tty); if (dc) room = kfifo_avail(&port->fifo_ul); return room; } /* Gets io control parameters */ static int ntty_tiocmget(struct tty_struct *tty) { const struct port *port = tty->driver_data; const struct ctrl_dl *ctrl_dl = &port->ctrl_dl; const struct ctrl_ul *ctrl_ul = &port->ctrl_ul; /* Note: these could change under us but it is not clear this matters if so */ return (ctrl_ul->RTS ? TIOCM_RTS : 0) | (ctrl_ul->DTR ? TIOCM_DTR : 0) | (ctrl_dl->DCD ? TIOCM_CAR : 0) | (ctrl_dl->RI ? TIOCM_RNG : 0) | (ctrl_dl->DSR ? TIOCM_DSR : 0) | (ctrl_dl->CTS ? TIOCM_CTS : 0); } /* Sets io controls parameters */ static int ntty_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct nozomi *dc = get_dc_by_tty(tty); unsigned long flags; spin_lock_irqsave(&dc->spin_mutex, flags); if (set & TIOCM_RTS) set_rts(tty, 1); else if (clear & TIOCM_RTS) set_rts(tty, 0); if (set & TIOCM_DTR) set_dtr(tty, 1); else if (clear & TIOCM_DTR) set_dtr(tty, 0); spin_unlock_irqrestore(&dc->spin_mutex, flags); return 0; } static int ntty_cflags_changed(struct port *port, unsigned long flags, struct async_icount *cprev) { const struct async_icount cnow = port->tty_icount; int ret; ret = ((flags & TIOCM_RNG) && (cnow.rng != cprev->rng)) || ((flags & TIOCM_DSR) && (cnow.dsr != cprev->dsr)) || ((flags & TIOCM_CD) && (cnow.dcd != cprev->dcd)) || ((flags & TIOCM_CTS) && (cnow.cts != cprev->cts)); *cprev = cnow; return ret; } static int ntty_tiocgicount(struct tty_struct *tty, struct serial_icounter_struct *icount) { struct port *port = tty->driver_data; const struct async_icount cnow = port->tty_icount; icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } static int ntty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct port *port = tty->driver_data; int rval = -ENOIOCTLCMD; DBG1("******** IOCTL, cmd: %d", cmd); switch (cmd) { case TIOCMIWAIT: { struct async_icount cprev = port->tty_icount; rval = wait_event_interruptible(port->tty_wait, ntty_cflags_changed(port, arg, &cprev)); break; } default: DBG1("ERR: 0x%08X, %d", cmd, cmd); break; } return rval; } /* * Called by the upper tty layer when tty buffers are ready * to receive data again after a call to throttle. */ static void ntty_unthrottle(struct tty_struct *tty) { struct nozomi *dc = get_dc_by_tty(tty); unsigned long flags; DBG1("UNTHROTTLE"); spin_lock_irqsave(&dc->spin_mutex, flags); enable_transmit_dl(tty->index % MAX_PORT, dc); set_rts(tty, 1); spin_unlock_irqrestore(&dc->spin_mutex, flags); } /* * Called by the upper tty layer when the tty buffers are almost full. * The driver should stop send more data. */ static void ntty_throttle(struct tty_struct *tty) { struct nozomi *dc = get_dc_by_tty(tty); unsigned long flags; DBG1("THROTTLE"); spin_lock_irqsave(&dc->spin_mutex, flags); set_rts(tty, 0); spin_unlock_irqrestore(&dc->spin_mutex, flags); } /* Returns number of chars in buffer, called by tty layer */ static s32 ntty_chars_in_buffer(struct tty_struct *tty) { struct port *port = tty->driver_data; struct nozomi *dc = get_dc_by_tty(tty); s32 rval = 0; if (unlikely(!dc || !port)) { goto exit_in_buffer; } rval = kfifo_len(&port->fifo_ul); exit_in_buffer: return rval; } static const struct tty_port_operations noz_tty_port_ops = { .activate = ntty_activate, .shutdown = ntty_shutdown, }; static const struct tty_operations tty_ops = { .ioctl = ntty_ioctl, .open = ntty_open, .close = ntty_close, .hangup = ntty_hangup, .write = ntty_write, .write_room = ntty_write_room, .unthrottle = ntty_unthrottle, .throttle = ntty_throttle, .chars_in_buffer = ntty_chars_in_buffer, .tiocmget = ntty_tiocmget, .tiocmset = ntty_tiocmset, .get_icount = ntty_tiocgicount, .install = ntty_install, .cleanup = ntty_cleanup, }; /* Module initialization */ static struct pci_driver nozomi_driver = { .name = NOZOMI_NAME, .id_table = nozomi_pci_tbl, .probe = nozomi_card_init, .remove = nozomi_card_exit, }; static __init int nozomi_init(void) { int ret; printk(KERN_INFO "Initializing %s\n", VERSION_STRING); ntty_driver = alloc_tty_driver(NTTY_TTY_MAXMINORS); if (!ntty_driver) return -ENOMEM; ntty_driver->driver_name = NOZOMI_NAME_TTY; ntty_driver->name = "noz"; ntty_driver->major = 0; ntty_driver->type = TTY_DRIVER_TYPE_SERIAL; ntty_driver->subtype = SERIAL_TYPE_NORMAL; ntty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; ntty_driver->init_termios = tty_std_termios; ntty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \ HUPCL | CLOCAL; ntty_driver->init_termios.c_ispeed = 115200; ntty_driver->init_termios.c_ospeed = 115200; tty_set_operations(ntty_driver, &tty_ops); ret = tty_register_driver(ntty_driver); if (ret) { printk(KERN_ERR "Nozomi: failed to register ntty driver\n"); goto free_tty; } ret = pci_register_driver(&nozomi_driver); if (ret) { printk(KERN_ERR "Nozomi: can't register pci driver\n"); goto unr_tty; } return 0; unr_tty: tty_unregister_driver(ntty_driver); free_tty: put_tty_driver(ntty_driver); return ret; } static __exit void nozomi_exit(void) { printk(KERN_INFO "Unloading %s\n", DRIVER_DESC); pci_unregister_driver(&nozomi_driver); tty_unregister_driver(ntty_driver); put_tty_driver(ntty_driver); } module_init(nozomi_init); module_exit(nozomi_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION(DRIVER_DESC);