/* * sx8.c: Driver for Promise SATA SX8 looks-like-I2O hardware * * Copyright 2004-2005 Red Hat, Inc. * * Author/maintainer: Jeff Garzik <jgarzik@pobox.com> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/blk-mq.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/compiler.h> #include <linux/workqueue.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/ktime.h> #include <linux/hdreg.h> #include <linux/dma-mapping.h> #include <linux/completion.h> #include <linux/scatterlist.h> #include <asm/io.h> #include <linux/uaccess.h> #if 0 #define CARM_DEBUG #define CARM_VERBOSE_DEBUG #else #undef CARM_DEBUG #undef CARM_VERBOSE_DEBUG #endif #undef CARM_NDEBUG #define DRV_NAME "sx8" #define DRV_VERSION "1.0" #define PFX DRV_NAME ": " MODULE_AUTHOR("Jeff Garzik"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Promise SATA SX8 block driver"); MODULE_VERSION(DRV_VERSION); /* * SX8 hardware has a single message queue for all ATA ports. * When this driver was written, the hardware (firmware?) would * corrupt data eventually, if more than one request was outstanding. * As one can imagine, having 8 ports bottlenecking on a single * command hurts performance. * * Based on user reports, later versions of the hardware (firmware?) * seem to be able to survive with more than one command queued. * * Therefore, we default to the safe option -- 1 command -- but * allow the user to increase this. * * SX8 should be able to support up to ~60 queued commands (CARM_MAX_REQ), * but problems seem to occur when you exceed ~30, even on newer hardware. */ static int max_queue = 1; module_param(max_queue, int, 0444); MODULE_PARM_DESC(max_queue, "Maximum number of queued commands. (min==1, max==30, safe==1)"); #define NEXT_RESP(idx) ((idx + 1) % RMSG_Q_LEN) /* 0xf is just arbitrary, non-zero noise; this is sorta like poisoning */ #define TAG_ENCODE(tag) (((tag) << 16) | 0xf) #define TAG_DECODE(tag) (((tag) >> 16) & 0x1f) #define TAG_VALID(tag) ((((tag) & 0xf) == 0xf) && (TAG_DECODE(tag) < 32)) /* note: prints function name for you */ #ifdef CARM_DEBUG #define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #ifdef CARM_VERBOSE_DEBUG #define VPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #else #define VPRINTK(fmt, args...) #endif /* CARM_VERBOSE_DEBUG */ #else #define DPRINTK(fmt, args...) #define VPRINTK(fmt, args...) #endif /* CARM_DEBUG */ #ifdef CARM_NDEBUG #define assert(expr) #else #define assert(expr) \ if(unlikely(!(expr))) { \ printk(KERN_ERR "Assertion failed! %s,%s,%s,line=%d\n", \ #expr, __FILE__, __func__, __LINE__); \ } #endif /* defines only for the constants which don't work well as enums */ struct carm_host; enum { /* adapter-wide limits */ CARM_MAX_PORTS = 8, CARM_SHM_SIZE = (4096 << 7), CARM_MINORS_PER_MAJOR = 256 / CARM_MAX_PORTS, CARM_MAX_WAIT_Q = CARM_MAX_PORTS + 1, /* command message queue limits */ CARM_MAX_REQ = 64, /* max command msgs per host */ CARM_MSG_LOW_WATER = (CARM_MAX_REQ / 4), /* refill mark */ /* S/G limits, host-wide and per-request */ CARM_MAX_REQ_SG = 32, /* max s/g entries per request */ CARM_MAX_HOST_SG = 600, /* max s/g entries per host */ CARM_SG_LOW_WATER = (CARM_MAX_HOST_SG / 4), /* re-fill mark */ /* hardware registers */ CARM_IHQP = 0x1c, CARM_INT_STAT = 0x10, /* interrupt status */ CARM_INT_MASK = 0x14, /* interrupt mask */ CARM_HMUC = 0x18, /* host message unit control */ RBUF_ADDR_LO = 0x20, /* response msg DMA buf low 32 bits */ RBUF_ADDR_HI = 0x24, /* response msg DMA buf high 32 bits */ RBUF_BYTE_SZ = 0x28, CARM_RESP_IDX = 0x2c, CARM_CMS0 = 0x30, /* command message size reg 0 */ CARM_LMUC = 0x48, CARM_HMPHA = 0x6c, CARM_INITC = 0xb5, /* bits in CARM_INT_{STAT,MASK} */ INT_RESERVED = 0xfffffff0, INT_WATCHDOG = (1 << 3), /* watchdog timer */ INT_Q_OVERFLOW = (1 << 2), /* cmd msg q overflow */ INT_Q_AVAILABLE = (1 << 1), /* cmd msg q has free space */ INT_RESPONSE = (1 << 0), /* response msg available */ INT_ACK_MASK = INT_WATCHDOG | INT_Q_OVERFLOW, INT_DEF_MASK = INT_RESERVED | INT_Q_OVERFLOW | INT_RESPONSE, /* command messages, and related register bits */ CARM_HAVE_RESP = 0x01, CARM_MSG_READ = 1, CARM_MSG_WRITE = 2, CARM_MSG_VERIFY = 3, CARM_MSG_GET_CAPACITY = 4, CARM_MSG_FLUSH = 5, CARM_MSG_IOCTL = 6, CARM_MSG_ARRAY = 8, CARM_MSG_MISC = 9, CARM_CME = (1 << 2), CARM_RME = (1 << 1), CARM_WZBC = (1 << 0), CARM_RMI = (1 << 0), CARM_Q_FULL = (1 << 3), CARM_MSG_SIZE = 288, CARM_Q_LEN = 48, /* CARM_MSG_IOCTL messages */ CARM_IOC_SCAN_CHAN = 5, /* scan channels for devices */ CARM_IOC_GET_TCQ = 13, /* get tcq/ncq depth */ CARM_IOC_SET_TCQ = 14, /* set tcq/ncq depth */ IOC_SCAN_CHAN_NODEV = 0x1f, IOC_SCAN_CHAN_OFFSET = 0x40, /* CARM_MSG_ARRAY messages */ CARM_ARRAY_INFO = 0, ARRAY_NO_EXIST = (1 << 31), /* response messages */ RMSG_SZ = 8, /* sizeof(struct carm_response) */ RMSG_Q_LEN = 48, /* resp. msg list length */ RMSG_OK = 1, /* bit indicating msg was successful */ /* length of entire resp. msg buffer */ RBUF_LEN = RMSG_SZ * RMSG_Q_LEN, PDC_SHM_SIZE = (4096 << 7), /* length of entire h/w buffer */ /* CARM_MSG_MISC messages */ MISC_GET_FW_VER = 2, MISC_ALLOC_MEM = 3, MISC_SET_TIME = 5, /* MISC_GET_FW_VER feature bits */ FW_VER_4PORT = (1 << 2), /* 1=4 ports, 0=8 ports */ FW_VER_NON_RAID = (1 << 1), /* 1=non-RAID firmware, 0=RAID */ FW_VER_ZCR = (1 << 0), /* zero channel RAID (whatever that is) */ /* carm_host flags */ FL_NON_RAID = FW_VER_NON_RAID, FL_4PORT = FW_VER_4PORT, FL_FW_VER_MASK = (FW_VER_NON_RAID | FW_VER_4PORT), FL_DYN_MAJOR = (1 << 17), }; enum { CARM_SG_BOUNDARY = 0xffffUL, /* s/g segment boundary */ }; enum scatter_gather_types { SGT_32BIT = 0, SGT_64BIT = 1, }; enum host_states { HST_INVALID, /* invalid state; never used */ HST_ALLOC_BUF, /* setting up master SHM area */ HST_ERROR, /* we never leave here */ HST_PORT_SCAN, /* start dev scan */ HST_DEV_SCAN_START, /* start per-device probe */ HST_DEV_SCAN, /* continue per-device probe */ HST_DEV_ACTIVATE, /* activate devices we found */ HST_PROBE_FINISHED, /* probe is complete */ HST_PROBE_START, /* initiate probe */ HST_SYNC_TIME, /* tell firmware what time it is */ HST_GET_FW_VER, /* get firmware version, adapter port cnt */ }; #ifdef CARM_DEBUG static const char *state_name[] = { "HST_INVALID", "HST_ALLOC_BUF", "HST_ERROR", "HST_PORT_SCAN", "HST_DEV_SCAN_START", "HST_DEV_SCAN", "HST_DEV_ACTIVATE", "HST_PROBE_FINISHED", "HST_PROBE_START", "HST_SYNC_TIME", "HST_GET_FW_VER", }; #endif struct carm_port { unsigned int port_no; struct gendisk *disk; struct carm_host *host; /* attached device characteristics */ u64 capacity; char name[41]; u16 dev_geom_head; u16 dev_geom_sect; u16 dev_geom_cyl; }; struct carm_request { int n_elem; unsigned int msg_type; unsigned int msg_subtype; unsigned int msg_bucket; struct scatterlist sg[CARM_MAX_REQ_SG]; }; struct carm_host { unsigned long flags; void __iomem *mmio; void *shm; dma_addr_t shm_dma; int major; int id; char name[32]; spinlock_t lock; struct pci_dev *pdev; unsigned int state; u32 fw_ver; struct blk_mq_tag_set tag_set; struct request_queue *oob_q; unsigned int n_oob; unsigned int hw_sg_used; unsigned int resp_idx; unsigned int wait_q_prod; unsigned int wait_q_cons; struct request_queue *wait_q[CARM_MAX_WAIT_Q]; void *msg_base; dma_addr_t msg_dma; int cur_scan_dev; unsigned long dev_active; unsigned long dev_present; struct carm_port port[CARM_MAX_PORTS]; struct work_struct fsm_task; struct completion probe_comp; }; struct carm_response { __le32 ret_handle; __le32 status; } __attribute__((packed)); struct carm_msg_sg { __le32 start; __le32 len; } __attribute__((packed)); struct carm_msg_rw { u8 type; u8 id; u8 sg_count; u8 sg_type; __le32 handle; __le32 lba; __le16 lba_count; __le16 lba_high; struct carm_msg_sg sg[32]; } __attribute__((packed)); struct carm_msg_allocbuf { u8 type; u8 subtype; u8 n_sg; u8 sg_type; __le32 handle; __le32 addr; __le32 len; __le32 evt_pool; __le32 n_evt; __le32 rbuf_pool; __le32 n_rbuf; __le32 msg_pool; __le32 n_msg; struct carm_msg_sg sg[8]; } __attribute__((packed)); struct carm_msg_ioctl { u8 type; u8 subtype; u8 array_id; u8 reserved1; __le32 handle; __le32 data_addr; u32 reserved2; } __attribute__((packed)); struct carm_msg_sync_time { u8 type; u8 subtype; u16 reserved1; __le32 handle; u32 reserved2; __le32 timestamp; } __attribute__((packed)); struct carm_msg_get_fw_ver { u8 type; u8 subtype; u16 reserved1; __le32 handle; __le32 data_addr; u32 reserved2; } __attribute__((packed)); struct carm_fw_ver { __le32 version; u8 features; u8 reserved1; u16 reserved2; } __attribute__((packed)); struct carm_array_info { __le32 size; __le16 size_hi; __le16 stripe_size; __le32 mode; __le16 stripe_blk_sz; __le16 reserved1; __le16 cyl; __le16 head; __le16 sect; u8 array_id; u8 reserved2; char name[40]; __le32 array_status; /* device list continues beyond this point? */ } __attribute__((packed)); static int carm_init_one (struct pci_dev *pdev, const struct pci_device_id *ent); static void carm_remove_one (struct pci_dev *pdev); static int carm_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo); static const struct pci_device_id carm_pci_tbl[] = { { PCI_VENDOR_ID_PROMISE, 0x8000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { PCI_VENDOR_ID_PROMISE, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, carm_pci_tbl); static struct pci_driver carm_driver = { .name = DRV_NAME, .id_table = carm_pci_tbl, .probe = carm_init_one, .remove = carm_remove_one, }; static const struct block_device_operations carm_bd_ops = { .owner = THIS_MODULE, .getgeo = carm_bdev_getgeo, }; static unsigned int carm_host_id; static unsigned long carm_major_alloc; static int carm_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct carm_port *port = bdev->bd_disk->private_data; geo->heads = (u8) port->dev_geom_head; geo->sectors = (u8) port->dev_geom_sect; geo->cylinders = port->dev_geom_cyl; return 0; } static const u32 msg_sizes[] = { 32, 64, 128, CARM_MSG_SIZE }; static inline int carm_lookup_bucket(u32 msg_size) { int i; for (i = 0; i < ARRAY_SIZE(msg_sizes); i++) if (msg_size <= msg_sizes[i]) return i; return -ENOENT; } static void carm_init_buckets(void __iomem *mmio) { unsigned int i; for (i = 0; i < ARRAY_SIZE(msg_sizes); i++) writel(msg_sizes[i], mmio + CARM_CMS0 + (4 * i)); } static inline void *carm_ref_msg(struct carm_host *host, unsigned int msg_idx) { return host->msg_base + (msg_idx * CARM_MSG_SIZE); } static inline dma_addr_t carm_ref_msg_dma(struct carm_host *host, unsigned int msg_idx) { return host->msg_dma + (msg_idx * CARM_MSG_SIZE); } static int carm_send_msg(struct carm_host *host, struct carm_request *crq, unsigned tag) { void __iomem *mmio = host->mmio; u32 msg = (u32) carm_ref_msg_dma(host, tag); u32 cm_bucket = crq->msg_bucket; u32 tmp; int rc = 0; VPRINTK("ENTER\n"); tmp = readl(mmio + CARM_HMUC); if (tmp & CARM_Q_FULL) { #if 0 tmp = readl(mmio + CARM_INT_MASK); tmp |= INT_Q_AVAILABLE; writel(tmp, mmio + CARM_INT_MASK); readl(mmio + CARM_INT_MASK); /* flush */ #endif DPRINTK("host msg queue full\n"); rc = -EBUSY; } else { writel(msg | (cm_bucket << 1), mmio + CARM_IHQP); readl(mmio + CARM_IHQP); /* flush */ } return rc; } static int carm_array_info (struct carm_host *host, unsigned int array_idx) { struct carm_msg_ioctl *ioc; u32 msg_data; dma_addr_t msg_dma; struct carm_request *crq; struct request *rq; int rc; rq = blk_mq_alloc_request(host->oob_q, REQ_OP_DRV_OUT, 0); if (IS_ERR(rq)) { rc = -ENOMEM; goto err_out; } crq = blk_mq_rq_to_pdu(rq); ioc = carm_ref_msg(host, rq->tag); msg_dma = carm_ref_msg_dma(host, rq->tag); msg_data = (u32) (msg_dma + sizeof(struct carm_array_info)); crq->msg_type = CARM_MSG_ARRAY; crq->msg_subtype = CARM_ARRAY_INFO; rc = carm_lookup_bucket(sizeof(struct carm_msg_ioctl) + sizeof(struct carm_array_info)); BUG_ON(rc < 0); crq->msg_bucket = (u32) rc; memset(ioc, 0, sizeof(*ioc)); ioc->type = CARM_MSG_ARRAY; ioc->subtype = CARM_ARRAY_INFO; ioc->array_id = (u8) array_idx; ioc->handle = cpu_to_le32(TAG_ENCODE(rq->tag)); ioc->data_addr = cpu_to_le32(msg_data); spin_lock_irq(&host->lock); assert(host->state == HST_DEV_SCAN_START || host->state == HST_DEV_SCAN); spin_unlock_irq(&host->lock); DPRINTK("blk_execute_rq_nowait, tag == %u\n", rq->tag); blk_execute_rq_nowait(host->oob_q, NULL, rq, true, NULL); return 0; err_out: spin_lock_irq(&host->lock); host->state = HST_ERROR; spin_unlock_irq(&host->lock); return rc; } typedef unsigned int (*carm_sspc_t)(struct carm_host *, unsigned int, void *); static int carm_send_special (struct carm_host *host, carm_sspc_t func) { struct request *rq; struct carm_request *crq; struct carm_msg_ioctl *ioc; void *mem; unsigned int msg_size; int rc; rq = blk_mq_alloc_request(host->oob_q, REQ_OP_DRV_OUT, 0); if (IS_ERR(rq)) return -ENOMEM; crq = blk_mq_rq_to_pdu(rq); mem = carm_ref_msg(host, rq->tag); msg_size = func(host, rq->tag, mem); ioc = mem; crq->msg_type = ioc->type; crq->msg_subtype = ioc->subtype; rc = carm_lookup_bucket(msg_size); BUG_ON(rc < 0); crq->msg_bucket = (u32) rc; DPRINTK("blk_execute_rq_nowait, tag == %u\n", rq->tag); blk_execute_rq_nowait(host->oob_q, NULL, rq, true, NULL); return 0; } static unsigned int carm_fill_sync_time(struct carm_host *host, unsigned int idx, void *mem) { struct carm_msg_sync_time *st = mem; time64_t tv = ktime_get_real_seconds(); memset(st, 0, sizeof(*st)); st->type = CARM_MSG_MISC; st->subtype = MISC_SET_TIME; st->handle = cpu_to_le32(TAG_ENCODE(idx)); st->timestamp = cpu_to_le32(tv); return sizeof(struct carm_msg_sync_time); } static unsigned int carm_fill_alloc_buf(struct carm_host *host, unsigned int idx, void *mem) { struct carm_msg_allocbuf *ab = mem; memset(ab, 0, sizeof(*ab)); ab->type = CARM_MSG_MISC; ab->subtype = MISC_ALLOC_MEM; ab->handle = cpu_to_le32(TAG_ENCODE(idx)); ab->n_sg = 1; ab->sg_type = SGT_32BIT; ab->addr = cpu_to_le32(host->shm_dma + (PDC_SHM_SIZE >> 1)); ab->len = cpu_to_le32(PDC_SHM_SIZE >> 1); ab->evt_pool = cpu_to_le32(host->shm_dma + (16 * 1024)); ab->n_evt = cpu_to_le32(1024); ab->rbuf_pool = cpu_to_le32(host->shm_dma); ab->n_rbuf = cpu_to_le32(RMSG_Q_LEN); ab->msg_pool = cpu_to_le32(host->shm_dma + RBUF_LEN); ab->n_msg = cpu_to_le32(CARM_Q_LEN); ab->sg[0].start = cpu_to_le32(host->shm_dma + (PDC_SHM_SIZE >> 1)); ab->sg[0].len = cpu_to_le32(65536); return sizeof(struct carm_msg_allocbuf); } static unsigned int carm_fill_scan_channels(struct carm_host *host, unsigned int idx, void *mem) { struct carm_msg_ioctl *ioc = mem; u32 msg_data = (u32) (carm_ref_msg_dma(host, idx) + IOC_SCAN_CHAN_OFFSET); memset(ioc, 0, sizeof(*ioc)); ioc->type = CARM_MSG_IOCTL; ioc->subtype = CARM_IOC_SCAN_CHAN; ioc->handle = cpu_to_le32(TAG_ENCODE(idx)); ioc->data_addr = cpu_to_le32(msg_data); /* fill output data area with "no device" default values */ mem += IOC_SCAN_CHAN_OFFSET; memset(mem, IOC_SCAN_CHAN_NODEV, CARM_MAX_PORTS); return IOC_SCAN_CHAN_OFFSET + CARM_MAX_PORTS; } static unsigned int carm_fill_get_fw_ver(struct carm_host *host, unsigned int idx, void *mem) { struct carm_msg_get_fw_ver *ioc = mem; u32 msg_data = (u32) (carm_ref_msg_dma(host, idx) + sizeof(*ioc)); memset(ioc, 0, sizeof(*ioc)); ioc->type = CARM_MSG_MISC; ioc->subtype = MISC_GET_FW_VER; ioc->handle = cpu_to_le32(TAG_ENCODE(idx)); ioc->data_addr = cpu_to_le32(msg_data); return sizeof(struct carm_msg_get_fw_ver) + sizeof(struct carm_fw_ver); } static inline void carm_push_q (struct carm_host *host, struct request_queue *q) { unsigned int idx = host->wait_q_prod % CARM_MAX_WAIT_Q; blk_mq_stop_hw_queues(q); VPRINTK("STOPPED QUEUE %p\n", q); host->wait_q[idx] = q; host->wait_q_prod++; BUG_ON(host->wait_q_prod == host->wait_q_cons); /* overrun */ } static inline struct request_queue *carm_pop_q(struct carm_host *host) { unsigned int idx; if (host->wait_q_prod == host->wait_q_cons) return NULL; idx = host->wait_q_cons % CARM_MAX_WAIT_Q; host->wait_q_cons++; return host->wait_q[idx]; } static inline void carm_round_robin(struct carm_host *host) { struct request_queue *q = carm_pop_q(host); if (q) { blk_mq_start_hw_queues(q); VPRINTK("STARTED QUEUE %p\n", q); } } static inline enum dma_data_direction carm_rq_dir(struct request *rq) { return op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; } static blk_status_t carm_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request_queue *q = hctx->queue; struct request *rq = bd->rq; struct carm_port *port = q->queuedata; struct carm_host *host = port->host; struct carm_request *crq = blk_mq_rq_to_pdu(rq); struct carm_msg_rw *msg; struct scatterlist *sg; int i, n_elem = 0, rc; unsigned int msg_size; u32 tmp; crq->n_elem = 0; sg_init_table(crq->sg, CARM_MAX_REQ_SG); blk_mq_start_request(rq); spin_lock_irq(&host->lock); if (req_op(rq) == REQ_OP_DRV_OUT) goto send_msg; /* get scatterlist from block layer */ sg = &crq->sg[0]; n_elem = blk_rq_map_sg(q, rq, sg); if (n_elem <= 0) goto out_ioerr; /* map scatterlist to PCI bus addresses */ n_elem = dma_map_sg(&host->pdev->dev, sg, n_elem, carm_rq_dir(rq)); if (n_elem <= 0) goto out_ioerr; /* obey global hardware limit on S/G entries */ if (host->hw_sg_used >= CARM_MAX_HOST_SG - n_elem) goto out_resource; crq->n_elem = n_elem; host->hw_sg_used += n_elem; /* * build read/write message */ VPRINTK("build msg\n"); msg = (struct carm_msg_rw *) carm_ref_msg(host, rq->tag); if (rq_data_dir(rq) == WRITE) { msg->type = CARM_MSG_WRITE; crq->msg_type = CARM_MSG_WRITE; } else { msg->type = CARM_MSG_READ; crq->msg_type = CARM_MSG_READ; } msg->id = port->port_no; msg->sg_count = n_elem; msg->sg_type = SGT_32BIT; msg->handle = cpu_to_le32(TAG_ENCODE(rq->tag)); msg->lba = cpu_to_le32(blk_rq_pos(rq) & 0xffffffff); tmp = (blk_rq_pos(rq) >> 16) >> 16; msg->lba_high = cpu_to_le16( (u16) tmp ); msg->lba_count = cpu_to_le16(blk_rq_sectors(rq)); msg_size = sizeof(struct carm_msg_rw) - sizeof(msg->sg); for (i = 0; i < n_elem; i++) { struct carm_msg_sg *carm_sg = &msg->sg[i]; carm_sg->start = cpu_to_le32(sg_dma_address(&crq->sg[i])); carm_sg->len = cpu_to_le32(sg_dma_len(&crq->sg[i])); msg_size += sizeof(struct carm_msg_sg); } rc = carm_lookup_bucket(msg_size); BUG_ON(rc < 0); crq->msg_bucket = (u32) rc; send_msg: /* * queue read/write message to hardware */ VPRINTK("send msg, tag == %u\n", rq->tag); rc = carm_send_msg(host, crq, rq->tag); if (rc) { host->hw_sg_used -= n_elem; goto out_resource; } spin_unlock_irq(&host->lock); return BLK_STS_OK; out_resource: dma_unmap_sg(&host->pdev->dev, &crq->sg[0], n_elem, carm_rq_dir(rq)); carm_push_q(host, q); spin_unlock_irq(&host->lock); return BLK_STS_DEV_RESOURCE; out_ioerr: carm_round_robin(host); spin_unlock_irq(&host->lock); return BLK_STS_IOERR; } static void carm_handle_array_info(struct carm_host *host, struct carm_request *crq, u8 *mem, blk_status_t error) { struct carm_port *port; u8 *msg_data = mem + sizeof(struct carm_array_info); struct carm_array_info *desc = (struct carm_array_info *) msg_data; u64 lo, hi; int cur_port; size_t slen; DPRINTK("ENTER\n"); if (error) goto out; if (le32_to_cpu(desc->array_status) & ARRAY_NO_EXIST) goto out; cur_port = host->cur_scan_dev; /* should never occur */ if ((cur_port < 0) || (cur_port >= CARM_MAX_PORTS)) { printk(KERN_ERR PFX "BUG: cur_scan_dev==%d, array_id==%d\n", cur_port, (int) desc->array_id); goto out; } port = &host->port[cur_port]; lo = (u64) le32_to_cpu(desc->size); hi = (u64) le16_to_cpu(desc->size_hi); port->capacity = lo | (hi << 32); port->dev_geom_head = le16_to_cpu(desc->head); port->dev_geom_sect = le16_to_cpu(desc->sect); port->dev_geom_cyl = le16_to_cpu(desc->cyl); host->dev_active |= (1 << cur_port); strncpy(port->name, desc->name, sizeof(port->name)); port->name[sizeof(port->name) - 1] = 0; slen = strlen(port->name); while (slen && (port->name[slen - 1] == ' ')) { port->name[slen - 1] = 0; slen--; } printk(KERN_INFO DRV_NAME "(%s): port %u device %Lu sectors\n", pci_name(host->pdev), port->port_no, (unsigned long long) port->capacity); printk(KERN_INFO DRV_NAME "(%s): port %u device \"%s\"\n", pci_name(host->pdev), port->port_no, port->name); out: assert(host->state == HST_DEV_SCAN); schedule_work(&host->fsm_task); } static void carm_handle_scan_chan(struct carm_host *host, struct carm_request *crq, u8 *mem, blk_status_t error) { u8 *msg_data = mem + IOC_SCAN_CHAN_OFFSET; unsigned int i, dev_count = 0; int new_state = HST_DEV_SCAN_START; DPRINTK("ENTER\n"); if (error) { new_state = HST_ERROR; goto out; } /* TODO: scan and support non-disk devices */ for (i = 0; i < 8; i++) if (msg_data[i] == 0) { /* direct-access device (disk) */ host->dev_present |= (1 << i); dev_count++; } printk(KERN_INFO DRV_NAME "(%s): found %u interesting devices\n", pci_name(host->pdev), dev_count); out: assert(host->state == HST_PORT_SCAN); host->state = new_state; schedule_work(&host->fsm_task); } static void carm_handle_generic(struct carm_host *host, struct carm_request *crq, blk_status_t error, int cur_state, int next_state) { DPRINTK("ENTER\n"); assert(host->state == cur_state); if (error) host->state = HST_ERROR; else host->state = next_state; schedule_work(&host->fsm_task); } static inline void carm_handle_resp(struct carm_host *host, __le32 ret_handle_le, u32 status) { u32 handle = le32_to_cpu(ret_handle_le); unsigned int msg_idx; struct request *rq; struct carm_request *crq; blk_status_t error = (status == RMSG_OK) ? 0 : BLK_STS_IOERR; u8 *mem; VPRINTK("ENTER, handle == 0x%x\n", handle); if (unlikely(!TAG_VALID(handle))) { printk(KERN_ERR DRV_NAME "(%s): BUG: invalid tag 0x%x\n", pci_name(host->pdev), handle); return; } msg_idx = TAG_DECODE(handle); VPRINTK("tag == %u\n", msg_idx); rq = blk_mq_tag_to_rq(host->tag_set.tags[0], msg_idx); crq = blk_mq_rq_to_pdu(rq); /* fast path */ if (likely(crq->msg_type == CARM_MSG_READ || crq->msg_type == CARM_MSG_WRITE)) { dma_unmap_sg(&host->pdev->dev, &crq->sg[0], crq->n_elem, carm_rq_dir(rq)); goto done; } mem = carm_ref_msg(host, msg_idx); switch (crq->msg_type) { case CARM_MSG_IOCTL: { switch (crq->msg_subtype) { case CARM_IOC_SCAN_CHAN: carm_handle_scan_chan(host, crq, mem, error); goto done; default: /* unknown / invalid response */ goto err_out; } break; } case CARM_MSG_MISC: { switch (crq->msg_subtype) { case MISC_ALLOC_MEM: carm_handle_generic(host, crq, error, HST_ALLOC_BUF, HST_SYNC_TIME); goto done; case MISC_SET_TIME: carm_handle_generic(host, crq, error, HST_SYNC_TIME, HST_GET_FW_VER); goto done; case MISC_GET_FW_VER: { struct carm_fw_ver *ver = (struct carm_fw_ver *) (mem + sizeof(struct carm_msg_get_fw_ver)); if (!error) { host->fw_ver = le32_to_cpu(ver->version); host->flags |= (ver->features & FL_FW_VER_MASK); } carm_handle_generic(host, crq, error, HST_GET_FW_VER, HST_PORT_SCAN); goto done; } default: /* unknown / invalid response */ goto err_out; } break; } case CARM_MSG_ARRAY: { switch (crq->msg_subtype) { case CARM_ARRAY_INFO: carm_handle_array_info(host, crq, mem, error); break; default: /* unknown / invalid response */ goto err_out; } break; } default: /* unknown / invalid response */ goto err_out; } return; err_out: printk(KERN_WARNING DRV_NAME "(%s): BUG: unhandled message type %d/%d\n", pci_name(host->pdev), crq->msg_type, crq->msg_subtype); error = BLK_STS_IOERR; done: host->hw_sg_used -= crq->n_elem; blk_mq_end_request(blk_mq_rq_from_pdu(crq), error); if (host->hw_sg_used <= CARM_SG_LOW_WATER) carm_round_robin(host); } static inline void carm_handle_responses(struct carm_host *host) { void __iomem *mmio = host->mmio; struct carm_response *resp = (struct carm_response *) host->shm; unsigned int work = 0; unsigned int idx = host->resp_idx % RMSG_Q_LEN; while (1) { u32 status = le32_to_cpu(resp[idx].status); if (status == 0xffffffff) { VPRINTK("ending response on index %u\n", idx); writel(idx << 3, mmio + CARM_RESP_IDX); break; } /* response to a message we sent */ else if ((status & (1 << 31)) == 0) { VPRINTK("handling msg response on index %u\n", idx); carm_handle_resp(host, resp[idx].ret_handle, status); resp[idx].status = cpu_to_le32(0xffffffff); } /* asynchronous events the hardware throws our way */ else if ((status & 0xff000000) == (1 << 31)) { u8 *evt_type_ptr = (u8 *) &resp[idx]; u8 evt_type = *evt_type_ptr; printk(KERN_WARNING DRV_NAME "(%s): unhandled event type %d\n", pci_name(host->pdev), (int) evt_type); resp[idx].status = cpu_to_le32(0xffffffff); } idx = NEXT_RESP(idx); work++; } VPRINTK("EXIT, work==%u\n", work); host->resp_idx += work; } static irqreturn_t carm_interrupt(int irq, void *__host) { struct carm_host *host = __host; void __iomem *mmio; u32 mask; int handled = 0; unsigned long flags; if (!host) { VPRINTK("no host\n"); return IRQ_NONE; } spin_lock_irqsave(&host->lock, flags); mmio = host->mmio; /* reading should also clear interrupts */ mask = readl(mmio + CARM_INT_STAT); if (mask == 0 || mask == 0xffffffff) { VPRINTK("no work, mask == 0x%x\n", mask); goto out; } if (mask & INT_ACK_MASK) writel(mask, mmio + CARM_INT_STAT); if (unlikely(host->state == HST_INVALID)) { VPRINTK("not initialized yet, mask = 0x%x\n", mask); goto out; } if (mask & CARM_HAVE_RESP) { handled = 1; carm_handle_responses(host); } out: spin_unlock_irqrestore(&host->lock, flags); VPRINTK("EXIT\n"); return IRQ_RETVAL(handled); } static void carm_fsm_task (struct work_struct *work) { struct carm_host *host = container_of(work, struct carm_host, fsm_task); unsigned long flags; unsigned int state; int rc, i, next_dev; int reschedule = 0; int new_state = HST_INVALID; spin_lock_irqsave(&host->lock, flags); state = host->state; spin_unlock_irqrestore(&host->lock, flags); DPRINTK("ENTER, state == %s\n", state_name[state]); switch (state) { case HST_PROBE_START: new_state = HST_ALLOC_BUF; reschedule = 1; break; case HST_ALLOC_BUF: rc = carm_send_special(host, carm_fill_alloc_buf); if (rc) { new_state = HST_ERROR; reschedule = 1; } break; case HST_SYNC_TIME: rc = carm_send_special(host, carm_fill_sync_time); if (rc) { new_state = HST_ERROR; reschedule = 1; } break; case HST_GET_FW_VER: rc = carm_send_special(host, carm_fill_get_fw_ver); if (rc) { new_state = HST_ERROR; reschedule = 1; } break; case HST_PORT_SCAN: rc = carm_send_special(host, carm_fill_scan_channels); if (rc) { new_state = HST_ERROR; reschedule = 1; } break; case HST_DEV_SCAN_START: host->cur_scan_dev = -1; new_state = HST_DEV_SCAN; reschedule = 1; break; case HST_DEV_SCAN: next_dev = -1; for (i = host->cur_scan_dev + 1; i < CARM_MAX_PORTS; i++) if (host->dev_present & (1 << i)) { next_dev = i; break; } if (next_dev >= 0) { host->cur_scan_dev = next_dev; rc = carm_array_info(host, next_dev); if (rc) { new_state = HST_ERROR; reschedule = 1; } } else { new_state = HST_DEV_ACTIVATE; reschedule = 1; } break; case HST_DEV_ACTIVATE: { int activated = 0; for (i = 0; i < CARM_MAX_PORTS; i++) if (host->dev_active & (1 << i)) { struct carm_port *port = &host->port[i]; struct gendisk *disk = port->disk; set_capacity(disk, port->capacity); add_disk(disk); activated++; } printk(KERN_INFO DRV_NAME "(%s): %d ports activated\n", pci_name(host->pdev), activated); new_state = HST_PROBE_FINISHED; reschedule = 1; break; } case HST_PROBE_FINISHED: complete(&host->probe_comp); break; case HST_ERROR: /* FIXME: TODO */ break; default: /* should never occur */ printk(KERN_ERR PFX "BUG: unknown state %d\n", state); assert(0); break; } if (new_state != HST_INVALID) { spin_lock_irqsave(&host->lock, flags); host->state = new_state; spin_unlock_irqrestore(&host->lock, flags); } if (reschedule) schedule_work(&host->fsm_task); } static int carm_init_wait(void __iomem *mmio, u32 bits, unsigned int test_bit) { unsigned int i; for (i = 0; i < 50000; i++) { u32 tmp = readl(mmio + CARM_LMUC); udelay(100); if (test_bit) { if ((tmp & bits) == bits) return 0; } else { if ((tmp & bits) == 0) return 0; } cond_resched(); } printk(KERN_ERR PFX "carm_init_wait timeout, bits == 0x%x, test_bit == %s\n", bits, test_bit ? "yes" : "no"); return -EBUSY; } static void carm_init_responses(struct carm_host *host) { void __iomem *mmio = host->mmio; unsigned int i; struct carm_response *resp = (struct carm_response *) host->shm; for (i = 0; i < RMSG_Q_LEN; i++) resp[i].status = cpu_to_le32(0xffffffff); writel(0, mmio + CARM_RESP_IDX); } static int carm_init_host(struct carm_host *host) { void __iomem *mmio = host->mmio; u32 tmp; u8 tmp8; int rc; DPRINTK("ENTER\n"); writel(0, mmio + CARM_INT_MASK); tmp8 = readb(mmio + CARM_INITC); if (tmp8 & 0x01) { tmp8 &= ~0x01; writeb(tmp8, mmio + CARM_INITC); readb(mmio + CARM_INITC); /* flush */ DPRINTK("snooze...\n"); msleep(5000); } tmp = readl(mmio + CARM_HMUC); if (tmp & CARM_CME) { DPRINTK("CME bit present, waiting\n"); rc = carm_init_wait(mmio, CARM_CME, 1); if (rc) { DPRINTK("EXIT, carm_init_wait 1 failed\n"); return rc; } } if (tmp & CARM_RME) { DPRINTK("RME bit present, waiting\n"); rc = carm_init_wait(mmio, CARM_RME, 1); if (rc) { DPRINTK("EXIT, carm_init_wait 2 failed\n"); return rc; } } tmp &= ~(CARM_RME | CARM_CME); writel(tmp, mmio + CARM_HMUC); readl(mmio + CARM_HMUC); /* flush */ rc = carm_init_wait(mmio, CARM_RME | CARM_CME, 0); if (rc) { DPRINTK("EXIT, carm_init_wait 3 failed\n"); return rc; } carm_init_buckets(mmio); writel(host->shm_dma & 0xffffffff, mmio + RBUF_ADDR_LO); writel((host->shm_dma >> 16) >> 16, mmio + RBUF_ADDR_HI); writel(RBUF_LEN, mmio + RBUF_BYTE_SZ); tmp = readl(mmio + CARM_HMUC); tmp |= (CARM_RME | CARM_CME | CARM_WZBC); writel(tmp, mmio + CARM_HMUC); readl(mmio + CARM_HMUC); /* flush */ rc = carm_init_wait(mmio, CARM_RME | CARM_CME, 1); if (rc) { DPRINTK("EXIT, carm_init_wait 4 failed\n"); return rc; } writel(0, mmio + CARM_HMPHA); writel(INT_DEF_MASK, mmio + CARM_INT_MASK); carm_init_responses(host); /* start initialization, probing state machine */ spin_lock_irq(&host->lock); assert(host->state == HST_INVALID); host->state = HST_PROBE_START; spin_unlock_irq(&host->lock); schedule_work(&host->fsm_task); DPRINTK("EXIT\n"); return 0; } static const struct blk_mq_ops carm_mq_ops = { .queue_rq = carm_queue_rq, }; static int carm_init_disk(struct carm_host *host, unsigned int port_no) { struct carm_port *port = &host->port[port_no]; struct gendisk *disk; struct request_queue *q; port->host = host; port->port_no = port_no; disk = alloc_disk(CARM_MINORS_PER_MAJOR); if (!disk) return -ENOMEM; port->disk = disk; sprintf(disk->disk_name, DRV_NAME "/%u", (unsigned int)host->id * CARM_MAX_PORTS + port_no); disk->major = host->major; disk->first_minor = port_no * CARM_MINORS_PER_MAJOR; disk->fops = &carm_bd_ops; disk->private_data = port; q = blk_mq_init_queue(&host->tag_set); if (IS_ERR(q)) return PTR_ERR(q); blk_queue_max_segments(q, CARM_MAX_REQ_SG); blk_queue_segment_boundary(q, CARM_SG_BOUNDARY); q->queuedata = port; disk->queue = q; return 0; } static void carm_free_disk(struct carm_host *host, unsigned int port_no) { struct carm_port *port = &host->port[port_no]; struct gendisk *disk = port->disk; if (!disk) return; if (disk->flags & GENHD_FL_UP) del_gendisk(disk); if (disk->queue) blk_cleanup_queue(disk->queue); put_disk(disk); } static int carm_init_shm(struct carm_host *host) { host->shm = dma_alloc_coherent(&host->pdev->dev, CARM_SHM_SIZE, &host->shm_dma, GFP_KERNEL); if (!host->shm) return -ENOMEM; host->msg_base = host->shm + RBUF_LEN; host->msg_dma = host->shm_dma + RBUF_LEN; memset(host->shm, 0xff, RBUF_LEN); memset(host->msg_base, 0, PDC_SHM_SIZE - RBUF_LEN); return 0; } static int carm_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { struct carm_host *host; int rc; struct request_queue *q; unsigned int i; printk_once(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n"); rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out; rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (rc) { printk(KERN_ERR DRV_NAME "(%s): DMA mask failure\n", pci_name(pdev)); goto err_out_regions; } host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) { printk(KERN_ERR DRV_NAME "(%s): memory alloc failure\n", pci_name(pdev)); rc = -ENOMEM; goto err_out_regions; } host->pdev = pdev; spin_lock_init(&host->lock); INIT_WORK(&host->fsm_task, carm_fsm_task); init_completion(&host->probe_comp); host->mmio = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!host->mmio) { printk(KERN_ERR DRV_NAME "(%s): MMIO alloc failure\n", pci_name(pdev)); rc = -ENOMEM; goto err_out_kfree; } rc = carm_init_shm(host); if (rc) { printk(KERN_ERR DRV_NAME "(%s): DMA SHM alloc failure\n", pci_name(pdev)); goto err_out_iounmap; } memset(&host->tag_set, 0, sizeof(host->tag_set)); host->tag_set.ops = &carm_mq_ops; host->tag_set.cmd_size = sizeof(struct carm_request); host->tag_set.nr_hw_queues = 1; host->tag_set.nr_maps = 1; host->tag_set.queue_depth = max_queue; host->tag_set.numa_node = NUMA_NO_NODE; host->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; rc = blk_mq_alloc_tag_set(&host->tag_set); if (rc) goto err_out_dma_free; q = blk_mq_init_queue(&host->tag_set); if (IS_ERR(q)) { rc = PTR_ERR(q); blk_mq_free_tag_set(&host->tag_set); goto err_out_dma_free; } host->oob_q = q; q->queuedata = host; /* * Figure out which major to use: 160, 161, or dynamic */ if (!test_and_set_bit(0, &carm_major_alloc)) host->major = 160; else if (!test_and_set_bit(1, &carm_major_alloc)) host->major = 161; else host->flags |= FL_DYN_MAJOR; host->id = carm_host_id; sprintf(host->name, DRV_NAME "%d", carm_host_id); rc = register_blkdev(host->major, host->name); if (rc < 0) goto err_out_free_majors; if (host->flags & FL_DYN_MAJOR) host->major = rc; for (i = 0; i < CARM_MAX_PORTS; i++) { rc = carm_init_disk(host, i); if (rc) goto err_out_blkdev_disks; } pci_set_master(pdev); rc = request_irq(pdev->irq, carm_interrupt, IRQF_SHARED, DRV_NAME, host); if (rc) { printk(KERN_ERR DRV_NAME "(%s): irq alloc failure\n", pci_name(pdev)); goto err_out_blkdev_disks; } rc = carm_init_host(host); if (rc) goto err_out_free_irq; DPRINTK("waiting for probe_comp\n"); wait_for_completion(&host->probe_comp); printk(KERN_INFO "%s: pci %s, ports %d, io %llx, irq %u, major %d\n", host->name, pci_name(pdev), (int) CARM_MAX_PORTS, (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, host->major); carm_host_id++; pci_set_drvdata(pdev, host); return 0; err_out_free_irq: free_irq(pdev->irq, host); err_out_blkdev_disks: for (i = 0; i < CARM_MAX_PORTS; i++) carm_free_disk(host, i); unregister_blkdev(host->major, host->name); err_out_free_majors: if (host->major == 160) clear_bit(0, &carm_major_alloc); else if (host->major == 161) clear_bit(1, &carm_major_alloc); blk_cleanup_queue(host->oob_q); blk_mq_free_tag_set(&host->tag_set); err_out_dma_free: dma_free_coherent(&pdev->dev, CARM_SHM_SIZE, host->shm, host->shm_dma); err_out_iounmap: iounmap(host->mmio); err_out_kfree: kfree(host); err_out_regions: pci_release_regions(pdev); err_out: pci_disable_device(pdev); return rc; } static void carm_remove_one (struct pci_dev *pdev) { struct carm_host *host = pci_get_drvdata(pdev); unsigned int i; if (!host) { printk(KERN_ERR PFX "BUG: no host data for PCI(%s)\n", pci_name(pdev)); return; } free_irq(pdev->irq, host); for (i = 0; i < CARM_MAX_PORTS; i++) carm_free_disk(host, i); unregister_blkdev(host->major, host->name); if (host->major == 160) clear_bit(0, &carm_major_alloc); else if (host->major == 161) clear_bit(1, &carm_major_alloc); blk_cleanup_queue(host->oob_q); blk_mq_free_tag_set(&host->tag_set); dma_free_coherent(&pdev->dev, CARM_SHM_SIZE, host->shm, host->shm_dma); iounmap(host->mmio); kfree(host); pci_release_regions(pdev); pci_disable_device(pdev); } module_pci_driver(carm_driver);