/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "gpu_scheduler_trace.h" #define to_drm_sched_job(sched_job) \ container_of((sched_job), struct drm_sched_job, queue_node) static bool drm_sched_entity_is_ready(struct drm_sched_entity *entity); static void drm_sched_wakeup(struct drm_gpu_scheduler *sched); static void drm_sched_process_job(struct dma_fence *f, struct dma_fence_cb *cb); /* Initialize a given run queue struct */ static void drm_sched_rq_init(struct drm_sched_rq *rq) { spin_lock_init(&rq->lock); INIT_LIST_HEAD(&rq->entities); rq->current_entity = NULL; } static void drm_sched_rq_add_entity(struct drm_sched_rq *rq, struct drm_sched_entity *entity) { if (!list_empty(&entity->list)) return; spin_lock(&rq->lock); list_add_tail(&entity->list, &rq->entities); spin_unlock(&rq->lock); } static void drm_sched_rq_remove_entity(struct drm_sched_rq *rq, struct drm_sched_entity *entity) { if (list_empty(&entity->list)) return; spin_lock(&rq->lock); list_del_init(&entity->list); if (rq->current_entity == entity) rq->current_entity = NULL; spin_unlock(&rq->lock); } /** * Select an entity which could provide a job to run * * @rq The run queue to check. * * Try to find a ready entity, returns NULL if none found. */ static struct drm_sched_entity * drm_sched_rq_select_entity(struct drm_sched_rq *rq) { struct drm_sched_entity *entity; spin_lock(&rq->lock); entity = rq->current_entity; if (entity) { list_for_each_entry_continue(entity, &rq->entities, list) { if (drm_sched_entity_is_ready(entity)) { rq->current_entity = entity; spin_unlock(&rq->lock); return entity; } } } list_for_each_entry(entity, &rq->entities, list) { if (drm_sched_entity_is_ready(entity)) { rq->current_entity = entity; spin_unlock(&rq->lock); return entity; } if (entity == rq->current_entity) break; } spin_unlock(&rq->lock); return NULL; } /** * Init a context entity used by scheduler when submit to HW ring. * * @sched The pointer to the scheduler * @entity The pointer to a valid drm_sched_entity * @rq The run queue this entity belongs * @jobs The max number of jobs in the job queue * @guilty atomic_t set to 1 when a job on this queue * is found to be guilty causing a timeout * * return 0 if succeed. negative error code on failure */ int drm_sched_entity_init(struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity, struct drm_sched_rq *rq, uint32_t jobs, atomic_t *guilty) { if (!(sched && entity && rq)) return -EINVAL; memset(entity, 0, sizeof(struct drm_sched_entity)); INIT_LIST_HEAD(&entity->list); entity->rq = rq; entity->sched = sched; entity->guilty = guilty; entity->fini_status = 0; entity->last_scheduled = NULL; spin_lock_init(&entity->rq_lock); spin_lock_init(&entity->queue_lock); spsc_queue_init(&entity->job_queue); atomic_set(&entity->fence_seq, 0); entity->fence_context = dma_fence_context_alloc(2); return 0; } EXPORT_SYMBOL(drm_sched_entity_init); /** * Query if entity is initialized * * @sched Pointer to scheduler instance * @entity The pointer to a valid scheduler entity * * return true if entity is initialized, false otherwise */ static bool drm_sched_entity_is_initialized(struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity) { return entity->sched == sched && entity->rq != NULL; } /** * Check if entity is idle * * @entity The pointer to a valid scheduler entity * * Return true if entity don't has any unscheduled jobs. */ static bool drm_sched_entity_is_idle(struct drm_sched_entity *entity) { rmb(); if (spsc_queue_peek(&entity->job_queue) == NULL) return true; return false; } /** * Check if entity is ready * * @entity The pointer to a valid scheduler entity * * Return true if entity could provide a job. */ static bool drm_sched_entity_is_ready(struct drm_sched_entity *entity) { if (spsc_queue_peek(&entity->job_queue) == NULL) return false; if (READ_ONCE(entity->dependency)) return false; return true; } static void drm_sched_entity_kill_jobs_cb(struct dma_fence *f, struct dma_fence_cb *cb) { struct drm_sched_job *job = container_of(cb, struct drm_sched_job, finish_cb); drm_sched_fence_finished(job->s_fence); WARN_ON(job->s_fence->parent); dma_fence_put(&job->s_fence->finished); job->sched->ops->free_job(job); } /** * Destroy a context entity * * @sched Pointer to scheduler instance * @entity The pointer to a valid scheduler entity * * Splitting drm_sched_entity_fini() into two functions, The first one is does the waiting, * removes the entity from the runqueue and returns an error when the process was killed. */ void drm_sched_entity_do_release(struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity) { if (!drm_sched_entity_is_initialized(sched, entity)) return; /** * The client will not queue more IBs during this fini, consume existing * queued IBs or discard them on SIGKILL */ if ((current->flags & PF_SIGNALED) && current->exit_code == SIGKILL) entity->fini_status = -ERESTARTSYS; else entity->fini_status = wait_event_killable(sched->job_scheduled, drm_sched_entity_is_idle(entity)); drm_sched_entity_set_rq(entity, NULL); } EXPORT_SYMBOL(drm_sched_entity_do_release); /** * Destroy a context entity * * @sched Pointer to scheduler instance * @entity The pointer to a valid scheduler entity * * The second one then goes over the entity and signals all jobs with an error code. */ void drm_sched_entity_cleanup(struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity) { if (entity->fini_status) { struct drm_sched_job *job; int r; /* Park the kernel for a moment to make sure it isn't processing * our enity. */ kthread_park(sched->thread); kthread_unpark(sched->thread); if (entity->dependency) { dma_fence_remove_callback(entity->dependency, &entity->cb); dma_fence_put(entity->dependency); entity->dependency = NULL; } while ((job = to_drm_sched_job(spsc_queue_pop(&entity->job_queue)))) { struct drm_sched_fence *s_fence = job->s_fence; drm_sched_fence_scheduled(s_fence); dma_fence_set_error(&s_fence->finished, -ESRCH); r = dma_fence_add_callback(entity->last_scheduled, &job->finish_cb, drm_sched_entity_kill_jobs_cb); if (r == -ENOENT) drm_sched_entity_kill_jobs_cb(NULL, &job->finish_cb); else if (r) DRM_ERROR("fence add callback failed (%d)\n", r); } } dma_fence_put(entity->last_scheduled); entity->last_scheduled = NULL; } EXPORT_SYMBOL(drm_sched_entity_cleanup); void drm_sched_entity_fini(struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity) { drm_sched_entity_do_release(sched, entity); drm_sched_entity_cleanup(sched, entity); } EXPORT_SYMBOL(drm_sched_entity_fini); static void drm_sched_entity_wakeup(struct dma_fence *f, struct dma_fence_cb *cb) { struct drm_sched_entity *entity = container_of(cb, struct drm_sched_entity, cb); entity->dependency = NULL; dma_fence_put(f); drm_sched_wakeup(entity->sched); } static void drm_sched_entity_clear_dep(struct dma_fence *f, struct dma_fence_cb *cb) { struct drm_sched_entity *entity = container_of(cb, struct drm_sched_entity, cb); entity->dependency = NULL; dma_fence_put(f); } void drm_sched_entity_set_rq(struct drm_sched_entity *entity, struct drm_sched_rq *rq) { if (entity->rq == rq) return; spin_lock(&entity->rq_lock); if (entity->rq) drm_sched_rq_remove_entity(entity->rq, entity); entity->rq = rq; if (rq) drm_sched_rq_add_entity(rq, entity); spin_unlock(&entity->rq_lock); } EXPORT_SYMBOL(drm_sched_entity_set_rq); bool drm_sched_dependency_optimized(struct dma_fence* fence, struct drm_sched_entity *entity) { struct drm_gpu_scheduler *sched = entity->sched; struct drm_sched_fence *s_fence; if (!fence || dma_fence_is_signaled(fence)) return false; if (fence->context == entity->fence_context) return true; s_fence = to_drm_sched_fence(fence); if (s_fence && s_fence->sched == sched) return true; return false; } EXPORT_SYMBOL(drm_sched_dependency_optimized); static bool drm_sched_entity_add_dependency_cb(struct drm_sched_entity *entity) { struct drm_gpu_scheduler *sched = entity->sched; struct dma_fence * fence = entity->dependency; struct drm_sched_fence *s_fence; if (fence->context == entity->fence_context) { /* We can ignore fences from ourself */ dma_fence_put(entity->dependency); return false; } s_fence = to_drm_sched_fence(fence); if (s_fence && s_fence->sched == sched) { /* * Fence is from the same scheduler, only need to wait for * it to be scheduled */ fence = dma_fence_get(&s_fence->scheduled); dma_fence_put(entity->dependency); entity->dependency = fence; if (!dma_fence_add_callback(fence, &entity->cb, drm_sched_entity_clear_dep)) return true; /* Ignore it when it is already scheduled */ dma_fence_put(fence); return false; } if (!dma_fence_add_callback(entity->dependency, &entity->cb, drm_sched_entity_wakeup)) return true; dma_fence_put(entity->dependency); return false; } static struct drm_sched_job * drm_sched_entity_pop_job(struct drm_sched_entity *entity) { struct drm_gpu_scheduler *sched = entity->sched; struct drm_sched_job *sched_job = to_drm_sched_job( spsc_queue_peek(&entity->job_queue)); if (!sched_job) return NULL; while ((entity->dependency = sched->ops->dependency(sched_job, entity))) if (drm_sched_entity_add_dependency_cb(entity)) return NULL; /* skip jobs from entity that marked guilty */ if (entity->guilty && atomic_read(entity->guilty)) dma_fence_set_error(&sched_job->s_fence->finished, -ECANCELED); dma_fence_put(entity->last_scheduled); entity->last_scheduled = dma_fence_get(&sched_job->s_fence->finished); spsc_queue_pop(&entity->job_queue); return sched_job; } /** * Submit a job to the job queue * * @sched_job The pointer to job required to submit * * Returns 0 for success, negative error code otherwise. */ void drm_sched_entity_push_job(struct drm_sched_job *sched_job, struct drm_sched_entity *entity) { struct drm_gpu_scheduler *sched = sched_job->sched; bool first = false; trace_drm_sched_job(sched_job, entity); spin_lock(&entity->queue_lock); first = spsc_queue_push(&entity->job_queue, &sched_job->queue_node); spin_unlock(&entity->queue_lock); /* first job wakes up scheduler */ if (first) { /* Add the entity to the run queue */ spin_lock(&entity->rq_lock); drm_sched_rq_add_entity(entity->rq, entity); spin_unlock(&entity->rq_lock); drm_sched_wakeup(sched); } } EXPORT_SYMBOL(drm_sched_entity_push_job); /* job_finish is called after hw fence signaled */ static void drm_sched_job_finish(struct work_struct *work) { struct drm_sched_job *s_job = container_of(work, struct drm_sched_job, finish_work); struct drm_gpu_scheduler *sched = s_job->sched; /* remove job from ring_mirror_list */ spin_lock(&sched->job_list_lock); list_del_init(&s_job->node); if (sched->timeout != MAX_SCHEDULE_TIMEOUT) { struct drm_sched_job *next; spin_unlock(&sched->job_list_lock); cancel_delayed_work_sync(&s_job->work_tdr); spin_lock(&sched->job_list_lock); /* queue TDR for next job */ next = list_first_entry_or_null(&sched->ring_mirror_list, struct drm_sched_job, node); if (next) schedule_delayed_work(&next->work_tdr, sched->timeout); } spin_unlock(&sched->job_list_lock); dma_fence_put(&s_job->s_fence->finished); sched->ops->free_job(s_job); } static void drm_sched_job_finish_cb(struct dma_fence *f, struct dma_fence_cb *cb) { struct drm_sched_job *job = container_of(cb, struct drm_sched_job, finish_cb); schedule_work(&job->finish_work); } static void drm_sched_job_begin(struct drm_sched_job *s_job) { struct drm_gpu_scheduler *sched = s_job->sched; dma_fence_add_callback(&s_job->s_fence->finished, &s_job->finish_cb, drm_sched_job_finish_cb); spin_lock(&sched->job_list_lock); list_add_tail(&s_job->node, &sched->ring_mirror_list); if (sched->timeout != MAX_SCHEDULE_TIMEOUT && list_first_entry_or_null(&sched->ring_mirror_list, struct drm_sched_job, node) == s_job) schedule_delayed_work(&s_job->work_tdr, sched->timeout); spin_unlock(&sched->job_list_lock); } static void drm_sched_job_timedout(struct work_struct *work) { struct drm_sched_job *job = container_of(work, struct drm_sched_job, work_tdr.work); job->sched->ops->timedout_job(job); } void drm_sched_hw_job_reset(struct drm_gpu_scheduler *sched, struct drm_sched_job *bad) { struct drm_sched_job *s_job; struct drm_sched_entity *entity, *tmp; int i; spin_lock(&sched->job_list_lock); list_for_each_entry_reverse(s_job, &sched->ring_mirror_list, node) { if (s_job->s_fence->parent && dma_fence_remove_callback(s_job->s_fence->parent, &s_job->s_fence->cb)) { dma_fence_put(s_job->s_fence->parent); s_job->s_fence->parent = NULL; atomic_dec(&sched->hw_rq_count); } } spin_unlock(&sched->job_list_lock); if (bad && bad->s_priority != DRM_SCHED_PRIORITY_KERNEL) { atomic_inc(&bad->karma); /* don't increase @bad's karma if it's from KERNEL RQ, * becuase sometimes GPU hang would cause kernel jobs (like VM updating jobs) * corrupt but keep in mind that kernel jobs always considered good. */ for (i = DRM_SCHED_PRIORITY_MIN; i < DRM_SCHED_PRIORITY_KERNEL; i++ ) { struct drm_sched_rq *rq = &sched->sched_rq[i]; spin_lock(&rq->lock); list_for_each_entry_safe(entity, tmp, &rq->entities, list) { if (bad->s_fence->scheduled.context == entity->fence_context) { if (atomic_read(&bad->karma) > bad->sched->hang_limit) if (entity->guilty) atomic_set(entity->guilty, 1); break; } } spin_unlock(&rq->lock); if (&entity->list != &rq->entities) break; } } } EXPORT_SYMBOL(drm_sched_hw_job_reset); void drm_sched_job_recovery(struct drm_gpu_scheduler *sched) { struct drm_sched_job *s_job, *tmp; bool found_guilty = false; int r; spin_lock(&sched->job_list_lock); s_job = list_first_entry_or_null(&sched->ring_mirror_list, struct drm_sched_job, node); if (s_job && sched->timeout != MAX_SCHEDULE_TIMEOUT) schedule_delayed_work(&s_job->work_tdr, sched->timeout); list_for_each_entry_safe(s_job, tmp, &sched->ring_mirror_list, node) { struct drm_sched_fence *s_fence = s_job->s_fence; struct dma_fence *fence; uint64_t guilty_context; if (!found_guilty && atomic_read(&s_job->karma) > sched->hang_limit) { found_guilty = true; guilty_context = s_job->s_fence->scheduled.context; } if (found_guilty && s_job->s_fence->scheduled.context == guilty_context) dma_fence_set_error(&s_fence->finished, -ECANCELED); spin_unlock(&sched->job_list_lock); fence = sched->ops->run_job(s_job); atomic_inc(&sched->hw_rq_count); dma_fence_put(s_job->entity->last_scheduled); s_job->entity->last_scheduled = dma_fence_get(&s_fence->finished); if (fence) { s_fence->parent = dma_fence_get(fence); r = dma_fence_add_callback(fence, &s_fence->cb, drm_sched_process_job); if (r == -ENOENT) drm_sched_process_job(fence, &s_fence->cb); else if (r) DRM_ERROR("fence add callback failed (%d)\n", r); dma_fence_put(fence); } else { drm_sched_process_job(NULL, &s_fence->cb); } spin_lock(&sched->job_list_lock); } spin_unlock(&sched->job_list_lock); } EXPORT_SYMBOL(drm_sched_job_recovery); /* init a sched_job with basic field */ int drm_sched_job_init(struct drm_sched_job *job, struct drm_gpu_scheduler *sched, struct drm_sched_entity *entity, void *owner) { job->sched = sched; job->entity = entity; job->s_priority = entity->rq - sched->sched_rq; job->s_fence = drm_sched_fence_create(entity, owner); if (!job->s_fence) return -ENOMEM; job->id = atomic64_inc_return(&sched->job_id_count); INIT_WORK(&job->finish_work, drm_sched_job_finish); INIT_LIST_HEAD(&job->node); INIT_DELAYED_WORK(&job->work_tdr, drm_sched_job_timedout); return 0; } EXPORT_SYMBOL(drm_sched_job_init); /** * Return ture if we can push more jobs to the hw. */ static bool drm_sched_ready(struct drm_gpu_scheduler *sched) { return atomic_read(&sched->hw_rq_count) < sched->hw_submission_limit; } /** * Wake up the scheduler when it is ready */ static void drm_sched_wakeup(struct drm_gpu_scheduler *sched) { if (drm_sched_ready(sched)) wake_up_interruptible(&sched->wake_up_worker); } /** * Select next entity to process */ static struct drm_sched_entity * drm_sched_select_entity(struct drm_gpu_scheduler *sched) { struct drm_sched_entity *entity; int i; if (!drm_sched_ready(sched)) return NULL; /* Kernel run queue has higher priority than normal run queue*/ for (i = DRM_SCHED_PRIORITY_MAX - 1; i >= DRM_SCHED_PRIORITY_MIN; i--) { entity = drm_sched_rq_select_entity(&sched->sched_rq[i]); if (entity) break; } return entity; } static void drm_sched_process_job(struct dma_fence *f, struct dma_fence_cb *cb) { struct drm_sched_fence *s_fence = container_of(cb, struct drm_sched_fence, cb); struct drm_gpu_scheduler *sched = s_fence->sched; dma_fence_get(&s_fence->finished); atomic_dec(&sched->hw_rq_count); drm_sched_fence_finished(s_fence); trace_drm_sched_process_job(s_fence); dma_fence_put(&s_fence->finished); wake_up_interruptible(&sched->wake_up_worker); } static bool drm_sched_blocked(struct drm_gpu_scheduler *sched) { if (kthread_should_park()) { kthread_parkme(); return true; } return false; } static int drm_sched_main(void *param) { struct sched_param sparam = {.sched_priority = 1}; struct drm_gpu_scheduler *sched = (struct drm_gpu_scheduler *)param; int r; sched_setscheduler(current, SCHED_FIFO, &sparam); while (!kthread_should_stop()) { struct drm_sched_entity *entity = NULL; struct drm_sched_fence *s_fence; struct drm_sched_job *sched_job; struct dma_fence *fence; wait_event_interruptible(sched->wake_up_worker, (!drm_sched_blocked(sched) && (entity = drm_sched_select_entity(sched))) || kthread_should_stop()); if (!entity) continue; sched_job = drm_sched_entity_pop_job(entity); if (!sched_job) continue; s_fence = sched_job->s_fence; atomic_inc(&sched->hw_rq_count); drm_sched_job_begin(sched_job); fence = sched->ops->run_job(sched_job); drm_sched_fence_scheduled(s_fence); if (fence) { s_fence->parent = dma_fence_get(fence); r = dma_fence_add_callback(fence, &s_fence->cb, drm_sched_process_job); if (r == -ENOENT) drm_sched_process_job(fence, &s_fence->cb); else if (r) DRM_ERROR("fence add callback failed (%d)\n", r); dma_fence_put(fence); } else { drm_sched_process_job(NULL, &s_fence->cb); } wake_up(&sched->job_scheduled); } return 0; } /** * Init a gpu scheduler instance * * @sched The pointer to the scheduler * @ops The backend operations for this scheduler. * @hw_submissions Number of hw submissions to do. * @name Name used for debugging * * Return 0 on success, otherwise error code. */ int drm_sched_init(struct drm_gpu_scheduler *sched, const struct drm_sched_backend_ops *ops, unsigned hw_submission, unsigned hang_limit, long timeout, const char *name) { int i; sched->ops = ops; sched->hw_submission_limit = hw_submission; sched->name = name; sched->timeout = timeout; sched->hang_limit = hang_limit; for (i = DRM_SCHED_PRIORITY_MIN; i < DRM_SCHED_PRIORITY_MAX; i++) drm_sched_rq_init(&sched->sched_rq[i]); init_waitqueue_head(&sched->wake_up_worker); init_waitqueue_head(&sched->job_scheduled); INIT_LIST_HEAD(&sched->ring_mirror_list); spin_lock_init(&sched->job_list_lock); atomic_set(&sched->hw_rq_count, 0); atomic64_set(&sched->job_id_count, 0); /* Each scheduler will run on a seperate kernel thread */ sched->thread = kthread_run(drm_sched_main, sched, sched->name); if (IS_ERR(sched->thread)) { DRM_ERROR("Failed to create scheduler for %s.\n", name); return PTR_ERR(sched->thread); } return 0; } EXPORT_SYMBOL(drm_sched_init); /** * Destroy a gpu scheduler * * @sched The pointer to the scheduler */ void drm_sched_fini(struct drm_gpu_scheduler *sched) { if (sched->thread) kthread_stop(sched->thread); } EXPORT_SYMBOL(drm_sched_fini);