/* * Copyright (C) 2015 IT University of Copenhagen. All rights reserved. * Initial release: Matias Bjorling <m@bjorling.me> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, * USA. * */ #include <linux/list.h> #include <linux/types.h> #include <linux/sem.h> #include <linux/bitmap.h> #include <linux/moduleparam.h> #include <linux/miscdevice.h> #include <linux/lightnvm.h> #include <linux/sched/sysctl.h> static LIST_HEAD(nvm_tgt_types); static DECLARE_RWSEM(nvm_tgtt_lock); static LIST_HEAD(nvm_mgrs); static LIST_HEAD(nvm_devices); static DECLARE_RWSEM(nvm_lock); struct nvm_tgt_type *nvm_find_target_type(const char *name, int lock) { struct nvm_tgt_type *tmp, *tt = NULL; if (lock) down_write(&nvm_tgtt_lock); list_for_each_entry(tmp, &nvm_tgt_types, list) if (!strcmp(name, tmp->name)) { tt = tmp; break; } if (lock) up_write(&nvm_tgtt_lock); return tt; } EXPORT_SYMBOL(nvm_find_target_type); int nvm_register_tgt_type(struct nvm_tgt_type *tt) { int ret = 0; down_write(&nvm_tgtt_lock); if (nvm_find_target_type(tt->name, 0)) ret = -EEXIST; else list_add(&tt->list, &nvm_tgt_types); up_write(&nvm_tgtt_lock); return ret; } EXPORT_SYMBOL(nvm_register_tgt_type); void nvm_unregister_tgt_type(struct nvm_tgt_type *tt) { if (!tt) return; down_write(&nvm_lock); list_del(&tt->list); up_write(&nvm_lock); } EXPORT_SYMBOL(nvm_unregister_tgt_type); void *nvm_dev_dma_alloc(struct nvm_dev *dev, gfp_t mem_flags, dma_addr_t *dma_handler) { return dev->ops->dev_dma_alloc(dev, dev->dma_pool, mem_flags, dma_handler); } EXPORT_SYMBOL(nvm_dev_dma_alloc); void nvm_dev_dma_free(struct nvm_dev *dev, void *addr, dma_addr_t dma_handler) { dev->ops->dev_dma_free(dev->dma_pool, addr, dma_handler); } EXPORT_SYMBOL(nvm_dev_dma_free); static struct nvmm_type *nvm_find_mgr_type(const char *name) { struct nvmm_type *mt; list_for_each_entry(mt, &nvm_mgrs, list) if (!strcmp(name, mt->name)) return mt; return NULL; } static struct nvmm_type *nvm_init_mgr(struct nvm_dev *dev) { struct nvmm_type *mt; int ret; lockdep_assert_held(&nvm_lock); list_for_each_entry(mt, &nvm_mgrs, list) { if (strncmp(dev->sb.mmtype, mt->name, NVM_MMTYPE_LEN)) continue; ret = mt->register_mgr(dev); if (ret < 0) { pr_err("nvm: media mgr failed to init (%d) on dev %s\n", ret, dev->name); return NULL; /* initialization failed */ } else if (ret > 0) return mt; } return NULL; } int nvm_register_mgr(struct nvmm_type *mt) { struct nvm_dev *dev; int ret = 0; down_write(&nvm_lock); if (nvm_find_mgr_type(mt->name)) { ret = -EEXIST; goto finish; } else { list_add(&mt->list, &nvm_mgrs); } /* try to register media mgr if any device have none configured */ list_for_each_entry(dev, &nvm_devices, devices) { if (dev->mt) continue; dev->mt = nvm_init_mgr(dev); } finish: up_write(&nvm_lock); return ret; } EXPORT_SYMBOL(nvm_register_mgr); void nvm_unregister_mgr(struct nvmm_type *mt) { if (!mt) return; down_write(&nvm_lock); list_del(&mt->list); up_write(&nvm_lock); } EXPORT_SYMBOL(nvm_unregister_mgr); static struct nvm_dev *nvm_find_nvm_dev(const char *name) { struct nvm_dev *dev; list_for_each_entry(dev, &nvm_devices, devices) if (!strcmp(name, dev->name)) return dev; return NULL; } static void nvm_tgt_generic_to_addr_mode(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd) { struct nvm_dev *dev = tgt_dev->parent; int i; if (rqd->nr_ppas > 1) { for (i = 0; i < rqd->nr_ppas; i++) { rqd->ppa_list[i] = dev->mt->trans_ppa(tgt_dev, rqd->ppa_list[i], TRANS_TGT_TO_DEV); rqd->ppa_list[i] = generic_to_dev_addr(dev, rqd->ppa_list[i]); } } else { rqd->ppa_addr = dev->mt->trans_ppa(tgt_dev, rqd->ppa_addr, TRANS_TGT_TO_DEV); rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr); } } int nvm_set_bb_tbl(struct nvm_dev *dev, struct ppa_addr *ppas, int nr_ppas, int type) { struct nvm_rq rqd; int ret; if (nr_ppas > dev->ops->max_phys_sect) { pr_err("nvm: unable to update all sysblocks atomically\n"); return -EINVAL; } memset(&rqd, 0, sizeof(struct nvm_rq)); nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1); nvm_generic_to_addr_mode(dev, &rqd); ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type); nvm_free_rqd_ppalist(dev, &rqd); if (ret) { pr_err("nvm: sysblk failed bb mark\n"); return -EINVAL; } return 0; } EXPORT_SYMBOL(nvm_set_bb_tbl); int nvm_set_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas, int nr_ppas, int type) { struct nvm_dev *dev = tgt_dev->parent; struct nvm_rq rqd; int ret; if (nr_ppas > dev->ops->max_phys_sect) { pr_err("nvm: unable to update all blocks atomically\n"); return -EINVAL; } memset(&rqd, 0, sizeof(struct nvm_rq)); nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1); nvm_tgt_generic_to_addr_mode(tgt_dev, &rqd); ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type); nvm_free_rqd_ppalist(dev, &rqd); if (ret) { pr_err("nvm: sysblk failed bb mark\n"); return -EINVAL; } return 0; } EXPORT_SYMBOL(nvm_set_tgt_bb_tbl); int nvm_max_phys_sects(struct nvm_tgt_dev *tgt_dev) { struct nvm_dev *dev = tgt_dev->parent; return dev->ops->max_phys_sect; } EXPORT_SYMBOL(nvm_max_phys_sects); int nvm_submit_io(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd) { struct nvm_dev *dev = tgt_dev->parent; return dev->mt->submit_io(tgt_dev, rqd); } EXPORT_SYMBOL(nvm_submit_io); int nvm_erase_blk(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p, int flags) { struct nvm_dev *dev = tgt_dev->parent; return dev->mt->erase_blk(tgt_dev, p, flags); } EXPORT_SYMBOL(nvm_erase_blk); int nvm_get_l2p_tbl(struct nvm_tgt_dev *tgt_dev, u64 slba, u32 nlb, nvm_l2p_update_fn *update_l2p, void *priv) { struct nvm_dev *dev = tgt_dev->parent; if (!dev->ops->get_l2p_tbl) return 0; return dev->ops->get_l2p_tbl(dev, slba, nlb, update_l2p, priv); } EXPORT_SYMBOL(nvm_get_l2p_tbl); int nvm_get_area(struct nvm_tgt_dev *tgt_dev, sector_t *lba, sector_t len) { struct nvm_dev *dev = tgt_dev->parent; return dev->mt->get_area(dev, lba, len); } EXPORT_SYMBOL(nvm_get_area); void nvm_put_area(struct nvm_tgt_dev *tgt_dev, sector_t lba) { struct nvm_dev *dev = tgt_dev->parent; dev->mt->put_area(dev, lba); } EXPORT_SYMBOL(nvm_put_area); void nvm_addr_to_generic_mode(struct nvm_dev *dev, struct nvm_rq *rqd) { int i; if (rqd->nr_ppas > 1) { for (i = 0; i < rqd->nr_ppas; i++) rqd->ppa_list[i] = dev_to_generic_addr(dev, rqd->ppa_list[i]); } else { rqd->ppa_addr = dev_to_generic_addr(dev, rqd->ppa_addr); } } EXPORT_SYMBOL(nvm_addr_to_generic_mode); void nvm_generic_to_addr_mode(struct nvm_dev *dev, struct nvm_rq *rqd) { int i; if (rqd->nr_ppas > 1) { for (i = 0; i < rqd->nr_ppas; i++) rqd->ppa_list[i] = generic_to_dev_addr(dev, rqd->ppa_list[i]); } else { rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr); } } EXPORT_SYMBOL(nvm_generic_to_addr_mode); int nvm_set_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd, const struct ppa_addr *ppas, int nr_ppas, int vblk) { struct nvm_geo *geo = &dev->geo; int i, plane_cnt, pl_idx; struct ppa_addr ppa; if ((!vblk || geo->plane_mode == NVM_PLANE_SINGLE) && nr_ppas == 1) { rqd->nr_ppas = nr_ppas; rqd->ppa_addr = ppas[0]; return 0; } rqd->nr_ppas = nr_ppas; rqd->ppa_list = nvm_dev_dma_alloc(dev, GFP_KERNEL, &rqd->dma_ppa_list); if (!rqd->ppa_list) { pr_err("nvm: failed to allocate dma memory\n"); return -ENOMEM; } if (!vblk) { for (i = 0; i < nr_ppas; i++) rqd->ppa_list[i] = ppas[i]; } else { plane_cnt = geo->plane_mode; rqd->nr_ppas *= plane_cnt; for (i = 0; i < nr_ppas; i++) { for (pl_idx = 0; pl_idx < plane_cnt; pl_idx++) { ppa = ppas[i]; ppa.g.pl = pl_idx; rqd->ppa_list[(pl_idx * nr_ppas) + i] = ppa; } } } return 0; } EXPORT_SYMBOL(nvm_set_rqd_ppalist); void nvm_free_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd) { if (!rqd->ppa_list) return; nvm_dev_dma_free(dev, rqd->ppa_list, rqd->dma_ppa_list); } EXPORT_SYMBOL(nvm_free_rqd_ppalist); int nvm_erase_ppa(struct nvm_dev *dev, struct ppa_addr *ppas, int nr_ppas, int flags) { struct nvm_rq rqd; int ret; if (!dev->ops->erase_block) return 0; memset(&rqd, 0, sizeof(struct nvm_rq)); ret = nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1); if (ret) return ret; nvm_generic_to_addr_mode(dev, &rqd); rqd.flags = flags; ret = dev->ops->erase_block(dev, &rqd); nvm_free_rqd_ppalist(dev, &rqd); return ret; } EXPORT_SYMBOL(nvm_erase_ppa); void nvm_end_io(struct nvm_rq *rqd, int error) { rqd->error = error; rqd->end_io(rqd); } EXPORT_SYMBOL(nvm_end_io); static void nvm_end_io_sync(struct nvm_rq *rqd) { struct completion *waiting = rqd->wait; rqd->wait = NULL; complete(waiting); } static int __nvm_submit_ppa(struct nvm_dev *dev, struct nvm_rq *rqd, int opcode, int flags, void *buf, int len) { DECLARE_COMPLETION_ONSTACK(wait); struct bio *bio; int ret; unsigned long hang_check; bio = bio_map_kern(dev->q, buf, len, GFP_KERNEL); if (IS_ERR_OR_NULL(bio)) return -ENOMEM; nvm_generic_to_addr_mode(dev, rqd); rqd->dev = NULL; rqd->opcode = opcode; rqd->flags = flags; rqd->bio = bio; rqd->wait = &wait; rqd->end_io = nvm_end_io_sync; ret = dev->ops->submit_io(dev, rqd); if (ret) { bio_put(bio); return ret; } /* Prevent hang_check timer from firing at us during very long I/O */ hang_check = sysctl_hung_task_timeout_secs; if (hang_check) while (!wait_for_completion_io_timeout(&wait, hang_check * (HZ/2))) ; else wait_for_completion_io(&wait); return rqd->error; } /** * nvm_submit_ppa_list - submit user-defined ppa list to device. The user must * take to free ppa list if necessary. * @dev: device * @ppa_list: user created ppa_list * @nr_ppas: length of ppa_list * @opcode: device opcode * @flags: device flags * @buf: data buffer * @len: data buffer length */ int nvm_submit_ppa_list(struct nvm_dev *dev, struct ppa_addr *ppa_list, int nr_ppas, int opcode, int flags, void *buf, int len) { struct nvm_rq rqd; if (dev->ops->max_phys_sect < nr_ppas) return -EINVAL; memset(&rqd, 0, sizeof(struct nvm_rq)); rqd.nr_ppas = nr_ppas; if (nr_ppas > 1) rqd.ppa_list = ppa_list; else rqd.ppa_addr = ppa_list[0]; return __nvm_submit_ppa(dev, &rqd, opcode, flags, buf, len); } EXPORT_SYMBOL(nvm_submit_ppa_list); /** * nvm_submit_ppa - submit PPAs to device. PPAs will automatically be unfolded * as single, dual, quad plane PPAs depending on device type. * @dev: device * @ppa: user created ppa_list * @nr_ppas: length of ppa_list * @opcode: device opcode * @flags: device flags * @buf: data buffer * @len: data buffer length */ int nvm_submit_ppa(struct nvm_dev *dev, struct ppa_addr *ppa, int nr_ppas, int opcode, int flags, void *buf, int len) { struct nvm_rq rqd; int ret; memset(&rqd, 0, sizeof(struct nvm_rq)); ret = nvm_set_rqd_ppalist(dev, &rqd, ppa, nr_ppas, 1); if (ret) return ret; ret = __nvm_submit_ppa(dev, &rqd, opcode, flags, buf, len); nvm_free_rqd_ppalist(dev, &rqd); return ret; } EXPORT_SYMBOL(nvm_submit_ppa); /* * folds a bad block list from its plane representation to its virtual * block representation. The fold is done in place and reduced size is * returned. * * If any of the planes status are bad or grown bad block, the virtual block * is marked bad. If not bad, the first plane state acts as the block state. */ int nvm_bb_tbl_fold(struct nvm_dev *dev, u8 *blks, int nr_blks) { struct nvm_geo *geo = &dev->geo; int blk, offset, pl, blktype; if (nr_blks != geo->blks_per_lun * geo->plane_mode) return -EINVAL; for (blk = 0; blk < geo->blks_per_lun; blk++) { offset = blk * geo->plane_mode; blktype = blks[offset]; /* Bad blocks on any planes take precedence over other types */ for (pl = 0; pl < geo->plane_mode; pl++) { if (blks[offset + pl] & (NVM_BLK_T_BAD|NVM_BLK_T_GRWN_BAD)) { blktype = blks[offset + pl]; break; } } blks[blk] = blktype; } return geo->blks_per_lun; } EXPORT_SYMBOL(nvm_bb_tbl_fold); int nvm_get_bb_tbl(struct nvm_dev *dev, struct ppa_addr ppa, u8 *blks) { ppa = generic_to_dev_addr(dev, ppa); return dev->ops->get_bb_tbl(dev, ppa, blks); } EXPORT_SYMBOL(nvm_get_bb_tbl); int nvm_get_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr ppa, u8 *blks) { struct nvm_dev *dev = tgt_dev->parent; ppa = dev->mt->trans_ppa(tgt_dev, ppa, TRANS_TGT_TO_DEV); return nvm_get_bb_tbl(dev, ppa, blks); } EXPORT_SYMBOL(nvm_get_tgt_bb_tbl); static int nvm_init_slc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp) { struct nvm_geo *geo = &dev->geo; int i; dev->lps_per_blk = geo->pgs_per_blk; dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL); if (!dev->lptbl) return -ENOMEM; /* Just a linear array */ for (i = 0; i < dev->lps_per_blk; i++) dev->lptbl[i] = i; return 0; } static int nvm_init_mlc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp) { int i, p; struct nvm_id_lp_mlc *mlc = &grp->lptbl.mlc; if (!mlc->num_pairs) return 0; dev->lps_per_blk = mlc->num_pairs; dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL); if (!dev->lptbl) return -ENOMEM; /* The lower page table encoding consists of a list of bytes, where each * has a lower and an upper half. The first half byte maintains the * increment value and every value after is an offset added to the * previous incrementation value */ dev->lptbl[0] = mlc->pairs[0] & 0xF; for (i = 1; i < dev->lps_per_blk; i++) { p = mlc->pairs[i >> 1]; if (i & 0x1) /* upper */ dev->lptbl[i] = dev->lptbl[i - 1] + ((p & 0xF0) >> 4); else /* lower */ dev->lptbl[i] = dev->lptbl[i - 1] + (p & 0xF); } return 0; } static int nvm_core_init(struct nvm_dev *dev) { struct nvm_id *id = &dev->identity; struct nvm_id_group *grp = &id->groups[0]; struct nvm_geo *geo = &dev->geo; int ret; /* Whole device values */ geo->nr_chnls = grp->num_ch; geo->luns_per_chnl = grp->num_lun; /* Generic device values */ geo->pgs_per_blk = grp->num_pg; geo->blks_per_lun = grp->num_blk; geo->nr_planes = grp->num_pln; geo->fpg_size = grp->fpg_sz; geo->pfpg_size = grp->fpg_sz * grp->num_pln; geo->sec_size = grp->csecs; geo->oob_size = grp->sos; geo->sec_per_pg = grp->fpg_sz / grp->csecs; geo->mccap = grp->mccap; memcpy(&geo->ppaf, &id->ppaf, sizeof(struct nvm_addr_format)); geo->plane_mode = NVM_PLANE_SINGLE; geo->max_rq_size = dev->ops->max_phys_sect * geo->sec_size; if (grp->mpos & 0x020202) geo->plane_mode = NVM_PLANE_DOUBLE; if (grp->mpos & 0x040404) geo->plane_mode = NVM_PLANE_QUAD; if (grp->mtype != 0) { pr_err("nvm: memory type not supported\n"); return -EINVAL; } /* calculated values */ geo->sec_per_pl = geo->sec_per_pg * geo->nr_planes; geo->sec_per_blk = geo->sec_per_pl * geo->pgs_per_blk; geo->sec_per_lun = geo->sec_per_blk * geo->blks_per_lun; geo->nr_luns = geo->luns_per_chnl * geo->nr_chnls; dev->total_secs = geo->nr_luns * geo->sec_per_lun; dev->lun_map = kcalloc(BITS_TO_LONGS(geo->nr_luns), sizeof(unsigned long), GFP_KERNEL); if (!dev->lun_map) return -ENOMEM; switch (grp->fmtype) { case NVM_ID_FMTYPE_SLC: if (nvm_init_slc_tbl(dev, grp)) { ret = -ENOMEM; goto err_fmtype; } break; case NVM_ID_FMTYPE_MLC: if (nvm_init_mlc_tbl(dev, grp)) { ret = -ENOMEM; goto err_fmtype; } break; default: pr_err("nvm: flash type not supported\n"); ret = -EINVAL; goto err_fmtype; } mutex_init(&dev->mlock); spin_lock_init(&dev->lock); blk_queue_logical_block_size(dev->q, geo->sec_size); return 0; err_fmtype: kfree(dev->lun_map); return ret; } static void nvm_free_mgr(struct nvm_dev *dev) { if (!dev->mt) return; dev->mt->unregister_mgr(dev); dev->mt = NULL; } void nvm_free(struct nvm_dev *dev) { if (!dev) return; nvm_free_mgr(dev); if (dev->dma_pool) dev->ops->destroy_dma_pool(dev->dma_pool); kfree(dev->lptbl); kfree(dev->lun_map); kfree(dev); } static int nvm_init(struct nvm_dev *dev) { struct nvm_geo *geo = &dev->geo; int ret = -EINVAL; if (!dev->q || !dev->ops) return ret; if (dev->ops->identity(dev, &dev->identity)) { pr_err("nvm: device could not be identified\n"); goto err; } pr_debug("nvm: ver:%x nvm_vendor:%x groups:%u\n", dev->identity.ver_id, dev->identity.vmnt, dev->identity.cgrps); if (dev->identity.ver_id != 1) { pr_err("nvm: device not supported by kernel."); goto err; } if (dev->identity.cgrps != 1) { pr_err("nvm: only one group configuration supported."); goto err; } ret = nvm_core_init(dev); if (ret) { pr_err("nvm: could not initialize core structures.\n"); goto err; } pr_info("nvm: registered %s [%u/%u/%u/%u/%u/%u]\n", dev->name, geo->sec_per_pg, geo->nr_planes, geo->pgs_per_blk, geo->blks_per_lun, geo->nr_luns, geo->nr_chnls); return 0; err: pr_err("nvm: failed to initialize nvm\n"); return ret; } struct nvm_dev *nvm_alloc_dev(int node) { return kzalloc_node(sizeof(struct nvm_dev), GFP_KERNEL, node); } EXPORT_SYMBOL(nvm_alloc_dev); int nvm_register(struct nvm_dev *dev) { int ret; ret = nvm_init(dev); if (ret) goto err_init; if (dev->ops->max_phys_sect > 256) { pr_info("nvm: max sectors supported is 256.\n"); ret = -EINVAL; goto err_init; } if (dev->ops->max_phys_sect > 1) { dev->dma_pool = dev->ops->create_dma_pool(dev, "ppalist"); if (!dev->dma_pool) { pr_err("nvm: could not create dma pool\n"); ret = -ENOMEM; goto err_init; } } if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT) { ret = nvm_get_sysblock(dev, &dev->sb); if (!ret) pr_err("nvm: device not initialized.\n"); else if (ret < 0) pr_err("nvm: err (%d) on device initialization\n", ret); } /* register device with a supported media manager */ down_write(&nvm_lock); if (ret > 0) dev->mt = nvm_init_mgr(dev); list_add(&dev->devices, &nvm_devices); up_write(&nvm_lock); return 0; err_init: kfree(dev->lun_map); return ret; } EXPORT_SYMBOL(nvm_register); void nvm_unregister(struct nvm_dev *dev) { down_write(&nvm_lock); list_del(&dev->devices); up_write(&nvm_lock); nvm_free(dev); } EXPORT_SYMBOL(nvm_unregister); static int __nvm_configure_create(struct nvm_ioctl_create *create) { struct nvm_dev *dev; struct nvm_ioctl_create_simple *s; down_write(&nvm_lock); dev = nvm_find_nvm_dev(create->dev); up_write(&nvm_lock); if (!dev) { pr_err("nvm: device not found\n"); return -EINVAL; } if (!dev->mt) { pr_info("nvm: device has no media manager registered.\n"); return -ENODEV; } if (create->conf.type != NVM_CONFIG_TYPE_SIMPLE) { pr_err("nvm: config type not valid\n"); return -EINVAL; } s = &create->conf.s; if (s->lun_begin > s->lun_end || s->lun_end > dev->geo.nr_luns) { pr_err("nvm: lun out of bound (%u:%u > %u)\n", s->lun_begin, s->lun_end, dev->geo.nr_luns); return -EINVAL; } return dev->mt->create_tgt(dev, create); } static long nvm_ioctl_info(struct file *file, void __user *arg) { struct nvm_ioctl_info *info; struct nvm_tgt_type *tt; int tgt_iter = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; info = memdup_user(arg, sizeof(struct nvm_ioctl_info)); if (IS_ERR(info)) return -EFAULT; info->version[0] = NVM_VERSION_MAJOR; info->version[1] = NVM_VERSION_MINOR; info->version[2] = NVM_VERSION_PATCH; down_write(&nvm_lock); list_for_each_entry(tt, &nvm_tgt_types, list) { struct nvm_ioctl_info_tgt *tgt = &info->tgts[tgt_iter]; tgt->version[0] = tt->version[0]; tgt->version[1] = tt->version[1]; tgt->version[2] = tt->version[2]; strncpy(tgt->tgtname, tt->name, NVM_TTYPE_NAME_MAX); tgt_iter++; } info->tgtsize = tgt_iter; up_write(&nvm_lock); if (copy_to_user(arg, info, sizeof(struct nvm_ioctl_info))) { kfree(info); return -EFAULT; } kfree(info); return 0; } static long nvm_ioctl_get_devices(struct file *file, void __user *arg) { struct nvm_ioctl_get_devices *devices; struct nvm_dev *dev; int i = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; devices = kzalloc(sizeof(struct nvm_ioctl_get_devices), GFP_KERNEL); if (!devices) return -ENOMEM; down_write(&nvm_lock); list_for_each_entry(dev, &nvm_devices, devices) { struct nvm_ioctl_device_info *info = &devices->info[i]; sprintf(info->devname, "%s", dev->name); if (dev->mt) { info->bmversion[0] = dev->mt->version[0]; info->bmversion[1] = dev->mt->version[1]; info->bmversion[2] = dev->mt->version[2]; sprintf(info->bmname, "%s", dev->mt->name); } else { sprintf(info->bmname, "none"); } i++; if (i > 31) { pr_err("nvm: max 31 devices can be reported.\n"); break; } } up_write(&nvm_lock); devices->nr_devices = i; if (copy_to_user(arg, devices, sizeof(struct nvm_ioctl_get_devices))) { kfree(devices); return -EFAULT; } kfree(devices); return 0; } static long nvm_ioctl_dev_create(struct file *file, void __user *arg) { struct nvm_ioctl_create create; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&create, arg, sizeof(struct nvm_ioctl_create))) return -EFAULT; create.dev[DISK_NAME_LEN - 1] = '\0'; create.tgttype[NVM_TTYPE_NAME_MAX - 1] = '\0'; create.tgtname[DISK_NAME_LEN - 1] = '\0'; if (create.flags != 0) { pr_err("nvm: no flags supported\n"); return -EINVAL; } return __nvm_configure_create(&create); } static long nvm_ioctl_dev_remove(struct file *file, void __user *arg) { struct nvm_ioctl_remove remove; struct nvm_dev *dev; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&remove, arg, sizeof(struct nvm_ioctl_remove))) return -EFAULT; remove.tgtname[DISK_NAME_LEN - 1] = '\0'; if (remove.flags != 0) { pr_err("nvm: no flags supported\n"); return -EINVAL; } list_for_each_entry(dev, &nvm_devices, devices) { ret = dev->mt->remove_tgt(dev, &remove); if (!ret) break; } return ret; } static void nvm_setup_nvm_sb_info(struct nvm_sb_info *info) { info->seqnr = 1; info->erase_cnt = 0; info->version = 1; } static long __nvm_ioctl_dev_init(struct nvm_ioctl_dev_init *init) { struct nvm_dev *dev; struct nvm_sb_info info; int ret; down_write(&nvm_lock); dev = nvm_find_nvm_dev(init->dev); up_write(&nvm_lock); if (!dev) { pr_err("nvm: device not found\n"); return -EINVAL; } nvm_setup_nvm_sb_info(&info); strncpy(info.mmtype, init->mmtype, NVM_MMTYPE_LEN); info.fs_ppa.ppa = -1; if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT) { ret = nvm_init_sysblock(dev, &info); if (ret) return ret; } memcpy(&dev->sb, &info, sizeof(struct nvm_sb_info)); down_write(&nvm_lock); dev->mt = nvm_init_mgr(dev); up_write(&nvm_lock); return 0; } static long nvm_ioctl_dev_init(struct file *file, void __user *arg) { struct nvm_ioctl_dev_init init; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&init, arg, sizeof(struct nvm_ioctl_dev_init))) return -EFAULT; if (init.flags != 0) { pr_err("nvm: no flags supported\n"); return -EINVAL; } init.dev[DISK_NAME_LEN - 1] = '\0'; return __nvm_ioctl_dev_init(&init); } static long nvm_ioctl_dev_factory(struct file *file, void __user *arg) { struct nvm_ioctl_dev_factory fact; struct nvm_dev *dev; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&fact, arg, sizeof(struct nvm_ioctl_dev_factory))) return -EFAULT; fact.dev[DISK_NAME_LEN - 1] = '\0'; if (fact.flags & ~(NVM_FACTORY_NR_BITS - 1)) return -EINVAL; down_write(&nvm_lock); dev = nvm_find_nvm_dev(fact.dev); up_write(&nvm_lock); if (!dev) { pr_err("nvm: device not found\n"); return -EINVAL; } nvm_free_mgr(dev); if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT) return nvm_dev_factory(dev, fact.flags); return 0; } static long nvm_ctl_ioctl(struct file *file, uint cmd, unsigned long arg) { void __user *argp = (void __user *)arg; switch (cmd) { case NVM_INFO: return nvm_ioctl_info(file, argp); case NVM_GET_DEVICES: return nvm_ioctl_get_devices(file, argp); case NVM_DEV_CREATE: return nvm_ioctl_dev_create(file, argp); case NVM_DEV_REMOVE: return nvm_ioctl_dev_remove(file, argp); case NVM_DEV_INIT: return nvm_ioctl_dev_init(file, argp); case NVM_DEV_FACTORY: return nvm_ioctl_dev_factory(file, argp); } return 0; } static const struct file_operations _ctl_fops = { .open = nonseekable_open, .unlocked_ioctl = nvm_ctl_ioctl, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice _nvm_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "lightnvm", .nodename = "lightnvm/control", .fops = &_ctl_fops, }; builtin_misc_device(_nvm_misc);