/* * Intel & MS High Precision Event Timer Implementation. * * Copyright (C) 2003 Intel Corporation * Venki Pallipadi * (c) Copyright 2004 Hewlett-Packard Development Company, L.P. * Bob Picco <robert.picco@hp.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/miscdevice.h> #include <linux/major.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/mm.h> #include <linux/proc_fs.h> #include <linux/spinlock.h> #include <linux/sysctl.h> #include <linux/wait.h> #include <linux/sched/signal.h> #include <linux/bcd.h> #include <linux/seq_file.h> #include <linux/bitops.h> #include <linux/compat.h> #include <linux/clocksource.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/acpi.h> #include <linux/hpet.h> #include <asm/current.h> #include <asm/irq.h> #include <asm/div64.h> /* * The High Precision Event Timer driver. * This driver is closely modelled after the rtc.c driver. * See HPET spec revision 1. */ #define HPET_USER_FREQ (64) #define HPET_DRIFT (500) #define HPET_RANGE_SIZE 1024 /* from HPET spec */ /* WARNING -- don't get confused. These macros are never used * to write the (single) counter, and rarely to read it. * They're badly named; to fix, someday. */ #if BITS_PER_LONG == 64 #define write_counter(V, MC) writeq(V, MC) #define read_counter(MC) readq(MC) #else #define write_counter(V, MC) writel(V, MC) #define read_counter(MC) readl(MC) #endif static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */ static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ; /* This clocksource driver currently only works on ia64 */ #ifdef CONFIG_IA64 static void __iomem *hpet_mctr; static u64 read_hpet(struct clocksource *cs) { return (u64)read_counter((void __iomem *)hpet_mctr); } static struct clocksource clocksource_hpet = { .name = "hpet", .rating = 250, .read = read_hpet, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct clocksource *hpet_clocksource; #endif /* A lock for concurrent access by app and isr hpet activity. */ static DEFINE_SPINLOCK(hpet_lock); #define HPET_DEV_NAME (7) struct hpet_dev { struct hpets *hd_hpets; struct hpet __iomem *hd_hpet; struct hpet_timer __iomem *hd_timer; unsigned long hd_ireqfreq; unsigned long hd_irqdata; wait_queue_head_t hd_waitqueue; struct fasync_struct *hd_async_queue; unsigned int hd_flags; unsigned int hd_irq; unsigned int hd_hdwirq; char hd_name[HPET_DEV_NAME]; }; struct hpets { struct hpets *hp_next; struct hpet __iomem *hp_hpet; unsigned long hp_hpet_phys; struct clocksource *hp_clocksource; unsigned long long hp_tick_freq; unsigned long hp_delta; unsigned int hp_ntimer; unsigned int hp_which; struct hpet_dev hp_dev[1]; }; static struct hpets *hpets; #define HPET_OPEN 0x0001 #define HPET_IE 0x0002 /* interrupt enabled */ #define HPET_PERIODIC 0x0004 #define HPET_SHARED_IRQ 0x0008 #ifndef readq static inline unsigned long long readq(void __iomem *addr) { return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL); } #endif #ifndef writeq static inline void writeq(unsigned long long v, void __iomem *addr) { writel(v & 0xffffffff, addr); writel(v >> 32, addr + 4); } #endif static irqreturn_t hpet_interrupt(int irq, void *data) { struct hpet_dev *devp; unsigned long isr; devp = data; isr = 1 << (devp - devp->hd_hpets->hp_dev); if ((devp->hd_flags & HPET_SHARED_IRQ) && !(isr & readl(&devp->hd_hpet->hpet_isr))) return IRQ_NONE; spin_lock(&hpet_lock); devp->hd_irqdata++; /* * For non-periodic timers, increment the accumulator. * This has the effect of treating non-periodic like periodic. */ if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) { unsigned long m, t, mc, base, k; struct hpet __iomem *hpet = devp->hd_hpet; struct hpets *hpetp = devp->hd_hpets; t = devp->hd_ireqfreq; m = read_counter(&devp->hd_timer->hpet_compare); mc = read_counter(&hpet->hpet_mc); /* The time for the next interrupt would logically be t + m, * however, if we are very unlucky and the interrupt is delayed * for longer than t then we will completely miss the next * interrupt if we set t + m and an application will hang. * Therefore we need to make a more complex computation assuming * that there exists a k for which the following is true: * k * t + base < mc + delta * (k + 1) * t + base > mc + delta * where t is the interval in hpet ticks for the given freq, * base is the theoretical start value 0 < base < t, * mc is the main counter value at the time of the interrupt, * delta is the time it takes to write the a value to the * comparator. * k may then be computed as (mc - base + delta) / t . */ base = mc % t; k = (mc - base + hpetp->hp_delta) / t; write_counter(t * (k + 1) + base, &devp->hd_timer->hpet_compare); } if (devp->hd_flags & HPET_SHARED_IRQ) writel(isr, &devp->hd_hpet->hpet_isr); spin_unlock(&hpet_lock); wake_up_interruptible(&devp->hd_waitqueue); kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN); return IRQ_HANDLED; } static void hpet_timer_set_irq(struct hpet_dev *devp) { unsigned long v; int irq, gsi; struct hpet_timer __iomem *timer; spin_lock_irq(&hpet_lock); if (devp->hd_hdwirq) { spin_unlock_irq(&hpet_lock); return; } timer = devp->hd_timer; /* we prefer level triggered mode */ v = readl(&timer->hpet_config); if (!(v & Tn_INT_TYPE_CNF_MASK)) { v |= Tn_INT_TYPE_CNF_MASK; writel(v, &timer->hpet_config); } spin_unlock_irq(&hpet_lock); v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >> Tn_INT_ROUTE_CAP_SHIFT; /* * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by * legacy device. In IO APIC mode, we skip all the legacy IRQS. */ if (acpi_irq_model == ACPI_IRQ_MODEL_PIC) v &= ~0xf3df; else v &= ~0xffff; for_each_set_bit(irq, &v, HPET_MAX_IRQ) { if (irq >= nr_irqs) { irq = HPET_MAX_IRQ; break; } gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW); if (gsi > 0) break; /* FIXME: Setup interrupt source table */ } if (irq < HPET_MAX_IRQ) { spin_lock_irq(&hpet_lock); v = readl(&timer->hpet_config); v |= irq << Tn_INT_ROUTE_CNF_SHIFT; writel(v, &timer->hpet_config); devp->hd_hdwirq = gsi; spin_unlock_irq(&hpet_lock); } return; } static int hpet_open(struct inode *inode, struct file *file) { struct hpet_dev *devp; struct hpets *hpetp; int i; if (file->f_mode & FMODE_WRITE) return -EINVAL; mutex_lock(&hpet_mutex); spin_lock_irq(&hpet_lock); for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next) for (i = 0; i < hpetp->hp_ntimer; i++) if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) continue; else { devp = &hpetp->hp_dev[i]; break; } if (!devp) { spin_unlock_irq(&hpet_lock); mutex_unlock(&hpet_mutex); return -EBUSY; } file->private_data = devp; devp->hd_irqdata = 0; devp->hd_flags |= HPET_OPEN; spin_unlock_irq(&hpet_lock); mutex_unlock(&hpet_mutex); hpet_timer_set_irq(devp); return 0; } static ssize_t hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos) { DECLARE_WAITQUEUE(wait, current); unsigned long data; ssize_t retval; struct hpet_dev *devp; devp = file->private_data; if (!devp->hd_ireqfreq) return -EIO; if (count < sizeof(unsigned long)) return -EINVAL; add_wait_queue(&devp->hd_waitqueue, &wait); for ( ; ; ) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irq(&hpet_lock); data = devp->hd_irqdata; devp->hd_irqdata = 0; spin_unlock_irq(&hpet_lock); if (data) break; else if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto out; } else if (signal_pending(current)) { retval = -ERESTARTSYS; goto out; } schedule(); } retval = put_user(data, (unsigned long __user *)buf); if (!retval) retval = sizeof(unsigned long); out: __set_current_state(TASK_RUNNING); remove_wait_queue(&devp->hd_waitqueue, &wait); return retval; } static __poll_t hpet_poll(struct file *file, poll_table * wait) { unsigned long v; struct hpet_dev *devp; devp = file->private_data; if (!devp->hd_ireqfreq) return 0; poll_wait(file, &devp->hd_waitqueue, wait); spin_lock_irq(&hpet_lock); v = devp->hd_irqdata; spin_unlock_irq(&hpet_lock); if (v != 0) return EPOLLIN | EPOLLRDNORM; return 0; } #ifdef CONFIG_HPET_MMAP #ifdef CONFIG_HPET_MMAP_DEFAULT static int hpet_mmap_enabled = 1; #else static int hpet_mmap_enabled = 0; #endif static __init int hpet_mmap_enable(char *str) { get_option(&str, &hpet_mmap_enabled); pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled"); return 1; } __setup("hpet_mmap", hpet_mmap_enable); static int hpet_mmap(struct file *file, struct vm_area_struct *vma) { struct hpet_dev *devp; unsigned long addr; if (!hpet_mmap_enabled) return -EACCES; devp = file->private_data; addr = devp->hd_hpets->hp_hpet_phys; if (addr & (PAGE_SIZE - 1)) return -ENOSYS; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return vm_iomap_memory(vma, addr, PAGE_SIZE); } #else static int hpet_mmap(struct file *file, struct vm_area_struct *vma) { return -ENOSYS; } #endif static int hpet_fasync(int fd, struct file *file, int on) { struct hpet_dev *devp; devp = file->private_data; if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0) return 0; else return -EIO; } static int hpet_release(struct inode *inode, struct file *file) { struct hpet_dev *devp; struct hpet_timer __iomem *timer; int irq = 0; devp = file->private_data; timer = devp->hd_timer; spin_lock_irq(&hpet_lock); writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK), &timer->hpet_config); irq = devp->hd_irq; devp->hd_irq = 0; devp->hd_ireqfreq = 0; if (devp->hd_flags & HPET_PERIODIC && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) { unsigned long v; v = readq(&timer->hpet_config); v ^= Tn_TYPE_CNF_MASK; writeq(v, &timer->hpet_config); } devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC); spin_unlock_irq(&hpet_lock); if (irq) free_irq(irq, devp); file->private_data = NULL; return 0; } static int hpet_ioctl_ieon(struct hpet_dev *devp) { struct hpet_timer __iomem *timer; struct hpet __iomem *hpet; struct hpets *hpetp; int irq; unsigned long g, v, t, m; unsigned long flags, isr; timer = devp->hd_timer; hpet = devp->hd_hpet; hpetp = devp->hd_hpets; if (!devp->hd_ireqfreq) return -EIO; spin_lock_irq(&hpet_lock); if (devp->hd_flags & HPET_IE) { spin_unlock_irq(&hpet_lock); return -EBUSY; } devp->hd_flags |= HPET_IE; if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK) devp->hd_flags |= HPET_SHARED_IRQ; spin_unlock_irq(&hpet_lock); irq = devp->hd_hdwirq; if (irq) { unsigned long irq_flags; if (devp->hd_flags & HPET_SHARED_IRQ) { /* * To prevent the interrupt handler from seeing an * unwanted interrupt status bit, program the timer * so that it will not fire in the near future ... */ writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK, &timer->hpet_config); write_counter(read_counter(&hpet->hpet_mc), &timer->hpet_compare); /* ... and clear any left-over status. */ isr = 1 << (devp - devp->hd_hpets->hp_dev); writel(isr, &hpet->hpet_isr); } sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev)); irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0; if (request_irq(irq, hpet_interrupt, irq_flags, devp->hd_name, (void *)devp)) { printk(KERN_ERR "hpet: IRQ %d is not free\n", irq); irq = 0; } } if (irq == 0) { spin_lock_irq(&hpet_lock); devp->hd_flags ^= HPET_IE; spin_unlock_irq(&hpet_lock); return -EIO; } devp->hd_irq = irq; t = devp->hd_ireqfreq; v = readq(&timer->hpet_config); /* 64-bit comparators are not yet supported through the ioctls, * so force this into 32-bit mode if it supports both modes */ g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK; if (devp->hd_flags & HPET_PERIODIC) { g |= Tn_TYPE_CNF_MASK; v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK; writeq(v, &timer->hpet_config); local_irq_save(flags); /* * NOTE: First we modify the hidden accumulator * register supported by periodic-capable comparators. * We never want to modify the (single) counter; that * would affect all the comparators. The value written * is the counter value when the first interrupt is due. */ m = read_counter(&hpet->hpet_mc); write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); /* * Then we modify the comparator, indicating the period * for subsequent interrupt. */ write_counter(t, &timer->hpet_compare); } else { local_irq_save(flags); m = read_counter(&hpet->hpet_mc); write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); } if (devp->hd_flags & HPET_SHARED_IRQ) { isr = 1 << (devp - devp->hd_hpets->hp_dev); writel(isr, &hpet->hpet_isr); } writeq(g, &timer->hpet_config); local_irq_restore(flags); return 0; } /* converts Hz to number of timer ticks */ static inline unsigned long hpet_time_div(struct hpets *hpets, unsigned long dis) { unsigned long long m; m = hpets->hp_tick_freq + (dis >> 1); do_div(m, dis); return (unsigned long)m; } static int hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg, struct hpet_info *info) { struct hpet_timer __iomem *timer; struct hpet __iomem *hpet; struct hpets *hpetp; int err; unsigned long v; switch (cmd) { case HPET_IE_OFF: case HPET_INFO: case HPET_EPI: case HPET_DPI: case HPET_IRQFREQ: timer = devp->hd_timer; hpet = devp->hd_hpet; hpetp = devp->hd_hpets; break; case HPET_IE_ON: return hpet_ioctl_ieon(devp); default: return -EINVAL; } err = 0; switch (cmd) { case HPET_IE_OFF: if ((devp->hd_flags & HPET_IE) == 0) break; v = readq(&timer->hpet_config); v &= ~Tn_INT_ENB_CNF_MASK; writeq(v, &timer->hpet_config); if (devp->hd_irq) { free_irq(devp->hd_irq, devp); devp->hd_irq = 0; } devp->hd_flags ^= HPET_IE; break; case HPET_INFO: { memset(info, 0, sizeof(*info)); if (devp->hd_ireqfreq) info->hi_ireqfreq = hpet_time_div(hpetp, devp->hd_ireqfreq); info->hi_flags = readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK; info->hi_hpet = hpetp->hp_which; info->hi_timer = devp - hpetp->hp_dev; break; } case HPET_EPI: v = readq(&timer->hpet_config); if ((v & Tn_PER_INT_CAP_MASK) == 0) { err = -ENXIO; break; } devp->hd_flags |= HPET_PERIODIC; break; case HPET_DPI: v = readq(&timer->hpet_config); if ((v & Tn_PER_INT_CAP_MASK) == 0) { err = -ENXIO; break; } if (devp->hd_flags & HPET_PERIODIC && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) { v = readq(&timer->hpet_config); v ^= Tn_TYPE_CNF_MASK; writeq(v, &timer->hpet_config); } devp->hd_flags &= ~HPET_PERIODIC; break; case HPET_IRQFREQ: if ((arg > hpet_max_freq) && !capable(CAP_SYS_RESOURCE)) { err = -EACCES; break; } if (!arg) { err = -EINVAL; break; } devp->hd_ireqfreq = hpet_time_div(hpetp, arg); } return err; } static long hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct hpet_info info; int err; mutex_lock(&hpet_mutex); err = hpet_ioctl_common(file->private_data, cmd, arg, &info); mutex_unlock(&hpet_mutex); if ((cmd == HPET_INFO) && !err && (copy_to_user((void __user *)arg, &info, sizeof(info)))) err = -EFAULT; return err; } #ifdef CONFIG_COMPAT struct compat_hpet_info { compat_ulong_t hi_ireqfreq; /* Hz */ compat_ulong_t hi_flags; /* information */ unsigned short hi_hpet; unsigned short hi_timer; }; static long hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct hpet_info info; int err; mutex_lock(&hpet_mutex); err = hpet_ioctl_common(file->private_data, cmd, arg, &info); mutex_unlock(&hpet_mutex); if ((cmd == HPET_INFO) && !err) { struct compat_hpet_info __user *u = compat_ptr(arg); if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) || put_user(info.hi_flags, &u->hi_flags) || put_user(info.hi_hpet, &u->hi_hpet) || put_user(info.hi_timer, &u->hi_timer)) err = -EFAULT; } return err; } #endif static const struct file_operations hpet_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = hpet_read, .poll = hpet_poll, .unlocked_ioctl = hpet_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = hpet_compat_ioctl, #endif .open = hpet_open, .release = hpet_release, .fasync = hpet_fasync, .mmap = hpet_mmap, }; static int hpet_is_known(struct hpet_data *hdp) { struct hpets *hpetp; for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next) if (hpetp->hp_hpet_phys == hdp->hd_phys_address) return 1; return 0; } static struct ctl_table hpet_table[] = { { .procname = "max-user-freq", .data = &hpet_max_freq, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, {} }; static struct ctl_table hpet_root[] = { { .procname = "hpet", .maxlen = 0, .mode = 0555, .child = hpet_table, }, {} }; static struct ctl_table dev_root[] = { { .procname = "dev", .maxlen = 0, .mode = 0555, .child = hpet_root, }, {} }; static struct ctl_table_header *sysctl_header; /* * Adjustment for when arming the timer with * initial conditions. That is, main counter * ticks expired before interrupts are enabled. */ #define TICK_CALIBRATE (1000UL) static unsigned long __hpet_calibrate(struct hpets *hpetp) { struct hpet_timer __iomem *timer = NULL; unsigned long t, m, count, i, flags, start; struct hpet_dev *devp; int j; struct hpet __iomem *hpet; for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++) if ((devp->hd_flags & HPET_OPEN) == 0) { timer = devp->hd_timer; break; } if (!timer) return 0; hpet = hpetp->hp_hpet; t = read_counter(&timer->hpet_compare); i = 0; count = hpet_time_div(hpetp, TICK_CALIBRATE); local_irq_save(flags); start = read_counter(&hpet->hpet_mc); do { m = read_counter(&hpet->hpet_mc); write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); } while (i++, (m - start) < count); local_irq_restore(flags); return (m - start) / i; } static unsigned long hpet_calibrate(struct hpets *hpetp) { unsigned long ret = ~0UL; unsigned long tmp; /* * Try to calibrate until return value becomes stable small value. * If SMI interruption occurs in calibration loop, the return value * will be big. This avoids its impact. */ for ( ; ; ) { tmp = __hpet_calibrate(hpetp); if (ret <= tmp) break; ret = tmp; } return ret; } int hpet_alloc(struct hpet_data *hdp) { u64 cap, mcfg; struct hpet_dev *devp; u32 i, ntimer; struct hpets *hpetp; size_t siz; struct hpet __iomem *hpet; static struct hpets *last; unsigned long period; unsigned long long temp; u32 remainder; /* * hpet_alloc can be called by platform dependent code. * If platform dependent code has allocated the hpet that * ACPI has also reported, then we catch it here. */ if (hpet_is_known(hdp)) { printk(KERN_DEBUG "%s: duplicate HPET ignored\n", __func__); return 0; } siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) * sizeof(struct hpet_dev)); hpetp = kzalloc(siz, GFP_KERNEL); if (!hpetp) return -ENOMEM; hpetp->hp_which = hpet_nhpet++; hpetp->hp_hpet = hdp->hd_address; hpetp->hp_hpet_phys = hdp->hd_phys_address; hpetp->hp_ntimer = hdp->hd_nirqs; for (i = 0; i < hdp->hd_nirqs; i++) hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i]; hpet = hpetp->hp_hpet; cap = readq(&hpet->hpet_cap); ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1; if (hpetp->hp_ntimer != ntimer) { printk(KERN_WARNING "hpet: number irqs doesn't agree" " with number of timers\n"); kfree(hpetp); return -ENODEV; } if (last) last->hp_next = hpetp; else hpets = hpetp; last = hpetp; period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >> HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */ temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */ temp += period >> 1; /* round */ do_div(temp, period); hpetp->hp_tick_freq = temp; /* ticks per second */ printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s", hpetp->hp_which, hdp->hd_phys_address, hpetp->hp_ntimer > 1 ? "s" : ""); for (i = 0; i < hpetp->hp_ntimer; i++) printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]); printk(KERN_CONT "\n"); temp = hpetp->hp_tick_freq; remainder = do_div(temp, 1000000); printk(KERN_INFO "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n", hpetp->hp_which, hpetp->hp_ntimer, cap & HPET_COUNTER_SIZE_MASK ? 64 : 32, (unsigned) temp, remainder); mcfg = readq(&hpet->hpet_config); if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) { write_counter(0L, &hpet->hpet_mc); mcfg |= HPET_ENABLE_CNF_MASK; writeq(mcfg, &hpet->hpet_config); } for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) { struct hpet_timer __iomem *timer; timer = &hpet->hpet_timers[devp - hpetp->hp_dev]; devp->hd_hpets = hpetp; devp->hd_hpet = hpet; devp->hd_timer = timer; /* * If the timer was reserved by platform code, * then make timer unavailable for opens. */ if (hdp->hd_state & (1 << i)) { devp->hd_flags = HPET_OPEN; continue; } init_waitqueue_head(&devp->hd_waitqueue); } hpetp->hp_delta = hpet_calibrate(hpetp); /* This clocksource driver currently only works on ia64 */ #ifdef CONFIG_IA64 if (!hpet_clocksource) { hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc; clocksource_hpet.archdata.fsys_mmio = hpet_mctr; clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq); hpetp->hp_clocksource = &clocksource_hpet; hpet_clocksource = &clocksource_hpet; } #endif return 0; } static acpi_status hpet_resources(struct acpi_resource *res, void *data) { struct hpet_data *hdp; acpi_status status; struct acpi_resource_address64 addr; hdp = data; status = acpi_resource_to_address64(res, &addr); if (ACPI_SUCCESS(status)) { hdp->hd_phys_address = addr.address.minimum; hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length); if (hpet_is_known(hdp)) { iounmap(hdp->hd_address); return AE_ALREADY_EXISTS; } } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) { struct acpi_resource_fixed_memory32 *fixmem32; fixmem32 = &res->data.fixed_memory32; hdp->hd_phys_address = fixmem32->address; hdp->hd_address = ioremap(fixmem32->address, HPET_RANGE_SIZE); if (hpet_is_known(hdp)) { iounmap(hdp->hd_address); return AE_ALREADY_EXISTS; } } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) { struct acpi_resource_extended_irq *irqp; int i, irq; irqp = &res->data.extended_irq; for (i = 0; i < irqp->interrupt_count; i++) { if (hdp->hd_nirqs >= HPET_MAX_TIMERS) break; irq = acpi_register_gsi(NULL, irqp->interrupts[i], irqp->triggering, irqp->polarity); if (irq < 0) return AE_ERROR; hdp->hd_irq[hdp->hd_nirqs] = irq; hdp->hd_nirqs++; } } return AE_OK; } static int hpet_acpi_add(struct acpi_device *device) { acpi_status result; struct hpet_data data; memset(&data, 0, sizeof(data)); result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, hpet_resources, &data); if (ACPI_FAILURE(result)) return -ENODEV; if (!data.hd_address || !data.hd_nirqs) { if (data.hd_address) iounmap(data.hd_address); printk("%s: no address or irqs in _CRS\n", __func__); return -ENODEV; } return hpet_alloc(&data); } static const struct acpi_device_id hpet_device_ids[] = { {"PNP0103", 0}, {"", 0}, }; static struct acpi_driver hpet_acpi_driver = { .name = "hpet", .ids = hpet_device_ids, .ops = { .add = hpet_acpi_add, }, }; static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops }; static int __init hpet_init(void) { int result; result = misc_register(&hpet_misc); if (result < 0) return -ENODEV; sysctl_header = register_sysctl_table(dev_root); result = acpi_bus_register_driver(&hpet_acpi_driver); if (result < 0) { if (sysctl_header) unregister_sysctl_table(sysctl_header); misc_deregister(&hpet_misc); return result; } return 0; } device_initcall(hpet_init); /* MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>"); MODULE_LICENSE("GPL"); */