/* * Written by: Patricia Gaughen , IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); /* * numa interface - we expect the numa architecture specific code to have * populated the following initialisation. * * 1) node_online_map - the map of all nodes configured (online) in the system * 2) node_start_pfn - the starting page frame number for a node * 3) node_end_pfn - the ending page fram number for a node */ unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; #ifdef CONFIG_DISCONTIGMEM /* * 4) physnode_map - the mapping between a pfn and owning node * physnode_map keeps track of the physical memory layout of a generic * numa node on a 64Mb break (each element of the array will * represent 64Mb of memory and will be marked by the node id. so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * * physnode_map[0-15] = 0; * physnode_map[16-31] = 1; * physnode_map[32- ] = -1; */ s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; EXPORT_SYMBOL(physnode_map); void memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", nid, start, end); printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); printk(KERN_DEBUG " "); for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { physnode_map[pfn / PAGES_PER_ELEMENT] = nid; printk(KERN_CONT "%lx ", pfn); } printk(KERN_CONT "\n"); } unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, unsigned long end_pfn) { unsigned long nr_pages = end_pfn - start_pfn; if (!nr_pages) return 0; return (nr_pages + 1) * sizeof(struct page); } #endif extern unsigned long find_max_low_pfn(void); extern unsigned long highend_pfn, highstart_pfn; #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) unsigned long node_remap_size[MAX_NUMNODES]; static void *node_remap_start_vaddr[MAX_NUMNODES]; void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); static unsigned long kva_start_pfn; static unsigned long kva_pages; int __cpuinit numa_cpu_node(int cpu) { return apic->x86_32_numa_cpu_node(cpu); } /* * FLAT - support for basic PC memory model with discontig enabled, essentially * a single node with all available processors in it with a flat * memory map. */ int __init get_memcfg_numa_flat(void) { printk(KERN_DEBUG "NUMA - single node, flat memory mode\n"); node_start_pfn[0] = 0; node_end_pfn[0] = max_pfn; memblock_x86_register_active_regions(0, 0, max_pfn); memory_present(0, 0, max_pfn); node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn); /* Indicate there is one node available. */ nodes_clear(node_online_map); node_set_online(0); return 1; } /* * Find the highest page frame number we have available for the node */ static void __init propagate_e820_map_node(int nid) { if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* * if a user has given mem=XXXX, then we need to make sure * that the node _starts_ before that, too, not just ends */ if (node_start_pfn[nid] > max_pfn) node_start_pfn[nid] = max_pfn; BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); } /* * Allocate memory for the pg_data_t for this node via a crude pre-bootmem * method. For node zero take this from the bottom of memory, for * subsequent nodes place them at node_remap_start_vaddr which contains * node local data in physically node local memory. See setup_memory() * for details. */ static void __init allocate_pgdat(int nid) { char buf[16]; if (node_has_online_mem(nid) && node_remap_start_vaddr[nid]) NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; else { unsigned long pgdat_phys; pgdat_phys = memblock_find_in_range(min_low_pfn<>PAGE_SHIFT)); memset(buf, 0, sizeof(buf)); sprintf(buf, "NODE_DATA %d", nid); memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf); } printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n", nid, (unsigned long)NODE_DATA(nid)); } /* * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel * virtual address space (KVA) is reserved and portions of nodes are mapped * using it. This is to allow node-local memory to be allocated for * structures that would normally require ZONE_NORMAL. The memory is * allocated with alloc_remap() and callers should be prepared to allocate * from the bootmem allocator instead. */ static unsigned long node_remap_start_pfn[MAX_NUMNODES]; static void *node_remap_end_vaddr[MAX_NUMNODES]; static void *node_remap_alloc_vaddr[MAX_NUMNODES]; static unsigned long node_remap_offset[MAX_NUMNODES]; void *alloc_remap(int nid, unsigned long size) { void *allocation = node_remap_alloc_vaddr[nid]; size = ALIGN(size, L1_CACHE_BYTES); if (!allocation || (allocation + size) > node_remap_end_vaddr[nid]) return NULL; node_remap_alloc_vaddr[nid] += size; memset(allocation, 0, size); return allocation; } static void __init remap_numa_kva(void) { void *vaddr; unsigned long pfn; int node; for_each_online_node(node) { printk(KERN_DEBUG "remap_numa_kva: node %d\n", node); for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { vaddr = node_remap_start_vaddr[node]+(pfn< pfn %08lx\n", __func__, vaddr, start_pfn + pfn); } } } #endif static __init unsigned long calculate_numa_remap_pages(void) { int nid; unsigned long size, reserve_pages = 0; for_each_online_node(nid) { u64 node_kva_target; u64 node_kva_final; /* * The acpi/srat node info can show hot-add memroy zones * where memory could be added but not currently present. */ printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", nid, node_start_pfn[nid], node_end_pfn[nid]); if (node_start_pfn[nid] > max_pfn) continue; if (!node_end_pfn[nid]) continue; if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* ensure the remap includes space for the pgdat. */ size = node_remap_size[nid]; size += ALIGN(sizeof(pg_data_t), PAGE_SIZE); /* convert size to large (pmd size) pages, rounding up */ size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; /* now the roundup is correct, convert to PAGE_SIZE pages */ size = size * PTRS_PER_PTE; node_kva_target = round_down(node_end_pfn[nid] - size, PTRS_PER_PTE); node_kva_target <<= PAGE_SHIFT; do { node_kva_final = memblock_find_in_range(node_kva_target, ((u64)node_end_pfn[nid])<>PAGE_SHIFT) > (node_start_pfn[nid])); if (node_kva_final == MEMBLOCK_ERROR) panic("Can not get kva ram\n"); node_remap_size[nid] = size; node_remap_offset[nid] = reserve_pages; reserve_pages += size; printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of" " node %d at %llx\n", size, nid, node_kva_final>>PAGE_SHIFT); /* * prevent kva address below max_low_pfn want it on system * with less memory later. * layout will be: KVA address , KVA RAM * * we are supposed to only record the one less then max_low_pfn * but we could have some hole in high memory, and it will only * check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide * to use it as free. * So memblock_x86_reserve_range here, hope we don't run out of that array */ memblock_x86_reserve_range(node_kva_final, node_kva_final+(((u64)size)<>PAGE_SHIFT; } printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n", reserve_pages); return reserve_pages; } static void init_remap_allocator(int nid) { node_remap_start_vaddr[nid] = pfn_to_kaddr( kva_start_pfn + node_remap_offset[nid]); node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + (node_remap_size[nid] * PAGE_SIZE); node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + ALIGN(sizeof(pg_data_t), PAGE_SIZE); printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid, (ulong) node_remap_start_vaddr[nid], (ulong) node_remap_end_vaddr[nid]); } void __init initmem_init(void) { int nid; long kva_target_pfn; /* * When mapping a NUMA machine we allocate the node_mem_map arrays * from node local memory. They are then mapped directly into KVA * between zone normal and vmalloc space. Calculate the size of * this space and use it to adjust the boundary between ZONE_NORMAL * and ZONE_HIGHMEM. */ get_memcfg_numa(); numa_init_array(); kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE); kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE); do { kva_start_pfn = memblock_find_in_range(kva_target_pfn<> PAGE_SHIFT; kva_target_pfn -= PTRS_PER_PTE; } while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn); if (kva_start_pfn == MEMBLOCK_ERROR) panic("Can not get kva space\n"); printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n", kva_start_pfn, max_low_pfn); printk(KERN_INFO "max_pfn = %lx\n", max_pfn); /* avoid clash with initrd */ memblock_x86_reserve_range(kva_start_pfn< max_low_pfn) highstart_pfn = max_low_pfn; printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = max_low_pfn; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", max_low_pfn, highstart_pfn); printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", (ulong) pfn_to_kaddr(max_low_pfn)); for_each_online_node(nid) { init_remap_allocator(nid); allocate_pgdat(nid); } remap_numa_kva(); printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", (ulong) pfn_to_kaddr(highstart_pfn)); for_each_online_node(nid) propagate_e820_map_node(nid); for_each_online_node(nid) { memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); NODE_DATA(nid)->node_id = nid; } setup_bootmem_allocator(); } #ifdef CONFIG_MEMORY_HOTPLUG static int paddr_to_nid(u64 addr) { int nid; unsigned long pfn = PFN_DOWN(addr); for_each_node(nid) if (node_start_pfn[nid] <= pfn && pfn < node_end_pfn[nid]) return nid; return -1; } /* * This function is used to ask node id BEFORE memmap and mem_section's * initialization (pfn_to_nid() can't be used yet). * If _PXM is not defined on ACPI's DSDT, node id must be found by this. */ int memory_add_physaddr_to_nid(u64 addr) { int nid = paddr_to_nid(addr); return (nid >= 0) ? nid : 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif