/* * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator * * Copyright (C) 2011 Texas Instruments, Inc. * Mike Turquette * * Copyright (C) 2012-2013 Texas Instruments, Inc. * Andrii Tseglytskyi * Nishanth Menon * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include /* * ABB LDO operating states: * NOMINAL_OPP: bypasses the ABB LDO * FAST_OPP: sets ABB LDO to Forward Body-Bias * SLOW_OPP: sets ABB LDO to Reverse Body-Bias */ #define TI_ABB_NOMINAL_OPP 0 #define TI_ABB_FAST_OPP 1 #define TI_ABB_SLOW_OPP 3 /** * struct ti_abb_info - ABB information per voltage setting * @opp_sel: one of TI_ABB macro * @vset: (optional) vset value that LDOVBB needs to be overriden with. * * Array of per voltage entries organized in the same order as regulator_desc's * volt_table list. (selector is used to index from this array) */ struct ti_abb_info { u32 opp_sel; u32 vset; }; /** * struct ti_abb_reg - Register description for ABB block * @setup_reg: setup register offset from base * @control_reg: control register offset from base * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask * @fbb_sel_mask: setup register- FBB sel mask * @rbb_sel_mask: setup register- RBB sel mask * @sr2_en_mask: setup register- enable mask * @opp_change_mask: control register - mask to trigger LDOVBB change * @opp_sel_mask: control register - mask for mode to operate */ struct ti_abb_reg { u32 setup_reg; u32 control_reg; /* Setup register fields */ u32 sr2_wtcnt_value_mask; u32 fbb_sel_mask; u32 rbb_sel_mask; u32 sr2_en_mask; /* Control register fields */ u32 opp_change_mask; u32 opp_sel_mask; }; /** * struct ti_abb - ABB instance data * @rdesc: regulator descriptor * @clk: clock(usually sysclk) supplying ABB block * @base: base address of ABB block * @int_base: interrupt register base address * @efuse_base: (optional) efuse base address for ABB modes * @ldo_base: (optional) LDOVBB vset override base address * @regs: pointer to struct ti_abb_reg for ABB block * @txdone_mask: mask on int_base for tranxdone interrupt * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB * vset with value from efuse * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override * @info: array to per voltage ABB configuration * @current_info_idx: current index to info * @settling_time: SoC specific settling time for LDO VBB */ struct ti_abb { struct regulator_desc rdesc; struct clk *clk; void __iomem *base; void __iomem *int_base; void __iomem *efuse_base; void __iomem *ldo_base; const struct ti_abb_reg *regs; u32 txdone_mask; u32 ldovbb_override_mask; u32 ldovbb_vset_mask; struct ti_abb_info *info; int current_info_idx; u32 settling_time; }; /** * ti_abb_rmw() - handy wrapper to set specific register bits * @mask: mask for register field * @value: value shifted to mask location and written * @offset: offset of register * @base: base address * * Return: final register value (may be unused) */ static inline u32 ti_abb_rmw(u32 mask, u32 value, u32 offset, void __iomem *base) { u32 val; val = readl(base + offset); val &= ~mask; val |= (value << __ffs(mask)) & mask; writel(val, base + offset); return val; } /** * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status * @abb: pointer to the abb instance * * Return: true or false */ static inline bool ti_abb_check_txdone(const struct ti_abb *abb) { return !!(readl(abb->int_base) & abb->txdone_mask); } /** * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status * @abb: pointer to the abb instance */ static inline void ti_abb_clear_txdone(const struct ti_abb *abb) { writel(abb->txdone_mask, abb->int_base); }; /** * ti_abb_wait_tranx() - waits for ABB tranxdone event * @dev: device * @abb: pointer to the abb instance * * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. */ static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) { int timeout = 0; bool status; while (timeout++ <= abb->settling_time) { status = ti_abb_check_txdone(abb); if (status) break; udelay(1); } if (timeout > abb->settling_time) { dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", __func__, timeout, readl(abb->int_base)); return -ETIMEDOUT; } return 0; } /** * ti_abb_clear_all_txdone() - clears ABB tranxdone event * @dev: device * @abb: pointer to the abb instance * * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. */ static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) { int timeout = 0; bool status; while (timeout++ <= abb->settling_time) { ti_abb_clear_txdone(abb); status = ti_abb_check_txdone(abb); if (!status) break; udelay(1); } if (timeout > abb->settling_time) { dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", __func__, timeout, readl(abb->int_base)); return -ETIMEDOUT; } return 0; } /** * ti_abb_program_ldovbb() - program LDOVBB register for override value * @dev: device * @abb: pointer to the abb instance * @info: ABB info to program */ static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, struct ti_abb_info *info) { u32 val; val = readl(abb->ldo_base); /* clear up previous values */ val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); switch (info->opp_sel) { case TI_ABB_SLOW_OPP: case TI_ABB_FAST_OPP: val |= abb->ldovbb_override_mask; val |= info->vset << __ffs(abb->ldovbb_vset_mask); break; } writel(val, abb->ldo_base); } /** * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias * @rdev: regulator device * @abb: pointer to the abb instance * @info: ABB info to program * * Return: 0 on success or appropriate error value when fails */ static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, struct ti_abb_info *info) { const struct ti_abb_reg *regs = abb->regs; struct device *dev = &rdev->dev; int ret; ret = ti_abb_clear_all_txdone(dev, abb); if (ret) goto out; ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, regs->setup_reg, abb->base); switch (info->opp_sel) { case TI_ABB_SLOW_OPP: ti_abb_rmw(regs->rbb_sel_mask, 1, regs->setup_reg, abb->base); break; case TI_ABB_FAST_OPP: ti_abb_rmw(regs->fbb_sel_mask, 1, regs->setup_reg, abb->base); break; } /* program next state of ABB ldo */ ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, regs->control_reg, abb->base); /* program LDO VBB vset override if needed */ if (abb->ldo_base) ti_abb_program_ldovbb(dev, abb, info); /* Initiate ABB ldo change */ ti_abb_rmw(regs->opp_change_mask, 1, regs->control_reg, abb->base); /* Wait for ABB LDO to complete transition to new Bias setting */ ret = ti_abb_wait_txdone(dev, abb); if (ret) goto out; ret = ti_abb_clear_all_txdone(dev, abb); if (ret) goto out; out: return ret; } /** * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO * @rdev: regulator device * @sel: selector to index into required ABB LDO settings (maps to * regulator descriptor's volt_table) * * Return: 0 on success or appropriate error value when fails */ static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel) { const struct regulator_desc *desc = rdev->desc; struct ti_abb *abb = rdev_get_drvdata(rdev); struct device *dev = &rdev->dev; struct ti_abb_info *info, *oinfo; int ret = 0; if (!abb) { dev_err_ratelimited(dev, "%s: No regulator drvdata\n", __func__); return -ENODEV; } if (!desc->n_voltages || !abb->info) { dev_err_ratelimited(dev, "%s: No valid voltage table entries?\n", __func__); return -EINVAL; } if (sel >= desc->n_voltages) { dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, sel, desc->n_voltages); return -EINVAL; } /* If we are in the same index as we were, nothing to do here! */ if (sel == abb->current_info_idx) { dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); return ret; } /* If data is exactly the same, then just update index, no change */ info = &abb->info[sel]; oinfo = &abb->info[abb->current_info_idx]; if (!memcmp(info, oinfo, sizeof(*info))) { dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, sel, abb->current_info_idx); goto out; } ret = ti_abb_set_opp(rdev, abb, info); out: if (!ret) abb->current_info_idx = sel; else dev_err_ratelimited(dev, "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", __func__, desc->volt_table[sel], sel, info->opp_sel, ret); return ret; } /** * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting * @rdev: regulator device * * Return: 0 on success or appropriate error value when fails */ static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) { const struct regulator_desc *desc = rdev->desc; struct ti_abb *abb = rdev_get_drvdata(rdev); struct device *dev = &rdev->dev; if (!abb) { dev_err_ratelimited(dev, "%s: No regulator drvdata\n", __func__); return -ENODEV; } if (!desc->n_voltages || !abb->info) { dev_err_ratelimited(dev, "%s: No valid voltage table entries?\n", __func__); return -EINVAL; } if (abb->current_info_idx >= (int)desc->n_voltages) { dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", __func__, abb->current_info_idx, desc->n_voltages); return -EINVAL; } return abb->current_info_idx; } /** * ti_abb_init_timings() - setup ABB clock timing for the current platform * @dev: device * @abb: pointer to the abb instance * * Return: 0 if timing is updated, else returns error result. */ static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) { u32 clock_cycles; u32 clk_rate, sr2_wt_cnt_val, cycle_rate; const struct ti_abb_reg *regs = abb->regs; int ret; char *pname = "ti,settling-time"; /* read device tree properties */ ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); if (ret) { dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); return ret; } /* ABB LDO cannot be settle in 0 time */ if (!abb->settling_time) { dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); return -EINVAL; } pname = "ti,clock-cycles"; ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); if (ret) { dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); return ret; } /* ABB LDO cannot be settle in 0 clock cycles */ if (!clock_cycles) { dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); return -EINVAL; } abb->clk = devm_clk_get(dev, NULL); if (IS_ERR(abb->clk)) { ret = PTR_ERR(abb->clk); dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); return ret; } /* * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a * transition and must be programmed with the correct time at boot. * The value programmed into the register is the number of SYS_CLK * clock cycles that match a given wall time profiled for the ldo. * This value depends on: * settling time of ldo in micro-seconds (varies per OMAP family) * # of clock cycles per SYS_CLK period (varies per OMAP family) * the SYS_CLK frequency in MHz (varies per board) * The formula is: * * ldo settling time (in micro-seconds) * SR2_WTCNT_VALUE = ------------------------------------------ * (# system clock cycles) * (sys_clk period) * * Put another way: * * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) * * To avoid dividing by zero multiply both "# clock cycles" and * "settling time" by 10 such that the final result is the one we want. */ /* Convert SYS_CLK rate to MHz & prevent divide by zero */ clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); /* Calculate cycle rate */ cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); /* Calulate SR2_WTCNT_VALUE */ sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, clk_get_rate(abb->clk), sr2_wt_cnt_val); ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, regs->setup_reg, abb->base); return 0; } /** * ti_abb_init_table() - Initialize ABB table from device tree * @dev: device * @abb: pointer to the abb instance * @rinit_data: regulator initdata * * Return: 0 on success or appropriate error value when fails */ static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, struct regulator_init_data *rinit_data) { struct ti_abb_info *info; const struct property *prop; const __be32 *abb_info; const u32 num_values = 6; char *pname = "ti,abb_info"; u32 num_entries, i; unsigned int *volt_table; int min_uV = INT_MAX, max_uV = 0; struct regulation_constraints *c = &rinit_data->constraints; prop = of_find_property(dev->of_node, pname, NULL); if (!prop) { dev_err(dev, "No '%s' property?\n", pname); return -ENODEV; } if (!prop->value) { dev_err(dev, "Empty '%s' property?\n", pname); return -ENODATA; } /* * Each abb_info is a set of n-tuple, where n is num_values, consisting * of voltage and a set of detection logic for ABB information for that * voltage to apply. */ num_entries = prop->length / sizeof(u32); if (!num_entries || (num_entries % num_values)) { dev_err(dev, "All '%s' list entries need %d vals\n", pname, num_values); return -EINVAL; } num_entries /= num_values; info = devm_kzalloc(dev, sizeof(*info) * num_entries, GFP_KERNEL); if (!info) { dev_err(dev, "Can't allocate info table for '%s' property\n", pname); return -ENOMEM; } abb->info = info; volt_table = devm_kzalloc(dev, sizeof(unsigned int) * num_entries, GFP_KERNEL); if (!volt_table) { dev_err(dev, "Can't allocate voltage table for '%s' property\n", pname); return -ENOMEM; } abb->rdesc.n_voltages = num_entries; abb->rdesc.volt_table = volt_table; /* We do not know where the OPP voltage is at the moment */ abb->current_info_idx = -EINVAL; abb_info = prop->value; for (i = 0; i < num_entries; i++, info++, volt_table++) { u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; u32 efuse_val; /* NOTE: num_values should equal to entries picked up here */ *volt_table = be32_to_cpup(abb_info++); info->opp_sel = be32_to_cpup(abb_info++); efuse_offset = be32_to_cpup(abb_info++); rbb_mask = be32_to_cpup(abb_info++); fbb_mask = be32_to_cpup(abb_info++); vset_mask = be32_to_cpup(abb_info++); dev_dbg(dev, "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, fbb_mask, vset_mask); /* Find min/max for voltage set */ if (min_uV > *volt_table) min_uV = *volt_table; if (max_uV < *volt_table) max_uV = *volt_table; if (!abb->efuse_base) { /* Ignore invalid data, but warn to help cleanup */ if (efuse_offset || rbb_mask || fbb_mask || vset_mask) dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", pname, *volt_table); goto check_abb; } efuse_val = readl(abb->efuse_base + efuse_offset); /* Use ABB recommendation from Efuse */ if (efuse_val & rbb_mask) info->opp_sel = TI_ABB_SLOW_OPP; else if (efuse_val & fbb_mask) info->opp_sel = TI_ABB_FAST_OPP; else if (rbb_mask || fbb_mask) info->opp_sel = TI_ABB_NOMINAL_OPP; dev_dbg(dev, "[%d]v=%d efusev=0x%x final ABB=%d\n", i, *volt_table, efuse_val, info->opp_sel); /* Use recommended Vset bits from Efuse */ if (!abb->ldo_base) { if (vset_mask) dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", pname, *volt_table, vset_mask); continue; } info->vset = efuse_val & vset_mask >> __ffs(vset_mask); dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); check_abb: switch (info->opp_sel) { case TI_ABB_NOMINAL_OPP: case TI_ABB_FAST_OPP: case TI_ABB_SLOW_OPP: /* Valid values */ break; default: dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", __func__, i, *volt_table, info->opp_sel); return -EINVAL; } } /* Setup the min/max voltage constraints from the supported list */ c->min_uV = min_uV; c->max_uV = max_uV; return 0; } static struct regulator_ops ti_abb_reg_ops = { .list_voltage = regulator_list_voltage_table, .set_voltage_sel = ti_abb_set_voltage_sel, .get_voltage_sel = ti_abb_get_voltage_sel, }; /* Default ABB block offsets, IF this changes in future, create new one */ static const struct ti_abb_reg abb_regs_v1 = { /* WARNING: registers are wrongly documented in TRM */ .setup_reg = 0x04, .control_reg = 0x00, .sr2_wtcnt_value_mask = (0xff << 8), .fbb_sel_mask = (0x01 << 2), .rbb_sel_mask = (0x01 << 1), .sr2_en_mask = (0x01 << 0), .opp_change_mask = (0x01 << 2), .opp_sel_mask = (0x03 << 0), }; static const struct ti_abb_reg abb_regs_v2 = { .setup_reg = 0x00, .control_reg = 0x04, .sr2_wtcnt_value_mask = (0xff << 8), .fbb_sel_mask = (0x01 << 2), .rbb_sel_mask = (0x01 << 1), .sr2_en_mask = (0x01 << 0), .opp_change_mask = (0x01 << 2), .opp_sel_mask = (0x03 << 0), }; static const struct of_device_id ti_abb_of_match[] = { {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, { }, }; MODULE_DEVICE_TABLE(of, ti_abb_of_match); /** * ti_abb_probe() - Initialize an ABB ldo instance * @pdev: ABB platform device * * Initializes an individual ABB LDO for required Body-Bias. ABB is used to * addional bias supply to SoC modules for power savings or mandatory stability * configuration at certain Operating Performance Points(OPPs). * * Return: 0 on success or appropriate error value when fails */ static int ti_abb_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *match; struct resource *res; struct ti_abb *abb; struct regulator_init_data *initdata = NULL; struct regulator_dev *rdev = NULL; struct regulator_desc *desc; struct regulation_constraints *c; struct regulator_config config = { }; char *pname; int ret = 0; match = of_match_device(ti_abb_of_match, dev); if (!match) { /* We do not expect this to happen */ ret = -ENODEV; dev_err(dev, "%s: Unable to match device\n", __func__); goto err; } if (!match->data) { ret = -EINVAL; dev_err(dev, "%s: Bad data in match\n", __func__); goto err; } abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); if (!abb) { dev_err(dev, "%s: Unable to allocate ABB struct\n", __func__); ret = -ENOMEM; goto err; } abb->regs = match->data; /* Map ABB resources */ pname = "base-address"; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); abb->base = devm_ioremap_resource(dev, res); if (IS_ERR(abb->base)) { ret = PTR_ERR(abb->base); goto err; } pname = "int-address"; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); if (!res) { dev_err(dev, "Missing '%s' IO resource\n", pname); ret = -ENODEV; goto err; } /* * We may have shared interrupt register offsets which are * write-1-to-clear between domains ensuring exclusivity. */ abb->int_base = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!abb->int_base) { dev_err(dev, "Unable to map '%s'\n", pname); ret = -ENOMEM; goto err; } /* Map Optional resources */ pname = "efuse-address"; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); if (!res) { dev_dbg(dev, "Missing '%s' IO resource\n", pname); ret = -ENODEV; goto skip_opt; } /* * We may have shared efuse register offsets which are read-only * between domains */ abb->efuse_base = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!abb->efuse_base) { dev_err(dev, "Unable to map '%s'\n", pname); ret = -ENOMEM; goto err; } pname = "ldo-address"; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); if (!res) { dev_dbg(dev, "Missing '%s' IO resource\n", pname); ret = -ENODEV; goto skip_opt; } abb->ldo_base = devm_ioremap_resource(dev, res); if (IS_ERR(abb->ldo_base)) { ret = PTR_ERR(abb->ldo_base); goto err; } /* IF ldo_base is set, the following are mandatory */ pname = "ti,ldovbb-override-mask"; ret = of_property_read_u32(pdev->dev.of_node, pname, &abb->ldovbb_override_mask); if (ret) { dev_err(dev, "Missing '%s' (%d)\n", pname, ret); goto err; } if (!abb->ldovbb_override_mask) { dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); ret = -EINVAL; goto err; } pname = "ti,ldovbb-vset-mask"; ret = of_property_read_u32(pdev->dev.of_node, pname, &abb->ldovbb_vset_mask); if (ret) { dev_err(dev, "Missing '%s' (%d)\n", pname, ret); goto err; } if (!abb->ldovbb_vset_mask) { dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); ret = -EINVAL; goto err; } skip_opt: pname = "ti,tranxdone-status-mask"; ret = of_property_read_u32(pdev->dev.of_node, pname, &abb->txdone_mask); if (ret) { dev_err(dev, "Missing '%s' (%d)\n", pname, ret); goto err; } if (!abb->txdone_mask) { dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); ret = -EINVAL; goto err; } initdata = of_get_regulator_init_data(dev, pdev->dev.of_node); if (!initdata) { ret = -ENOMEM; dev_err(dev, "%s: Unable to alloc regulator init data\n", __func__); goto err; } /* init ABB opp_sel table */ ret = ti_abb_init_table(dev, abb, initdata); if (ret) goto err; /* init ABB timing */ ret = ti_abb_init_timings(dev, abb); if (ret) goto err; desc = &abb->rdesc; desc->name = dev_name(dev); desc->owner = THIS_MODULE; desc->type = REGULATOR_VOLTAGE; desc->ops = &ti_abb_reg_ops; c = &initdata->constraints; if (desc->n_voltages > 1) c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; c->always_on = true; config.dev = dev; config.init_data = initdata; config.driver_data = abb; config.of_node = pdev->dev.of_node; rdev = regulator_register(desc, &config); if (IS_ERR(rdev)) { ret = PTR_ERR(rdev); dev_err(dev, "%s: failed to register regulator(%d)\n", __func__, ret); goto err; } platform_set_drvdata(pdev, rdev); /* Enable the ldo if not already done by bootloader */ ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->regs->setup_reg, abb->base); return 0; err: dev_err(dev, "%s: Failed to initialize(%d)\n", __func__, ret); return ret; } /** * ti_abb_remove() - cleanups * @pdev: ABB platform device * * Return: 0 */ static int ti_abb_remove(struct platform_device *pdev) { struct regulator_dev *rdev = platform_get_drvdata(pdev); regulator_unregister(rdev); return 0; } MODULE_ALIAS("platform:ti_abb"); static struct platform_driver ti_abb_driver = { .probe = ti_abb_probe, .remove = ti_abb_remove, .driver = { .name = "ti_abb", .owner = THIS_MODULE, .of_match_table = of_match_ptr(ti_abb_of_match), }, }; module_platform_driver(ti_abb_driver); MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); MODULE_AUTHOR("Texas Instruments Inc."); MODULE_LICENSE("GPL v2");