/* * Contains CPU specific errata definitions * * Copyright (C) 2014 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include static bool __maybe_unused is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope) { WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); return MIDR_IS_CPU_MODEL_RANGE(read_cpuid_id(), entry->midr_model, entry->midr_range_min, entry->midr_range_max); } static bool __maybe_unused is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope) { u32 model; WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); model = read_cpuid_id(); model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) | MIDR_ARCHITECTURE_MASK; return model == entry->midr_model; } static bool has_mismatched_cache_line_size(const struct arm64_cpu_capabilities *entry, int scope) { WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible()); return (read_cpuid_cachetype() & arm64_ftr_reg_ctrel0.strict_mask) != (arm64_ftr_reg_ctrel0.sys_val & arm64_ftr_reg_ctrel0.strict_mask); } static int cpu_enable_trap_ctr_access(void *__unused) { /* Clear SCTLR_EL1.UCT */ config_sctlr_el1(SCTLR_EL1_UCT, 0); return 0; } #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR #include #include DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data); #ifdef CONFIG_KVM extern char __psci_hyp_bp_inval_start[], __psci_hyp_bp_inval_end[]; extern char __qcom_hyp_sanitize_link_stack_start[]; extern char __qcom_hyp_sanitize_link_stack_end[]; extern char __smccc_workaround_1_smc_start[]; extern char __smccc_workaround_1_smc_end[]; extern char __smccc_workaround_1_hvc_start[]; extern char __smccc_workaround_1_hvc_end[]; static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start, const char *hyp_vecs_end) { void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K); int i; for (i = 0; i < SZ_2K; i += 0x80) memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start); flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K); } static void __install_bp_hardening_cb(bp_hardening_cb_t fn, const char *hyp_vecs_start, const char *hyp_vecs_end) { static int last_slot = -1; static DEFINE_SPINLOCK(bp_lock); int cpu, slot = -1; spin_lock(&bp_lock); for_each_possible_cpu(cpu) { if (per_cpu(bp_hardening_data.fn, cpu) == fn) { slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu); break; } } if (slot == -1) { last_slot++; BUG_ON(((__bp_harden_hyp_vecs_end - __bp_harden_hyp_vecs_start) / SZ_2K) <= last_slot); slot = last_slot; __copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end); } __this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot); __this_cpu_write(bp_hardening_data.fn, fn); spin_unlock(&bp_lock); } #else #define __psci_hyp_bp_inval_start NULL #define __psci_hyp_bp_inval_end NULL #define __qcom_hyp_sanitize_link_stack_start NULL #define __qcom_hyp_sanitize_link_stack_end NULL #define __smccc_workaround_1_smc_start NULL #define __smccc_workaround_1_smc_end NULL #define __smccc_workaround_1_hvc_start NULL #define __smccc_workaround_1_hvc_end NULL static void __install_bp_hardening_cb(bp_hardening_cb_t fn, const char *hyp_vecs_start, const char *hyp_vecs_end) { __this_cpu_write(bp_hardening_data.fn, fn); } #endif /* CONFIG_KVM */ static void install_bp_hardening_cb(const struct arm64_cpu_capabilities *entry, bp_hardening_cb_t fn, const char *hyp_vecs_start, const char *hyp_vecs_end) { u64 pfr0; if (!entry->matches(entry, SCOPE_LOCAL_CPU)) return; pfr0 = read_cpuid(ID_AA64PFR0_EL1); if (cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_CSV2_SHIFT)) return; __install_bp_hardening_cb(fn, hyp_vecs_start, hyp_vecs_end); } #include #include #include static void call_smc_arch_workaround_1(void) { arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL); } static void call_hvc_arch_workaround_1(void) { arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL); } static bool check_smccc_arch_workaround_1(const struct arm64_cpu_capabilities *entry) { bp_hardening_cb_t cb; void *smccc_start, *smccc_end; struct arm_smccc_res res; if (!entry->matches(entry, SCOPE_LOCAL_CPU)) return false; if (psci_ops.smccc_version == SMCCC_VERSION_1_0) return false; switch (psci_ops.conduit) { case PSCI_CONDUIT_HVC: arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_ARCH_WORKAROUND_1, &res); if (res.a0) return false; cb = call_hvc_arch_workaround_1; smccc_start = __smccc_workaround_1_hvc_start; smccc_end = __smccc_workaround_1_hvc_end; break; case PSCI_CONDUIT_SMC: arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_ARCH_WORKAROUND_1, &res); if (res.a0) return false; cb = call_smc_arch_workaround_1; smccc_start = __smccc_workaround_1_smc_start; smccc_end = __smccc_workaround_1_smc_end; break; default: return false; } install_bp_hardening_cb(entry, cb, smccc_start, smccc_end); return true; } static int enable_psci_bp_hardening(void *data) { const struct arm64_cpu_capabilities *entry = data; if (psci_ops.get_version) { if (check_smccc_arch_workaround_1(entry)) return 0; install_bp_hardening_cb(entry, (bp_hardening_cb_t)psci_ops.get_version, __psci_hyp_bp_inval_start, __psci_hyp_bp_inval_end); } return 0; } static void qcom_link_stack_sanitization(void) { u64 tmp; asm volatile("mov %0, x30 \n" ".rept 16 \n" "bl . + 4 \n" ".endr \n" "mov x30, %0 \n" : "=&r" (tmp)); } static int qcom_enable_link_stack_sanitization(void *data) { const struct arm64_cpu_capabilities *entry = data; install_bp_hardening_cb(entry, qcom_link_stack_sanitization, __qcom_hyp_sanitize_link_stack_start, __qcom_hyp_sanitize_link_stack_end); return 0; } #endif /* CONFIG_HARDEN_BRANCH_PREDICTOR */ #define MIDR_RANGE(model, min, max) \ .def_scope = SCOPE_LOCAL_CPU, \ .matches = is_affected_midr_range, \ .midr_model = model, \ .midr_range_min = min, \ .midr_range_max = max #define MIDR_ALL_VERSIONS(model) \ .def_scope = SCOPE_LOCAL_CPU, \ .matches = is_affected_midr_range, \ .midr_model = model, \ .midr_range_min = 0, \ .midr_range_max = (MIDR_VARIANT_MASK | MIDR_REVISION_MASK) const struct arm64_cpu_capabilities arm64_errata[] = { #if defined(CONFIG_ARM64_ERRATUM_826319) || \ defined(CONFIG_ARM64_ERRATUM_827319) || \ defined(CONFIG_ARM64_ERRATUM_824069) { /* Cortex-A53 r0p[012] */ .desc = "ARM errata 826319, 827319, 824069", .capability = ARM64_WORKAROUND_CLEAN_CACHE, MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x02), .enable = cpu_enable_cache_maint_trap, }, #endif #ifdef CONFIG_ARM64_ERRATUM_819472 { /* Cortex-A53 r0p[01] */ .desc = "ARM errata 819472", .capability = ARM64_WORKAROUND_CLEAN_CACHE, MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x01), .enable = cpu_enable_cache_maint_trap, }, #endif #ifdef CONFIG_ARM64_ERRATUM_832075 { /* Cortex-A57 r0p0 - r1p2 */ .desc = "ARM erratum 832075", .capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE, MIDR_RANGE(MIDR_CORTEX_A57, MIDR_CPU_VAR_REV(0, 0), MIDR_CPU_VAR_REV(1, 2)), }, #endif #ifdef CONFIG_ARM64_ERRATUM_834220 { /* Cortex-A57 r0p0 - r1p2 */ .desc = "ARM erratum 834220", .capability = ARM64_WORKAROUND_834220, MIDR_RANGE(MIDR_CORTEX_A57, MIDR_CPU_VAR_REV(0, 0), MIDR_CPU_VAR_REV(1, 2)), }, #endif #ifdef CONFIG_ARM64_ERRATUM_845719 { /* Cortex-A53 r0p[01234] */ .desc = "ARM erratum 845719", .capability = ARM64_WORKAROUND_845719, MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x04), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_23154 { /* Cavium ThunderX, pass 1.x */ .desc = "Cavium erratum 23154", .capability = ARM64_WORKAROUND_CAVIUM_23154, MIDR_RANGE(MIDR_THUNDERX, 0x00, 0x01), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_27456 { /* Cavium ThunderX, T88 pass 1.x - 2.1 */ .desc = "Cavium erratum 27456", .capability = ARM64_WORKAROUND_CAVIUM_27456, MIDR_RANGE(MIDR_THUNDERX, MIDR_CPU_VAR_REV(0, 0), MIDR_CPU_VAR_REV(1, 1)), }, { /* Cavium ThunderX, T81 pass 1.0 */ .desc = "Cavium erratum 27456", .capability = ARM64_WORKAROUND_CAVIUM_27456, MIDR_RANGE(MIDR_THUNDERX_81XX, 0x00, 0x00), }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_30115 { /* Cavium ThunderX, T88 pass 1.x - 2.2 */ .desc = "Cavium erratum 30115", .capability = ARM64_WORKAROUND_CAVIUM_30115, MIDR_RANGE(MIDR_THUNDERX, 0x00, (1 << MIDR_VARIANT_SHIFT) | 2), }, { /* Cavium ThunderX, T81 pass 1.0 - 1.2 */ .desc = "Cavium erratum 30115", .capability = ARM64_WORKAROUND_CAVIUM_30115, MIDR_RANGE(MIDR_THUNDERX_81XX, 0x00, 0x02), }, { /* Cavium ThunderX, T83 pass 1.0 */ .desc = "Cavium erratum 30115", .capability = ARM64_WORKAROUND_CAVIUM_30115, MIDR_RANGE(MIDR_THUNDERX_83XX, 0x00, 0x00), }, #endif { .desc = "Mismatched cache line size", .capability = ARM64_MISMATCHED_CACHE_LINE_SIZE, .matches = has_mismatched_cache_line_size, .def_scope = SCOPE_LOCAL_CPU, .enable = cpu_enable_trap_ctr_access, }, #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003 { .desc = "Qualcomm Technologies Falkor erratum 1003", .capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003, MIDR_RANGE(MIDR_QCOM_FALKOR_V1, MIDR_CPU_VAR_REV(0, 0), MIDR_CPU_VAR_REV(0, 0)), }, { .desc = "Qualcomm Technologies Kryo erratum 1003", .capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003, .def_scope = SCOPE_LOCAL_CPU, .midr_model = MIDR_QCOM_KRYO, .matches = is_kryo_midr, }, #endif #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009 { .desc = "Qualcomm Technologies Falkor erratum 1009", .capability = ARM64_WORKAROUND_REPEAT_TLBI, MIDR_RANGE(MIDR_QCOM_FALKOR_V1, MIDR_CPU_VAR_REV(0, 0), MIDR_CPU_VAR_REV(0, 0)), }, #endif #ifdef CONFIG_ARM64_ERRATUM_858921 { /* Cortex-A73 all versions */ .desc = "ARM erratum 858921", .capability = ARM64_WORKAROUND_858921, MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), }, #endif #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), .enable = enable_psci_bp_hardening, }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), .enable = enable_psci_bp_hardening, }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), .enable = enable_psci_bp_hardening, }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_CORTEX_A75), .enable = enable_psci_bp_hardening, }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR_V1), .enable = qcom_enable_link_stack_sanitization, }, { .capability = ARM64_HARDEN_BP_POST_GUEST_EXIT, MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR_V1), }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), .enable = enable_psci_bp_hardening, }, { .capability = ARM64_HARDEN_BRANCH_PREDICTOR, MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), .enable = enable_psci_bp_hardening, }, #endif { } }; /* * The CPU Errata work arounds are detected and applied at boot time * and the related information is freed soon after. If the new CPU requires * an errata not detected at boot, fail this CPU. */ void verify_local_cpu_errata_workarounds(void) { const struct arm64_cpu_capabilities *caps = arm64_errata; for (; caps->matches; caps++) { if (cpus_have_cap(caps->capability)) { if (caps->enable) caps->enable((void *)caps); } else if (caps->matches(caps, SCOPE_LOCAL_CPU)) { pr_crit("CPU%d: Requires work around for %s, not detected" " at boot time\n", smp_processor_id(), caps->desc ? : "an erratum"); cpu_die_early(); } } } void update_cpu_errata_workarounds(void) { update_cpu_capabilities(arm64_errata, "enabling workaround for"); } void __init enable_errata_workarounds(void) { enable_cpu_capabilities(arm64_errata); }