// SPDX-License-Identifier: GPL-2.0-or-later // SPI init/core code // // Copyright (C) 2005 David Brownell // Copyright (C) 2008 Secret Lab Technologies Ltd. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); #include "internals.h" static DEFINE_IDR(spi_master_idr); static void spidev_release(struct device *dev) { struct spi_device *spi = to_spi_device(dev); /* spi controllers may cleanup for released devices */ if (spi->controller->cleanup) spi->controller->cleanup(spi); spi_controller_put(spi->controller); kfree(spi->driver_override); kfree(spi); } static ssize_t modalias_show(struct device *dev, struct device_attribute *a, char *buf) { const struct spi_device *spi = to_spi_device(dev); int len; len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); if (len != -ENODEV) return len; return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); } static DEVICE_ATTR_RO(modalias); static ssize_t driver_override_store(struct device *dev, struct device_attribute *a, const char *buf, size_t count) { struct spi_device *spi = to_spi_device(dev); const char *end = memchr(buf, '\n', count); const size_t len = end ? end - buf : count; const char *driver_override, *old; /* We need to keep extra room for a newline when displaying value */ if (len >= (PAGE_SIZE - 1)) return -EINVAL; driver_override = kstrndup(buf, len, GFP_KERNEL); if (!driver_override) return -ENOMEM; device_lock(dev); old = spi->driver_override; if (len) { spi->driver_override = driver_override; } else { /* Empty string, disable driver override */ spi->driver_override = NULL; kfree(driver_override); } device_unlock(dev); kfree(old); return count; } static ssize_t driver_override_show(struct device *dev, struct device_attribute *a, char *buf) { const struct spi_device *spi = to_spi_device(dev); ssize_t len; device_lock(dev); len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); device_unlock(dev); return len; } static DEVICE_ATTR_RW(driver_override); #define SPI_STATISTICS_ATTRS(field, file) \ static ssize_t spi_controller_##field##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct spi_controller *ctlr = container_of(dev, \ struct spi_controller, dev); \ return spi_statistics_##field##_show(&ctlr->statistics, buf); \ } \ static struct device_attribute dev_attr_spi_controller_##field = { \ .attr = { .name = file, .mode = 0444 }, \ .show = spi_controller_##field##_show, \ }; \ static ssize_t spi_device_##field##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct spi_device *spi = to_spi_device(dev); \ return spi_statistics_##field##_show(&spi->statistics, buf); \ } \ static struct device_attribute dev_attr_spi_device_##field = { \ .attr = { .name = file, .mode = 0444 }, \ .show = spi_device_##field##_show, \ } #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ char *buf) \ { \ unsigned long flags; \ ssize_t len; \ spin_lock_irqsave(&stat->lock, flags); \ len = sprintf(buf, format_string, stat->field); \ spin_unlock_irqrestore(&stat->lock, flags); \ return len; \ } \ SPI_STATISTICS_ATTRS(name, file) #define SPI_STATISTICS_SHOW(field, format_string) \ SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ field, format_string) SPI_STATISTICS_SHOW(messages, "%lu"); SPI_STATISTICS_SHOW(transfers, "%lu"); SPI_STATISTICS_SHOW(errors, "%lu"); SPI_STATISTICS_SHOW(timedout, "%lu"); SPI_STATISTICS_SHOW(spi_sync, "%lu"); SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); SPI_STATISTICS_SHOW(spi_async, "%lu"); SPI_STATISTICS_SHOW(bytes, "%llu"); SPI_STATISTICS_SHOW(bytes_rx, "%llu"); SPI_STATISTICS_SHOW(bytes_tx, "%llu"); #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ "transfer_bytes_histo_" number, \ transfer_bytes_histo[index], "%lu") SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); static struct attribute *spi_dev_attrs[] = { &dev_attr_modalias.attr, &dev_attr_driver_override.attr, NULL, }; static const struct attribute_group spi_dev_group = { .attrs = spi_dev_attrs, }; static struct attribute *spi_device_statistics_attrs[] = { &dev_attr_spi_device_messages.attr, &dev_attr_spi_device_transfers.attr, &dev_attr_spi_device_errors.attr, &dev_attr_spi_device_timedout.attr, &dev_attr_spi_device_spi_sync.attr, &dev_attr_spi_device_spi_sync_immediate.attr, &dev_attr_spi_device_spi_async.attr, &dev_attr_spi_device_bytes.attr, &dev_attr_spi_device_bytes_rx.attr, &dev_attr_spi_device_bytes_tx.attr, &dev_attr_spi_device_transfer_bytes_histo0.attr, &dev_attr_spi_device_transfer_bytes_histo1.attr, &dev_attr_spi_device_transfer_bytes_histo2.attr, &dev_attr_spi_device_transfer_bytes_histo3.attr, &dev_attr_spi_device_transfer_bytes_histo4.attr, &dev_attr_spi_device_transfer_bytes_histo5.attr, &dev_attr_spi_device_transfer_bytes_histo6.attr, &dev_attr_spi_device_transfer_bytes_histo7.attr, &dev_attr_spi_device_transfer_bytes_histo8.attr, &dev_attr_spi_device_transfer_bytes_histo9.attr, &dev_attr_spi_device_transfer_bytes_histo10.attr, &dev_attr_spi_device_transfer_bytes_histo11.attr, &dev_attr_spi_device_transfer_bytes_histo12.attr, &dev_attr_spi_device_transfer_bytes_histo13.attr, &dev_attr_spi_device_transfer_bytes_histo14.attr, &dev_attr_spi_device_transfer_bytes_histo15.attr, &dev_attr_spi_device_transfer_bytes_histo16.attr, &dev_attr_spi_device_transfers_split_maxsize.attr, NULL, }; static const struct attribute_group spi_device_statistics_group = { .name = "statistics", .attrs = spi_device_statistics_attrs, }; static const struct attribute_group *spi_dev_groups[] = { &spi_dev_group, &spi_device_statistics_group, NULL, }; static struct attribute *spi_controller_statistics_attrs[] = { &dev_attr_spi_controller_messages.attr, &dev_attr_spi_controller_transfers.attr, &dev_attr_spi_controller_errors.attr, &dev_attr_spi_controller_timedout.attr, &dev_attr_spi_controller_spi_sync.attr, &dev_attr_spi_controller_spi_sync_immediate.attr, &dev_attr_spi_controller_spi_async.attr, &dev_attr_spi_controller_bytes.attr, &dev_attr_spi_controller_bytes_rx.attr, &dev_attr_spi_controller_bytes_tx.attr, &dev_attr_spi_controller_transfer_bytes_histo0.attr, &dev_attr_spi_controller_transfer_bytes_histo1.attr, &dev_attr_spi_controller_transfer_bytes_histo2.attr, &dev_attr_spi_controller_transfer_bytes_histo3.attr, &dev_attr_spi_controller_transfer_bytes_histo4.attr, &dev_attr_spi_controller_transfer_bytes_histo5.attr, &dev_attr_spi_controller_transfer_bytes_histo6.attr, &dev_attr_spi_controller_transfer_bytes_histo7.attr, &dev_attr_spi_controller_transfer_bytes_histo8.attr, &dev_attr_spi_controller_transfer_bytes_histo9.attr, &dev_attr_spi_controller_transfer_bytes_histo10.attr, &dev_attr_spi_controller_transfer_bytes_histo11.attr, &dev_attr_spi_controller_transfer_bytes_histo12.attr, &dev_attr_spi_controller_transfer_bytes_histo13.attr, &dev_attr_spi_controller_transfer_bytes_histo14.attr, &dev_attr_spi_controller_transfer_bytes_histo15.attr, &dev_attr_spi_controller_transfer_bytes_histo16.attr, &dev_attr_spi_controller_transfers_split_maxsize.attr, NULL, }; static const struct attribute_group spi_controller_statistics_group = { .name = "statistics", .attrs = spi_controller_statistics_attrs, }; static const struct attribute_group *spi_master_groups[] = { &spi_controller_statistics_group, NULL, }; void spi_statistics_add_transfer_stats(struct spi_statistics *stats, struct spi_transfer *xfer, struct spi_controller *ctlr) { unsigned long flags; int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; if (l2len < 0) l2len = 0; spin_lock_irqsave(&stats->lock, flags); stats->transfers++; stats->transfer_bytes_histo[l2len]++; stats->bytes += xfer->len; if ((xfer->tx_buf) && (xfer->tx_buf != ctlr->dummy_tx)) stats->bytes_tx += xfer->len; if ((xfer->rx_buf) && (xfer->rx_buf != ctlr->dummy_rx)) stats->bytes_rx += xfer->len; spin_unlock_irqrestore(&stats->lock, flags); } EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, * and the sysfs version makes coldplug work too. */ static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const struct spi_device *sdev) { while (id->name[0]) { if (!strcmp(sdev->modalias, id->name)) return id; id++; } return NULL; } const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) { const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); return spi_match_id(sdrv->id_table, sdev); } EXPORT_SYMBOL_GPL(spi_get_device_id); static int spi_match_device(struct device *dev, struct device_driver *drv) { const struct spi_device *spi = to_spi_device(dev); const struct spi_driver *sdrv = to_spi_driver(drv); /* Check override first, and if set, only use the named driver */ if (spi->driver_override) return strcmp(spi->driver_override, drv->name) == 0; /* Attempt an OF style match */ if (of_driver_match_device(dev, drv)) return 1; /* Then try ACPI */ if (acpi_driver_match_device(dev, drv)) return 1; if (sdrv->id_table) return !!spi_match_id(sdrv->id_table, spi); return strcmp(spi->modalias, drv->name) == 0; } static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) { const struct spi_device *spi = to_spi_device(dev); int rc; rc = acpi_device_uevent_modalias(dev, env); if (rc != -ENODEV) return rc; return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); } struct bus_type spi_bus_type = { .name = "spi", .dev_groups = spi_dev_groups, .match = spi_match_device, .uevent = spi_uevent, }; EXPORT_SYMBOL_GPL(spi_bus_type); static int spi_drv_probe(struct device *dev) { const struct spi_driver *sdrv = to_spi_driver(dev->driver); struct spi_device *spi = to_spi_device(dev); int ret; ret = of_clk_set_defaults(dev->of_node, false); if (ret) return ret; if (dev->of_node) { spi->irq = of_irq_get(dev->of_node, 0); if (spi->irq == -EPROBE_DEFER) return -EPROBE_DEFER; if (spi->irq < 0) spi->irq = 0; } ret = dev_pm_domain_attach(dev, true); if (ret) return ret; if (sdrv->probe) { ret = sdrv->probe(spi); if (ret) dev_pm_domain_detach(dev, true); } return ret; } static int spi_drv_remove(struct device *dev) { const struct spi_driver *sdrv = to_spi_driver(dev->driver); int ret = 0; if (sdrv->remove) ret = sdrv->remove(to_spi_device(dev)); dev_pm_domain_detach(dev, true); return ret; } static void spi_drv_shutdown(struct device *dev) { const struct spi_driver *sdrv = to_spi_driver(dev->driver); sdrv->shutdown(to_spi_device(dev)); } /** * __spi_register_driver - register a SPI driver * @owner: owner module of the driver to register * @sdrv: the driver to register * Context: can sleep * * Return: zero on success, else a negative error code. */ int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) { sdrv->driver.owner = owner; sdrv->driver.bus = &spi_bus_type; sdrv->driver.probe = spi_drv_probe; sdrv->driver.remove = spi_drv_remove; if (sdrv->shutdown) sdrv->driver.shutdown = spi_drv_shutdown; return driver_register(&sdrv->driver); } EXPORT_SYMBOL_GPL(__spi_register_driver); /*-------------------------------------------------------------------------*/ /* SPI devices should normally not be created by SPI device drivers; that * would make them board-specific. Similarly with SPI controller drivers. * Device registration normally goes into like arch/.../mach.../board-YYY.c * with other readonly (flashable) information about mainboard devices. */ struct boardinfo { struct list_head list; struct spi_board_info board_info; }; static LIST_HEAD(board_list); static LIST_HEAD(spi_controller_list); /* * Used to protect add/del operation for board_info list and * spi_controller list, and their matching process * also used to protect object of type struct idr */ static DEFINE_MUTEX(board_lock); /* * Prevents addition of devices with same chip select and * addition of devices below an unregistering controller. */ static DEFINE_MUTEX(spi_add_lock); /** * spi_alloc_device - Allocate a new SPI device * @ctlr: Controller to which device is connected * Context: can sleep * * Allows a driver to allocate and initialize a spi_device without * registering it immediately. This allows a driver to directly * fill the spi_device with device parameters before calling * spi_add_device() on it. * * Caller is responsible to call spi_add_device() on the returned * spi_device structure to add it to the SPI controller. If the caller * needs to discard the spi_device without adding it, then it should * call spi_dev_put() on it. * * Return: a pointer to the new device, or NULL. */ struct spi_device *spi_alloc_device(struct spi_controller *ctlr) { struct spi_device *spi; if (!spi_controller_get(ctlr)) return NULL; spi = kzalloc(sizeof(*spi), GFP_KERNEL); if (!spi) { spi_controller_put(ctlr); return NULL; } spi->master = spi->controller = ctlr; spi->dev.parent = &ctlr->dev; spi->dev.bus = &spi_bus_type; spi->dev.release = spidev_release; spi->cs_gpio = -ENOENT; spi->mode = ctlr->buswidth_override_bits; spin_lock_init(&spi->statistics.lock); device_initialize(&spi->dev); return spi; } EXPORT_SYMBOL_GPL(spi_alloc_device); static void spi_dev_set_name(struct spi_device *spi) { struct acpi_device *adev = ACPI_COMPANION(&spi->dev); if (adev) { dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); return; } dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), spi->chip_select); } static int spi_dev_check(struct device *dev, void *data) { struct spi_device *spi = to_spi_device(dev); struct spi_device *new_spi = data; if (spi->controller == new_spi->controller && spi->chip_select == new_spi->chip_select) return -EBUSY; return 0; } /** * spi_add_device - Add spi_device allocated with spi_alloc_device * @spi: spi_device to register * * Companion function to spi_alloc_device. Devices allocated with * spi_alloc_device can be added onto the spi bus with this function. * * Return: 0 on success; negative errno on failure */ int spi_add_device(struct spi_device *spi) { struct spi_controller *ctlr = spi->controller; struct device *dev = ctlr->dev.parent; int status; /* Chipselects are numbered 0..max; validate. */ if (spi->chip_select >= ctlr->num_chipselect) { dev_err(dev, "cs%d >= max %d\n", spi->chip_select, ctlr->num_chipselect); return -EINVAL; } /* Set the bus ID string */ spi_dev_set_name(spi); /* We need to make sure there's no other device with this * chipselect **BEFORE** we call setup(), else we'll trash * its configuration. Lock against concurrent add() calls. */ mutex_lock(&spi_add_lock); status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); if (status) { dev_err(dev, "chipselect %d already in use\n", spi->chip_select); goto done; } /* Controller may unregister concurrently */ if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && !device_is_registered(&ctlr->dev)) { status = -ENODEV; goto done; } /* Descriptors take precedence */ if (ctlr->cs_gpiods) spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; else if (ctlr->cs_gpios) spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; /* Drivers may modify this initial i/o setup, but will * normally rely on the device being setup. Devices * using SPI_CS_HIGH can't coexist well otherwise... */ status = spi_setup(spi); if (status < 0) { dev_err(dev, "can't setup %s, status %d\n", dev_name(&spi->dev), status); goto done; } /* Device may be bound to an active driver when this returns */ status = device_add(&spi->dev); if (status < 0) dev_err(dev, "can't add %s, status %d\n", dev_name(&spi->dev), status); else dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); done: mutex_unlock(&spi_add_lock); return status; } EXPORT_SYMBOL_GPL(spi_add_device); /** * spi_new_device - instantiate one new SPI device * @ctlr: Controller to which device is connected * @chip: Describes the SPI device * Context: can sleep * * On typical mainboards, this is purely internal; and it's not needed * after board init creates the hard-wired devices. Some development * platforms may not be able to use spi_register_board_info though, and * this is exported so that for example a USB or parport based adapter * driver could add devices (which it would learn about out-of-band). * * Return: the new device, or NULL. */ struct spi_device *spi_new_device(struct spi_controller *ctlr, struct spi_board_info *chip) { struct spi_device *proxy; int status; /* NOTE: caller did any chip->bus_num checks necessary. * * Also, unless we change the return value convention to use * error-or-pointer (not NULL-or-pointer), troubleshootability * suggests syslogged diagnostics are best here (ugh). */ proxy = spi_alloc_device(ctlr); if (!proxy) return NULL; WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); proxy->chip_select = chip->chip_select; proxy->max_speed_hz = chip->max_speed_hz; proxy->mode = chip->mode; proxy->irq = chip->irq; strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); proxy->dev.platform_data = (void *) chip->platform_data; proxy->controller_data = chip->controller_data; proxy->controller_state = NULL; if (chip->properties) { status = device_add_properties(&proxy->dev, chip->properties); if (status) { dev_err(&ctlr->dev, "failed to add properties to '%s': %d\n", chip->modalias, status); goto err_dev_put; } } status = spi_add_device(proxy); if (status < 0) goto err_remove_props; return proxy; err_remove_props: if (chip->properties) device_remove_properties(&proxy->dev); err_dev_put: spi_dev_put(proxy); return NULL; } EXPORT_SYMBOL_GPL(spi_new_device); /** * spi_unregister_device - unregister a single SPI device * @spi: spi_device to unregister * * Start making the passed SPI device vanish. Normally this would be handled * by spi_unregister_controller(). */ void spi_unregister_device(struct spi_device *spi) { if (!spi) return; if (spi->dev.of_node) { of_node_clear_flag(spi->dev.of_node, OF_POPULATED); of_node_put(spi->dev.of_node); } if (ACPI_COMPANION(&spi->dev)) acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); device_unregister(&spi->dev); } EXPORT_SYMBOL_GPL(spi_unregister_device); static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, struct spi_board_info *bi) { struct spi_device *dev; if (ctlr->bus_num != bi->bus_num) return; dev = spi_new_device(ctlr, bi); if (!dev) dev_err(ctlr->dev.parent, "can't create new device for %s\n", bi->modalias); } /** * spi_register_board_info - register SPI devices for a given board * @info: array of chip descriptors * @n: how many descriptors are provided * Context: can sleep * * Board-specific early init code calls this (probably during arch_initcall) * with segments of the SPI device table. Any device nodes are created later, * after the relevant parent SPI controller (bus_num) is defined. We keep * this table of devices forever, so that reloading a controller driver will * not make Linux forget about these hard-wired devices. * * Other code can also call this, e.g. a particular add-on board might provide * SPI devices through its expansion connector, so code initializing that board * would naturally declare its SPI devices. * * The board info passed can safely be __initdata ... but be careful of * any embedded pointers (platform_data, etc), they're copied as-is. * Device properties are deep-copied though. * * Return: zero on success, else a negative error code. */ int spi_register_board_info(struct spi_board_info const *info, unsigned n) { struct boardinfo *bi; int i; if (!n) return 0; bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); if (!bi) return -ENOMEM; for (i = 0; i < n; i++, bi++, info++) { struct spi_controller *ctlr; memcpy(&bi->board_info, info, sizeof(*info)); if (info->properties) { bi->board_info.properties = property_entries_dup(info->properties); if (IS_ERR(bi->board_info.properties)) return PTR_ERR(bi->board_info.properties); } mutex_lock(&board_lock); list_add_tail(&bi->list, &board_list); list_for_each_entry(ctlr, &spi_controller_list, list) spi_match_controller_to_boardinfo(ctlr, &bi->board_info); mutex_unlock(&board_lock); } return 0; } /*-------------------------------------------------------------------------*/ static void spi_set_cs(struct spi_device *spi, bool enable) { bool enable1 = enable; /* * Avoid calling into the driver (or doing delays) if the chip select * isn't actually changing from the last time this was called. */ if ((spi->controller->last_cs_enable == enable) && (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) return; spi->controller->last_cs_enable = enable; spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; if (!spi->controller->set_cs_timing) { if (enable1) spi_delay_exec(&spi->controller->cs_setup, NULL); else spi_delay_exec(&spi->controller->cs_hold, NULL); } if (spi->mode & SPI_CS_HIGH) enable = !enable; if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { if (!(spi->mode & SPI_NO_CS)) { if (spi->cs_gpiod) /* polarity handled by gpiolib */ gpiod_set_value_cansleep(spi->cs_gpiod, enable1); else /* * invert the enable line, as active low is * default for SPI. */ gpio_set_value_cansleep(spi->cs_gpio, !enable); } /* Some SPI masters need both GPIO CS & slave_select */ if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && spi->controller->set_cs) spi->controller->set_cs(spi, !enable); } else if (spi->controller->set_cs) { spi->controller->set_cs(spi, !enable); } if (!spi->controller->set_cs_timing) { if (!enable1) spi_delay_exec(&spi->controller->cs_inactive, NULL); } } #ifdef CONFIG_HAS_DMA int spi_map_buf(struct spi_controller *ctlr, struct device *dev, struct sg_table *sgt, void *buf, size_t len, enum dma_data_direction dir) { const bool vmalloced_buf = is_vmalloc_addr(buf); unsigned int max_seg_size = dma_get_max_seg_size(dev); #ifdef CONFIG_HIGHMEM const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && (unsigned long)buf < (PKMAP_BASE + (LAST_PKMAP * PAGE_SIZE))); #else const bool kmap_buf = false; #endif int desc_len; int sgs; struct page *vm_page; struct scatterlist *sg; void *sg_buf; size_t min; int i, ret; if (vmalloced_buf || kmap_buf) { desc_len = min_t(int, max_seg_size, PAGE_SIZE); sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); } else if (virt_addr_valid(buf)) { desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); sgs = DIV_ROUND_UP(len, desc_len); } else { return -EINVAL; } ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); if (ret != 0) return ret; sg = &sgt->sgl[0]; for (i = 0; i < sgs; i++) { if (vmalloced_buf || kmap_buf) { /* * Next scatterlist entry size is the minimum between * the desc_len and the remaining buffer length that * fits in a page. */ min = min_t(size_t, desc_len, min_t(size_t, len, PAGE_SIZE - offset_in_page(buf))); if (vmalloced_buf) vm_page = vmalloc_to_page(buf); else vm_page = kmap_to_page(buf); if (!vm_page) { sg_free_table(sgt); return -ENOMEM; } sg_set_page(sg, vm_page, min, offset_in_page(buf)); } else { min = min_t(size_t, len, desc_len); sg_buf = buf; sg_set_buf(sg, sg_buf, min); } buf += min; len -= min; sg = sg_next(sg); } ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); if (!ret) ret = -ENOMEM; if (ret < 0) { sg_free_table(sgt); return ret; } sgt->nents = ret; return 0; } void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, struct sg_table *sgt, enum dma_data_direction dir) { if (sgt->orig_nents) { dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); sg_free_table(sgt); } } static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) { struct device *tx_dev, *rx_dev; struct spi_transfer *xfer; int ret; if (!ctlr->can_dma) return 0; if (ctlr->dma_tx) tx_dev = ctlr->dma_tx->device->dev; else tx_dev = ctlr->dev.parent; if (ctlr->dma_rx) rx_dev = ctlr->dma_rx->device->dev; else rx_dev = ctlr->dev.parent; list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (!ctlr->can_dma(ctlr, msg->spi, xfer)) continue; if (xfer->tx_buf != NULL) { ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, (void *)xfer->tx_buf, xfer->len, DMA_TO_DEVICE); if (ret != 0) return ret; } if (xfer->rx_buf != NULL) { ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, xfer->rx_buf, xfer->len, DMA_FROM_DEVICE); if (ret != 0) { spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); return ret; } } } ctlr->cur_msg_mapped = true; return 0; } static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) { struct spi_transfer *xfer; struct device *tx_dev, *rx_dev; if (!ctlr->cur_msg_mapped || !ctlr->can_dma) return 0; if (ctlr->dma_tx) tx_dev = ctlr->dma_tx->device->dev; else tx_dev = ctlr->dev.parent; if (ctlr->dma_rx) rx_dev = ctlr->dma_rx->device->dev; else rx_dev = ctlr->dev.parent; list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (!ctlr->can_dma(ctlr, msg->spi, xfer)) continue; spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); } ctlr->cur_msg_mapped = false; return 0; } #else /* !CONFIG_HAS_DMA */ static inline int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) { return 0; } static inline int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) { return 0; } #endif /* !CONFIG_HAS_DMA */ static inline int spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) { struct spi_transfer *xfer; list_for_each_entry(xfer, &msg->transfers, transfer_list) { /* * Restore the original value of tx_buf or rx_buf if they are * NULL. */ if (xfer->tx_buf == ctlr->dummy_tx) xfer->tx_buf = NULL; if (xfer->rx_buf == ctlr->dummy_rx) xfer->rx_buf = NULL; } return __spi_unmap_msg(ctlr, msg); } static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) { struct spi_transfer *xfer; void *tmp; unsigned int max_tx, max_rx; if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) && !(msg->spi->mode & SPI_3WIRE)) { max_tx = 0; max_rx = 0; list_for_each_entry(xfer, &msg->transfers, transfer_list) { if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && !xfer->tx_buf) max_tx = max(xfer->len, max_tx); if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && !xfer->rx_buf) max_rx = max(xfer->len, max_rx); } if (max_tx) { tmp = krealloc(ctlr->dummy_tx, max_tx, GFP_KERNEL | GFP_DMA); if (!tmp) return -ENOMEM; ctlr->dummy_tx = tmp; memset(tmp, 0, max_tx); } if (max_rx) { tmp = krealloc(ctlr->dummy_rx, max_rx, GFP_KERNEL | GFP_DMA); if (!tmp) return -ENOMEM; ctlr->dummy_rx = tmp; } if (max_tx || max_rx) { list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (!xfer->len) continue; if (!xfer->tx_buf) xfer->tx_buf = ctlr->dummy_tx; if (!xfer->rx_buf) xfer->rx_buf = ctlr->dummy_rx; } } } return __spi_map_msg(ctlr, msg); } static int spi_transfer_wait(struct spi_controller *ctlr, struct spi_message *msg, struct spi_transfer *xfer) { struct spi_statistics *statm = &ctlr->statistics; struct spi_statistics *stats = &msg->spi->statistics; u32 speed_hz = xfer->speed_hz; unsigned long long ms; if (spi_controller_is_slave(ctlr)) { if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); return -EINTR; } } else { if (!speed_hz) speed_hz = 100000; ms = 8LL * 1000LL * xfer->len; do_div(ms, speed_hz); ms += ms + 200; /* some tolerance */ if (ms > UINT_MAX) ms = UINT_MAX; ms = wait_for_completion_timeout(&ctlr->xfer_completion, msecs_to_jiffies(ms)); if (ms == 0) { SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); dev_err(&msg->spi->dev, "SPI transfer timed out\n"); return -ETIMEDOUT; } } return 0; } static void _spi_transfer_delay_ns(u32 ns) { if (!ns) return; if (ns <= 1000) { ndelay(ns); } else { u32 us = DIV_ROUND_UP(ns, 1000); if (us <= 10) udelay(us); else usleep_range(us, us + DIV_ROUND_UP(us, 10)); } } int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) { u32 delay = _delay->value; u32 unit = _delay->unit; u32 hz; if (!delay) return 0; switch (unit) { case SPI_DELAY_UNIT_USECS: delay *= 1000; break; case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ break; case SPI_DELAY_UNIT_SCK: /* clock cycles need to be obtained from spi_transfer */ if (!xfer) return -EINVAL; /* if there is no effective speed know, then approximate * by underestimating with half the requested hz */ hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; if (!hz) return -EINVAL; delay *= DIV_ROUND_UP(1000000000, hz); break; default: return -EINVAL; } return delay; } EXPORT_SYMBOL_GPL(spi_delay_to_ns); int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) { int delay; might_sleep(); if (!_delay) return -EINVAL; delay = spi_delay_to_ns(_delay, xfer); if (delay < 0) return delay; _spi_transfer_delay_ns(delay); return 0; } EXPORT_SYMBOL_GPL(spi_delay_exec); static void _spi_transfer_cs_change_delay(struct spi_message *msg, struct spi_transfer *xfer) { u32 delay = xfer->cs_change_delay.value; u32 unit = xfer->cs_change_delay.unit; int ret; /* return early on "fast" mode - for everything but USECS */ if (!delay) { if (unit == SPI_DELAY_UNIT_USECS) _spi_transfer_delay_ns(10000); return; } ret = spi_delay_exec(&xfer->cs_change_delay, xfer); if (ret) { dev_err_once(&msg->spi->dev, "Use of unsupported delay unit %i, using default of 10us\n", unit); _spi_transfer_delay_ns(10000); } } /* * spi_transfer_one_message - Default implementation of transfer_one_message() * * This is a standard implementation of transfer_one_message() for * drivers which implement a transfer_one() operation. It provides * standard handling of delays and chip select management. */ static int spi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *msg) { struct spi_transfer *xfer; bool keep_cs = false; int ret = 0; struct spi_statistics *statm = &ctlr->statistics; struct spi_statistics *stats = &msg->spi->statistics; spi_set_cs(msg->spi, true); SPI_STATISTICS_INCREMENT_FIELD(statm, messages); SPI_STATISTICS_INCREMENT_FIELD(stats, messages); list_for_each_entry(xfer, &msg->transfers, transfer_list) { trace_spi_transfer_start(msg, xfer); spi_statistics_add_transfer_stats(statm, xfer, ctlr); spi_statistics_add_transfer_stats(stats, xfer, ctlr); if (!ctlr->ptp_sts_supported) { xfer->ptp_sts_word_pre = 0; ptp_read_system_prets(xfer->ptp_sts); } if (xfer->tx_buf || xfer->rx_buf) { reinit_completion(&ctlr->xfer_completion); fallback_pio: ret = ctlr->transfer_one(ctlr, msg->spi, xfer); if (ret < 0) { if (ctlr->cur_msg_mapped && (xfer->error & SPI_TRANS_FAIL_NO_START)) { __spi_unmap_msg(ctlr, msg); ctlr->fallback = true; xfer->error &= ~SPI_TRANS_FAIL_NO_START; goto fallback_pio; } SPI_STATISTICS_INCREMENT_FIELD(statm, errors); SPI_STATISTICS_INCREMENT_FIELD(stats, errors); dev_err(&msg->spi->dev, "SPI transfer failed: %d\n", ret); goto out; } if (ret > 0) { ret = spi_transfer_wait(ctlr, msg, xfer); if (ret < 0) msg->status = ret; } } else { if (xfer->len) dev_err(&msg->spi->dev, "Bufferless transfer has length %u\n", xfer->len); } if (!ctlr->ptp_sts_supported) { ptp_read_system_postts(xfer->ptp_sts); xfer->ptp_sts_word_post = xfer->len; } trace_spi_transfer_stop(msg, xfer); if (msg->status != -EINPROGRESS) goto out; spi_transfer_delay_exec(xfer); if (xfer->cs_change) { if (list_is_last(&xfer->transfer_list, &msg->transfers)) { keep_cs = true; } else { spi_set_cs(msg->spi, false); _spi_transfer_cs_change_delay(msg, xfer); spi_set_cs(msg->spi, true); } } msg->actual_length += xfer->len; } out: if (ret != 0 || !keep_cs) spi_set_cs(msg->spi, false); if (msg->status == -EINPROGRESS) msg->status = ret; if (msg->status && ctlr->handle_err) ctlr->handle_err(ctlr, msg); spi_finalize_current_message(ctlr); return ret; } /** * spi_finalize_current_transfer - report completion of a transfer * @ctlr: the controller reporting completion * * Called by SPI drivers using the core transfer_one_message() * implementation to notify it that the current interrupt driven * transfer has finished and the next one may be scheduled. */ void spi_finalize_current_transfer(struct spi_controller *ctlr) { complete(&ctlr->xfer_completion); } EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); static void spi_idle_runtime_pm(struct spi_controller *ctlr) { if (ctlr->auto_runtime_pm) { pm_runtime_mark_last_busy(ctlr->dev.parent); pm_runtime_put_autosuspend(ctlr->dev.parent); } } /** * __spi_pump_messages - function which processes spi message queue * @ctlr: controller to process queue for * @in_kthread: true if we are in the context of the message pump thread * * This function checks if there is any spi message in the queue that * needs processing and if so call out to the driver to initialize hardware * and transfer each message. * * Note that it is called both from the kthread itself and also from * inside spi_sync(); the queue extraction handling at the top of the * function should deal with this safely. */ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) { struct spi_transfer *xfer; struct spi_message *msg; bool was_busy = false; unsigned long flags; int ret; /* Lock queue */ spin_lock_irqsave(&ctlr->queue_lock, flags); /* Make sure we are not already running a message */ if (ctlr->cur_msg) { spin_unlock_irqrestore(&ctlr->queue_lock, flags); return; } /* If another context is idling the device then defer */ if (ctlr->idling) { kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); spin_unlock_irqrestore(&ctlr->queue_lock, flags); return; } /* Check if the queue is idle */ if (list_empty(&ctlr->queue) || !ctlr->running) { if (!ctlr->busy) { spin_unlock_irqrestore(&ctlr->queue_lock, flags); return; } /* Defer any non-atomic teardown to the thread */ if (!in_kthread) { if (!ctlr->dummy_rx && !ctlr->dummy_tx && !ctlr->unprepare_transfer_hardware) { spi_idle_runtime_pm(ctlr); ctlr->busy = false; trace_spi_controller_idle(ctlr); } else { kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); } spin_unlock_irqrestore(&ctlr->queue_lock, flags); return; } ctlr->busy = false; ctlr->idling = true; spin_unlock_irqrestore(&ctlr->queue_lock, flags); kfree(ctlr->dummy_rx); ctlr->dummy_rx = NULL; kfree(ctlr->dummy_tx); ctlr->dummy_tx = NULL; if (ctlr->unprepare_transfer_hardware && ctlr->unprepare_transfer_hardware(ctlr)) dev_err(&ctlr->dev, "failed to unprepare transfer hardware\n"); spi_idle_runtime_pm(ctlr); trace_spi_controller_idle(ctlr); spin_lock_irqsave(&ctlr->queue_lock, flags); ctlr->idling = false; spin_unlock_irqrestore(&ctlr->queue_lock, flags); return; } /* Extract head of queue */ msg = list_first_entry(&ctlr->queue, struct spi_message, queue); ctlr->cur_msg = msg; list_del_init(&msg->queue); if (ctlr->busy) was_busy = true; else ctlr->busy = true; spin_unlock_irqrestore(&ctlr->queue_lock, flags); mutex_lock(&ctlr->io_mutex); if (!was_busy && ctlr->auto_runtime_pm) { ret = pm_runtime_get_sync(ctlr->dev.parent); if (ret < 0) { pm_runtime_put_noidle(ctlr->dev.parent); dev_err(&ctlr->dev, "Failed to power device: %d\n", ret); mutex_unlock(&ctlr->io_mutex); return; } } if (!was_busy) trace_spi_controller_busy(ctlr); if (!was_busy && ctlr->prepare_transfer_hardware) { ret = ctlr->prepare_transfer_hardware(ctlr); if (ret) { dev_err(&ctlr->dev, "failed to prepare transfer hardware: %d\n", ret); if (ctlr->auto_runtime_pm) pm_runtime_put(ctlr->dev.parent); msg->status = ret; spi_finalize_current_message(ctlr); mutex_unlock(&ctlr->io_mutex); return; } } trace_spi_message_start(msg); if (ctlr->prepare_message) { ret = ctlr->prepare_message(ctlr, msg); if (ret) { dev_err(&ctlr->dev, "failed to prepare message: %d\n", ret); msg->status = ret; spi_finalize_current_message(ctlr); goto out; } ctlr->cur_msg_prepared = true; } ret = spi_map_msg(ctlr, msg); if (ret) { msg->status = ret; spi_finalize_current_message(ctlr); goto out; } if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { list_for_each_entry(xfer, &msg->transfers, transfer_list) { xfer->ptp_sts_word_pre = 0; ptp_read_system_prets(xfer->ptp_sts); } } ret = ctlr->transfer_one_message(ctlr, msg); if (ret) { dev_err(&ctlr->dev, "failed to transfer one message from queue\n"); goto out; } out: mutex_unlock(&ctlr->io_mutex); /* Prod the scheduler in case transfer_one() was busy waiting */ if (!ret) cond_resched(); } /** * spi_pump_messages - kthread work function which processes spi message queue * @work: pointer to kthread work struct contained in the controller struct */ static void spi_pump_messages(struct kthread_work *work) { struct spi_controller *ctlr = container_of(work, struct spi_controller, pump_messages); __spi_pump_messages(ctlr, true); } /** * spi_take_timestamp_pre - helper for drivers to collect the beginning of the * TX timestamp for the requested byte from the SPI * transfer. The frequency with which this function * must be called (once per word, once for the whole * transfer, once per batch of words etc) is arbitrary * as long as the @tx buffer offset is greater than or * equal to the requested byte at the time of the * call. The timestamp is only taken once, at the * first such call. It is assumed that the driver * advances its @tx buffer pointer monotonically. * @ctlr: Pointer to the spi_controller structure of the driver * @xfer: Pointer to the transfer being timestamped * @progress: How many words (not bytes) have been transferred so far * @irqs_off: If true, will disable IRQs and preemption for the duration of the * transfer, for less jitter in time measurement. Only compatible * with PIO drivers. If true, must follow up with * spi_take_timestamp_post or otherwise system will crash. * WARNING: for fully predictable results, the CPU frequency must * also be under control (governor). */ void spi_take_timestamp_pre(struct spi_controller *ctlr, struct spi_transfer *xfer, size_t progress, bool irqs_off) { if (!xfer->ptp_sts) return; if (xfer->timestamped) return; if (progress > xfer->ptp_sts_word_pre) return; /* Capture the resolution of the timestamp */ xfer->ptp_sts_word_pre = progress; if (irqs_off) { local_irq_save(ctlr->irq_flags); preempt_disable(); } ptp_read_system_prets(xfer->ptp_sts); } EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); /** * spi_take_timestamp_post - helper for drivers to collect the end of the * TX timestamp for the requested byte from the SPI * transfer. Can be called with an arbitrary * frequency: only the first call where @tx exceeds * or is equal to the requested word will be * timestamped. * @ctlr: Pointer to the spi_controller structure of the driver * @xfer: Pointer to the transfer being timestamped * @progress: How many words (not bytes) have been transferred so far * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. */ void spi_take_timestamp_post(struct spi_controller *ctlr, struct spi_transfer *xfer, size_t progress, bool irqs_off) { if (!xfer->ptp_sts) return; if (xfer->timestamped) return; if (progress < xfer->ptp_sts_word_post) return; ptp_read_system_postts(xfer->ptp_sts); if (irqs_off) { local_irq_restore(ctlr->irq_flags); preempt_enable(); } /* Capture the resolution of the timestamp */ xfer->ptp_sts_word_post = progress; xfer->timestamped = true; } EXPORT_SYMBOL_GPL(spi_take_timestamp_post); /** * spi_set_thread_rt - set the controller to pump at realtime priority * @ctlr: controller to boost priority of * * This can be called because the controller requested realtime priority * (by setting the ->rt value before calling spi_register_controller()) or * because a device on the bus said that its transfers needed realtime * priority. * * NOTE: at the moment if any device on a bus says it needs realtime then * the thread will be at realtime priority for all transfers on that * controller. If this eventually becomes a problem we may see if we can * find a way to boost the priority only temporarily during relevant * transfers. */ static void spi_set_thread_rt(struct spi_controller *ctlr) { dev_info(&ctlr->dev, "will run message pump with realtime priority\n"); sched_set_fifo(ctlr->kworker->task); } static int spi_init_queue(struct spi_controller *ctlr) { ctlr->running = false; ctlr->busy = false; ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); if (IS_ERR(ctlr->kworker)) { dev_err(&ctlr->dev, "failed to create message pump kworker\n"); return PTR_ERR(ctlr->kworker); } kthread_init_work(&ctlr->pump_messages, spi_pump_messages); /* * Controller config will indicate if this controller should run the * message pump with high (realtime) priority to reduce the transfer * latency on the bus by minimising the delay between a transfer * request and the scheduling of the message pump thread. Without this * setting the message pump thread will remain at default priority. */ if (ctlr->rt) spi_set_thread_rt(ctlr); return 0; } /** * spi_get_next_queued_message() - called by driver to check for queued * messages * @ctlr: the controller to check for queued messages * * If there are more messages in the queue, the next message is returned from * this call. * * Return: the next message in the queue, else NULL if the queue is empty. */ struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) { struct spi_message *next; unsigned long flags; /* get a pointer to the next message, if any */ spin_lock_irqsave(&ctlr->queue_lock, flags); next = list_first_entry_or_null(&ctlr->queue, struct spi_message, queue); spin_unlock_irqrestore(&ctlr->queue_lock, flags); return next; } EXPORT_SYMBOL_GPL(spi_get_next_queued_message); /** * spi_finalize_current_message() - the current message is complete * @ctlr: the controller to return the message to * * Called by the driver to notify the core that the message in the front of the * queue is complete and can be removed from the queue. */ void spi_finalize_current_message(struct spi_controller *ctlr) { struct spi_transfer *xfer; struct spi_message *mesg; unsigned long flags; int ret; spin_lock_irqsave(&ctlr->queue_lock, flags); mesg = ctlr->cur_msg; spin_unlock_irqrestore(&ctlr->queue_lock, flags); if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { list_for_each_entry(xfer, &mesg->transfers, transfer_list) { ptp_read_system_postts(xfer->ptp_sts); xfer->ptp_sts_word_post = xfer->len; } } if (unlikely(ctlr->ptp_sts_supported)) list_for_each_entry(xfer, &mesg->transfers, transfer_list) WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); spi_unmap_msg(ctlr, mesg); /* In the prepare_messages callback the spi bus has the opportunity to * split a transfer to smaller chunks. * Release splited transfers here since spi_map_msg is done on the * splited transfers. */ spi_res_release(ctlr, mesg); if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { ret = ctlr->unprepare_message(ctlr, mesg); if (ret) { dev_err(&ctlr->dev, "failed to unprepare message: %d\n", ret); } } spin_lock_irqsave(&ctlr->queue_lock, flags); ctlr->cur_msg = NULL; ctlr->cur_msg_prepared = false; ctlr->fallback = false; kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); spin_unlock_irqrestore(&ctlr->queue_lock, flags); trace_spi_message_done(mesg); mesg->state = NULL; if (mesg->complete) mesg->complete(mesg->context); } EXPORT_SYMBOL_GPL(spi_finalize_current_message); static int spi_start_queue(struct spi_controller *ctlr) { unsigned long flags; spin_lock_irqsave(&ctlr->queue_lock, flags); if (ctlr->running || ctlr->busy) { spin_unlock_irqrestore(&ctlr->queue_lock, flags); return -EBUSY; } ctlr->running = true; ctlr->cur_msg = NULL; spin_unlock_irqrestore(&ctlr->queue_lock, flags); kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); return 0; } static int spi_stop_queue(struct spi_controller *ctlr) { unsigned long flags; unsigned limit = 500; int ret = 0; spin_lock_irqsave(&ctlr->queue_lock, flags); /* * This is a bit lame, but is optimized for the common execution path. * A wait_queue on the ctlr->busy could be used, but then the common * execution path (pump_messages) would be required to call wake_up or * friends on every SPI message. Do this instead. */ while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { spin_unlock_irqrestore(&ctlr->queue_lock, flags); usleep_range(10000, 11000); spin_lock_irqsave(&ctlr->queue_lock, flags); } if (!list_empty(&ctlr->queue) || ctlr->busy) ret = -EBUSY; else ctlr->running = false; spin_unlock_irqrestore(&ctlr->queue_lock, flags); if (ret) { dev_warn(&ctlr->dev, "could not stop message queue\n"); return ret; } return ret; } static int spi_destroy_queue(struct spi_controller *ctlr) { int ret; ret = spi_stop_queue(ctlr); /* * kthread_flush_worker will block until all work is done. * If the reason that stop_queue timed out is that the work will never * finish, then it does no good to call flush/stop thread, so * return anyway. */ if (ret) { dev_err(&ctlr->dev, "problem destroying queue\n"); return ret; } kthread_destroy_worker(ctlr->kworker); return 0; } static int __spi_queued_transfer(struct spi_device *spi, struct spi_message *msg, bool need_pump) { struct spi_controller *ctlr = spi->controller; unsigned long flags; spin_lock_irqsave(&ctlr->queue_lock, flags); if (!ctlr->running) { spin_unlock_irqrestore(&ctlr->queue_lock, flags); return -ESHUTDOWN; } msg->actual_length = 0; msg->status = -EINPROGRESS; list_add_tail(&msg->queue, &ctlr->queue); if (!ctlr->busy && need_pump) kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); spin_unlock_irqrestore(&ctlr->queue_lock, flags); return 0; } /** * spi_queued_transfer - transfer function for queued transfers * @spi: spi device which is requesting transfer * @msg: spi message which is to handled is queued to driver queue * * Return: zero on success, else a negative error code. */ static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) { return __spi_queued_transfer(spi, msg, true); } static int spi_controller_initialize_queue(struct spi_controller *ctlr) { int ret; ctlr->transfer = spi_queued_transfer; if (!ctlr->transfer_one_message) ctlr->transfer_one_message = spi_transfer_one_message; /* Initialize and start queue */ ret = spi_init_queue(ctlr); if (ret) { dev_err(&ctlr->dev, "problem initializing queue\n"); goto err_init_queue; } ctlr->queued = true; ret = spi_start_queue(ctlr); if (ret) { dev_err(&ctlr->dev, "problem starting queue\n"); goto err_start_queue; } return 0; err_start_queue: spi_destroy_queue(ctlr); err_init_queue: return ret; } /** * spi_flush_queue - Send all pending messages in the queue from the callers' * context * @ctlr: controller to process queue for * * This should be used when one wants to ensure all pending messages have been * sent before doing something. Is used by the spi-mem code to make sure SPI * memory operations do not preempt regular SPI transfers that have been queued * before the spi-mem operation. */ void spi_flush_queue(struct spi_controller *ctlr) { if (ctlr->transfer == spi_queued_transfer) __spi_pump_messages(ctlr, false); } /*-------------------------------------------------------------------------*/ #if defined(CONFIG_OF) static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, struct device_node *nc) { u32 value; int rc; /* Mode (clock phase/polarity/etc.) */ if (of_property_read_bool(nc, "spi-cpha")) spi->mode |= SPI_CPHA; if (of_property_read_bool(nc, "spi-cpol")) spi->mode |= SPI_CPOL; if (of_property_read_bool(nc, "spi-3wire")) spi->mode |= SPI_3WIRE; if (of_property_read_bool(nc, "spi-lsb-first")) spi->mode |= SPI_LSB_FIRST; if (of_property_read_bool(nc, "spi-cs-high")) spi->mode |= SPI_CS_HIGH; /* Device DUAL/QUAD mode */ if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { switch (value) { case 1: break; case 2: spi->mode |= SPI_TX_DUAL; break; case 4: spi->mode |= SPI_TX_QUAD; break; case 8: spi->mode |= SPI_TX_OCTAL; break; default: dev_warn(&ctlr->dev, "spi-tx-bus-width %d not supported\n", value); break; } } if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { switch (value) { case 1: break; case 2: spi->mode |= SPI_RX_DUAL; break; case 4: spi->mode |= SPI_RX_QUAD; break; case 8: spi->mode |= SPI_RX_OCTAL; break; default: dev_warn(&ctlr->dev, "spi-rx-bus-width %d not supported\n", value); break; } } if (spi_controller_is_slave(ctlr)) { if (!of_node_name_eq(nc, "slave")) { dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", nc); return -EINVAL; } return 0; } /* Device address */ rc = of_property_read_u32(nc, "reg", &value); if (rc) { dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", nc, rc); return rc; } spi->chip_select = value; /* Device speed */ if (!of_property_read_u32(nc, "spi-max-frequency", &value)) spi->max_speed_hz = value; return 0; } static struct spi_device * of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) { struct spi_device *spi; int rc; /* Alloc an spi_device */ spi = spi_alloc_device(ctlr); if (!spi) { dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); rc = -ENOMEM; goto err_out; } /* Select device driver */ rc = of_modalias_node(nc, spi->modalias, sizeof(spi->modalias)); if (rc < 0) { dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); goto err_out; } rc = of_spi_parse_dt(ctlr, spi, nc); if (rc) goto err_out; /* Store a pointer to the node in the device structure */ of_node_get(nc); spi->dev.of_node = nc; /* Register the new device */ rc = spi_add_device(spi); if (rc) { dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); goto err_of_node_put; } return spi; err_of_node_put: of_node_put(nc); err_out: spi_dev_put(spi); return ERR_PTR(rc); } /** * of_register_spi_devices() - Register child devices onto the SPI bus * @ctlr: Pointer to spi_controller device * * Registers an spi_device for each child node of controller node which * represents a valid SPI slave. */ static void of_register_spi_devices(struct spi_controller *ctlr) { struct spi_device *spi; struct device_node *nc; if (!ctlr->dev.of_node) return; for_each_available_child_of_node(ctlr->dev.of_node, nc) { if (of_node_test_and_set_flag(nc, OF_POPULATED)) continue; spi = of_register_spi_device(ctlr, nc); if (IS_ERR(spi)) { dev_warn(&ctlr->dev, "Failed to create SPI device for %pOF\n", nc); of_node_clear_flag(nc, OF_POPULATED); } } } #else static void of_register_spi_devices(struct spi_controller *ctlr) { } #endif #ifdef CONFIG_ACPI struct acpi_spi_lookup { struct spi_controller *ctlr; u32 max_speed_hz; u32 mode; int irq; u8 bits_per_word; u8 chip_select; }; static void acpi_spi_parse_apple_properties(struct acpi_device *dev, struct acpi_spi_lookup *lookup) { const union acpi_object *obj; if (!x86_apple_machine) return; if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) && obj->buffer.length >= 4) lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) && obj->buffer.length == 8) lookup->bits_per_word = *(u64 *)obj->buffer.pointer; if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) lookup->mode |= SPI_LSB_FIRST; if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) lookup->mode |= SPI_CPOL; if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) lookup->mode |= SPI_CPHA; } static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) { struct acpi_spi_lookup *lookup = data; struct spi_controller *ctlr = lookup->ctlr; if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { struct acpi_resource_spi_serialbus *sb; acpi_handle parent_handle; acpi_status status; sb = &ares->data.spi_serial_bus; if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { status = acpi_get_handle(NULL, sb->resource_source.string_ptr, &parent_handle); if (ACPI_FAILURE(status) || ACPI_HANDLE(ctlr->dev.parent) != parent_handle) return -ENODEV; /* * ACPI DeviceSelection numbering is handled by the * host controller driver in Windows and can vary * from driver to driver. In Linux we always expect * 0 .. max - 1 so we need to ask the driver to * translate between the two schemes. */ if (ctlr->fw_translate_cs) { int cs = ctlr->fw_translate_cs(ctlr, sb->device_selection); if (cs < 0) return cs; lookup->chip_select = cs; } else { lookup->chip_select = sb->device_selection; } lookup->max_speed_hz = sb->connection_speed; lookup->bits_per_word = sb->data_bit_length; if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) lookup->mode |= SPI_CPHA; if (sb->clock_polarity == ACPI_SPI_START_HIGH) lookup->mode |= SPI_CPOL; if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) lookup->mode |= SPI_CS_HIGH; } } else if (lookup->irq < 0) { struct resource r; if (acpi_dev_resource_interrupt(ares, 0, &r)) lookup->irq = r.start; } /* Always tell the ACPI core to skip this resource */ return 1; } static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, struct acpi_device *adev) { acpi_handle parent_handle = NULL; struct list_head resource_list; struct acpi_spi_lookup lookup = {}; struct spi_device *spi; int ret; if (acpi_bus_get_status(adev) || !adev->status.present || acpi_device_enumerated(adev)) return AE_OK; lookup.ctlr = ctlr; lookup.irq = -1; INIT_LIST_HEAD(&resource_list); ret = acpi_dev_get_resources(adev, &resource_list, acpi_spi_add_resource, &lookup); acpi_dev_free_resource_list(&resource_list); if (ret < 0) /* found SPI in _CRS but it points to another controller */ return AE_OK; if (!lookup.max_speed_hz && !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { /* Apple does not use _CRS but nested devices for SPI slaves */ acpi_spi_parse_apple_properties(adev, &lookup); } if (!lookup.max_speed_hz) return AE_OK; spi = spi_alloc_device(ctlr); if (!spi) { dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", dev_name(&adev->dev)); return AE_NO_MEMORY; } ACPI_COMPANION_SET(&spi->dev, adev); spi->max_speed_hz = lookup.max_speed_hz; spi->mode |= lookup.mode; spi->irq = lookup.irq; spi->bits_per_word = lookup.bits_per_word; spi->chip_select = lookup.chip_select; acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, sizeof(spi->modalias)); if (spi->irq < 0) spi->irq = acpi_dev_gpio_irq_get(adev, 0); acpi_device_set_enumerated(adev); adev->power.flags.ignore_parent = true; if (spi_add_device(spi)) { adev->power.flags.ignore_parent = false; dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", dev_name(&adev->dev)); spi_dev_put(spi); } return AE_OK; } static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, void *data, void **return_value) { struct spi_controller *ctlr = data; struct acpi_device *adev; if (acpi_bus_get_device(handle, &adev)) return AE_OK; return acpi_register_spi_device(ctlr, adev); } #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 static void acpi_register_spi_devices(struct spi_controller *ctlr) { acpi_status status; acpi_handle handle; handle = ACPI_HANDLE(ctlr->dev.parent); if (!handle) return; status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, SPI_ACPI_ENUMERATE_MAX_DEPTH, acpi_spi_add_device, NULL, ctlr, NULL); if (ACPI_FAILURE(status)) dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); } #else static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} #endif /* CONFIG_ACPI */ static void spi_controller_release(struct device *dev) { struct spi_controller *ctlr; ctlr = container_of(dev, struct spi_controller, dev); kfree(ctlr); } static struct class spi_master_class = { .name = "spi_master", .owner = THIS_MODULE, .dev_release = spi_controller_release, .dev_groups = spi_master_groups, }; #ifdef CONFIG_SPI_SLAVE /** * spi_slave_abort - abort the ongoing transfer request on an SPI slave * controller * @spi: device used for the current transfer */ int spi_slave_abort(struct spi_device *spi) { struct spi_controller *ctlr = spi->controller; if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) return ctlr->slave_abort(ctlr); return -ENOTSUPP; } EXPORT_SYMBOL_GPL(spi_slave_abort); static int match_true(struct device *dev, void *data) { return 1; } static ssize_t slave_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctlr = container_of(dev, struct spi_controller, dev); struct device *child; child = device_find_child(&ctlr->dev, NULL, match_true); return sprintf(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); } static ssize_t slave_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctlr = container_of(dev, struct spi_controller, dev); struct spi_device *spi; struct device *child; char name[32]; int rc; rc = sscanf(buf, "%31s", name); if (rc != 1 || !name[0]) return -EINVAL; child = device_find_child(&ctlr->dev, NULL, match_true); if (child) { /* Remove registered slave */ device_unregister(child); put_device(child); } if (strcmp(name, "(null)")) { /* Register new slave */ spi = spi_alloc_device(ctlr); if (!spi) return -ENOMEM; strlcpy(spi->modalias, name, sizeof(spi->modalias)); rc = spi_add_device(spi); if (rc) { spi_dev_put(spi); return rc; } } return count; } static DEVICE_ATTR_RW(slave); static struct attribute *spi_slave_attrs[] = { &dev_attr_slave.attr, NULL, }; static const struct attribute_group spi_slave_group = { .attrs = spi_slave_attrs, }; static const struct attribute_group *spi_slave_groups[] = { &spi_controller_statistics_group, &spi_slave_group, NULL, }; static struct class spi_slave_class = { .name = "spi_slave", .owner = THIS_MODULE, .dev_release = spi_controller_release, .dev_groups = spi_slave_groups, }; #else extern struct class spi_slave_class; /* dummy */ #endif /** * __spi_alloc_controller - allocate an SPI master or slave controller * @dev: the controller, possibly using the platform_bus * @size: how much zeroed driver-private data to allocate; the pointer to this * memory is in the driver_data field of the returned device, accessible * with spi_controller_get_devdata(); the memory is cacheline aligned; * drivers granting DMA access to portions of their private data need to * round up @size using ALIGN(size, dma_get_cache_alignment()). * @slave: flag indicating whether to allocate an SPI master (false) or SPI * slave (true) controller * Context: can sleep * * This call is used only by SPI controller drivers, which are the * only ones directly touching chip registers. It's how they allocate * an spi_controller structure, prior to calling spi_register_controller(). * * This must be called from context that can sleep. * * The caller is responsible for assigning the bus number and initializing the * controller's methods before calling spi_register_controller(); and (after * errors adding the device) calling spi_controller_put() to prevent a memory * leak. * * Return: the SPI controller structure on success, else NULL. */ struct spi_controller *__spi_alloc_controller(struct device *dev, unsigned int size, bool slave) { struct spi_controller *ctlr; size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); if (!dev) return NULL; ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); if (!ctlr) return NULL; device_initialize(&ctlr->dev); ctlr->bus_num = -1; ctlr->num_chipselect = 1; ctlr->slave = slave; if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) ctlr->dev.class = &spi_slave_class; else ctlr->dev.class = &spi_master_class; ctlr->dev.parent = dev; pm_suspend_ignore_children(&ctlr->dev, true); spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); return ctlr; } EXPORT_SYMBOL_GPL(__spi_alloc_controller); static void devm_spi_release_controller(struct device *dev, void *ctlr) { spi_controller_put(*(struct spi_controller **)ctlr); } /** * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() * @dev: physical device of SPI controller * @size: how much zeroed driver-private data to allocate * @slave: whether to allocate an SPI master (false) or SPI slave (true) * Context: can sleep * * Allocate an SPI controller and automatically release a reference on it * when @dev is unbound from its driver. Drivers are thus relieved from * having to call spi_controller_put(). * * The arguments to this function are identical to __spi_alloc_controller(). * * Return: the SPI controller structure on success, else NULL. */ struct spi_controller *__devm_spi_alloc_controller(struct device *dev, unsigned int size, bool slave) { struct spi_controller **ptr, *ctlr; ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), GFP_KERNEL); if (!ptr) return NULL; ctlr = __spi_alloc_controller(dev, size, slave); if (ctlr) { *ptr = ctlr; devres_add(dev, ptr); } else { devres_free(ptr); } return ctlr; } EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); #ifdef CONFIG_OF static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) { int nb, i, *cs; struct device_node *np = ctlr->dev.of_node; if (!np) return 0; nb = of_gpio_named_count(np, "cs-gpios"); ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); /* Return error only for an incorrectly formed cs-gpios property */ if (nb == 0 || nb == -ENOENT) return 0; else if (nb < 0) return nb; cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), GFP_KERNEL); ctlr->cs_gpios = cs; if (!ctlr->cs_gpios) return -ENOMEM; for (i = 0; i < ctlr->num_chipselect; i++) cs[i] = -ENOENT; for (i = 0; i < nb; i++) cs[i] = of_get_named_gpio(np, "cs-gpios", i); return 0; } #else static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) { return 0; } #endif /** * spi_get_gpio_descs() - grab chip select GPIOs for the master * @ctlr: The SPI master to grab GPIO descriptors for */ static int spi_get_gpio_descs(struct spi_controller *ctlr) { int nb, i; struct gpio_desc **cs; struct device *dev = &ctlr->dev; unsigned long native_cs_mask = 0; unsigned int num_cs_gpios = 0; nb = gpiod_count(dev, "cs"); ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); /* No GPIOs at all is fine, else return the error */ if (nb == 0 || nb == -ENOENT) return 0; else if (nb < 0) return nb; cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; ctlr->cs_gpiods = cs; for (i = 0; i < nb; i++) { /* * Most chipselects are active low, the inverted * semantics are handled by special quirks in gpiolib, * so initializing them GPIOD_OUT_LOW here means * "unasserted", in most cases this will drive the physical * line high. */ cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, GPIOD_OUT_LOW); if (IS_ERR(cs[i])) return PTR_ERR(cs[i]); if (cs[i]) { /* * If we find a CS GPIO, name it after the device and * chip select line. */ char *gpioname; gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", dev_name(dev), i); if (!gpioname) return -ENOMEM; gpiod_set_consumer_name(cs[i], gpioname); num_cs_gpios++; continue; } if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { dev_err(dev, "Invalid native chip select %d\n", i); return -EINVAL; } native_cs_mask |= BIT(i); } ctlr->unused_native_cs = ffz(native_cs_mask); if (num_cs_gpios && ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { dev_err(dev, "No unused native chip select available\n"); return -EINVAL; } return 0; } static int spi_controller_check_ops(struct spi_controller *ctlr) { /* * The controller may implement only the high-level SPI-memory like * operations if it does not support regular SPI transfers, and this is * valid use case. * If ->mem_ops is NULL, we request that at least one of the * ->transfer_xxx() method be implemented. */ if (ctlr->mem_ops) { if (!ctlr->mem_ops->exec_op) return -EINVAL; } else if (!ctlr->transfer && !ctlr->transfer_one && !ctlr->transfer_one_message) { return -EINVAL; } return 0; } /** * spi_register_controller - register SPI master or slave controller * @ctlr: initialized master, originally from spi_alloc_master() or * spi_alloc_slave() * Context: can sleep * * SPI controllers connect to their drivers using some non-SPI bus, * such as the platform bus. The final stage of probe() in that code * includes calling spi_register_controller() to hook up to this SPI bus glue. * * SPI controllers use board specific (often SOC specific) bus numbers, * and board-specific addressing for SPI devices combines those numbers * with chip select numbers. Since SPI does not directly support dynamic * device identification, boards need configuration tables telling which * chip is at which address. * * This must be called from context that can sleep. It returns zero on * success, else a negative error code (dropping the controller's refcount). * After a successful return, the caller is responsible for calling * spi_unregister_controller(). * * Return: zero on success, else a negative error code. */ int spi_register_controller(struct spi_controller *ctlr) { struct device *dev = ctlr->dev.parent; struct boardinfo *bi; int status; int id, first_dynamic; if (!dev) return -ENODEV; /* * Make sure all necessary hooks are implemented before registering * the SPI controller. */ status = spi_controller_check_ops(ctlr); if (status) return status; if (ctlr->bus_num >= 0) { /* devices with a fixed bus num must check-in with the num */ mutex_lock(&board_lock); id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, ctlr->bus_num + 1, GFP_KERNEL); mutex_unlock(&board_lock); if (WARN(id < 0, "couldn't get idr")) return id == -ENOSPC ? -EBUSY : id; ctlr->bus_num = id; } else if (ctlr->dev.of_node) { /* allocate dynamic bus number using Linux idr */ id = of_alias_get_id(ctlr->dev.of_node, "spi"); if (id >= 0) { ctlr->bus_num = id; mutex_lock(&board_lock); id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, ctlr->bus_num + 1, GFP_KERNEL); mutex_unlock(&board_lock); if (WARN(id < 0, "couldn't get idr")) return id == -ENOSPC ? -EBUSY : id; } } if (ctlr->bus_num < 0) { first_dynamic = of_alias_get_highest_id("spi"); if (first_dynamic < 0) first_dynamic = 0; else first_dynamic++; mutex_lock(&board_lock); id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 0, GFP_KERNEL); mutex_unlock(&board_lock); if (WARN(id < 0, "couldn't get idr")) return id; ctlr->bus_num = id; } INIT_LIST_HEAD(&ctlr->queue); spin_lock_init(&ctlr->queue_lock); spin_lock_init(&ctlr->bus_lock_spinlock); mutex_init(&ctlr->bus_lock_mutex); mutex_init(&ctlr->io_mutex); ctlr->bus_lock_flag = 0; init_completion(&ctlr->xfer_completion); if (!ctlr->max_dma_len) ctlr->max_dma_len = INT_MAX; /* register the device, then userspace will see it. * registration fails if the bus ID is in use. */ dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); if (!spi_controller_is_slave(ctlr)) { if (ctlr->use_gpio_descriptors) { status = spi_get_gpio_descs(ctlr); if (status) goto free_bus_id; /* * A controller using GPIO descriptors always * supports SPI_CS_HIGH if need be. */ ctlr->mode_bits |= SPI_CS_HIGH; } else { /* Legacy code path for GPIOs from DT */ status = of_spi_get_gpio_numbers(ctlr); if (status) goto free_bus_id; } } /* * Even if it's just one always-selected device, there must * be at least one chipselect. */ if (!ctlr->num_chipselect) { status = -EINVAL; goto free_bus_id; } status = device_add(&ctlr->dev); if (status < 0) goto free_bus_id; dev_dbg(dev, "registered %s %s\n", spi_controller_is_slave(ctlr) ? "slave" : "master", dev_name(&ctlr->dev)); /* * If we're using a queued driver, start the queue. Note that we don't * need the queueing logic if the driver is only supporting high-level * memory operations. */ if (ctlr->transfer) { dev_info(dev, "controller is unqueued, this is deprecated\n"); } else if (ctlr->transfer_one || ctlr->transfer_one_message) { status = spi_controller_initialize_queue(ctlr); if (status) { device_del(&ctlr->dev); goto free_bus_id; } } /* add statistics */ spin_lock_init(&ctlr->statistics.lock); mutex_lock(&board_lock); list_add_tail(&ctlr->list, &spi_controller_list); list_for_each_entry(bi, &board_list, list) spi_match_controller_to_boardinfo(ctlr, &bi->board_info); mutex_unlock(&board_lock); /* Register devices from the device tree and ACPI */ of_register_spi_devices(ctlr); acpi_register_spi_devices(ctlr); return status; free_bus_id: mutex_lock(&board_lock); idr_remove(&spi_master_idr, ctlr->bus_num); mutex_unlock(&board_lock); return status; } EXPORT_SYMBOL_GPL(spi_register_controller); static void devm_spi_unregister(struct device *dev, void *res) { spi_unregister_controller(*(struct spi_controller **)res); } /** * devm_spi_register_controller - register managed SPI master or slave * controller * @dev: device managing SPI controller * @ctlr: initialized controller, originally from spi_alloc_master() or * spi_alloc_slave() * Context: can sleep * * Register a SPI device as with spi_register_controller() which will * automatically be unregistered and freed. * * Return: zero on success, else a negative error code. */ int devm_spi_register_controller(struct device *dev, struct spi_controller *ctlr) { struct spi_controller **ptr; int ret; ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ret = spi_register_controller(ctlr); if (!ret) { *ptr = ctlr; devres_add(dev, ptr); } else { devres_free(ptr); } return ret; } EXPORT_SYMBOL_GPL(devm_spi_register_controller); static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr) { return *(struct spi_controller **)res == ctlr; } static int __unregister(struct device *dev, void *null) { spi_unregister_device(to_spi_device(dev)); return 0; } /** * spi_unregister_controller - unregister SPI master or slave controller * @ctlr: the controller being unregistered * Context: can sleep * * This call is used only by SPI controller drivers, which are the * only ones directly touching chip registers. * * This must be called from context that can sleep. * * Note that this function also drops a reference to the controller. */ void spi_unregister_controller(struct spi_controller *ctlr) { struct spi_controller *found; int id = ctlr->bus_num; /* Prevent addition of new devices, unregister existing ones */ if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) mutex_lock(&spi_add_lock); device_for_each_child(&ctlr->dev, NULL, __unregister); /* First make sure that this controller was ever added */ mutex_lock(&board_lock); found = idr_find(&spi_master_idr, id); mutex_unlock(&board_lock); if (ctlr->queued) { if (spi_destroy_queue(ctlr)) dev_err(&ctlr->dev, "queue remove failed\n"); } mutex_lock(&board_lock); list_del(&ctlr->list); mutex_unlock(&board_lock); device_del(&ctlr->dev); /* Release the last reference on the controller if its driver * has not yet been converted to devm_spi_alloc_master/slave(). */ if (!devres_find(ctlr->dev.parent, devm_spi_release_controller, devm_spi_match_controller, ctlr)) put_device(&ctlr->dev); /* free bus id */ mutex_lock(&board_lock); if (found == ctlr) idr_remove(&spi_master_idr, id); mutex_unlock(&board_lock); if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) mutex_unlock(&spi_add_lock); } EXPORT_SYMBOL_GPL(spi_unregister_controller); int spi_controller_suspend(struct spi_controller *ctlr) { int ret; /* Basically no-ops for non-queued controllers */ if (!ctlr->queued) return 0; ret = spi_stop_queue(ctlr); if (ret) dev_err(&ctlr->dev, "queue stop failed\n"); return ret; } EXPORT_SYMBOL_GPL(spi_controller_suspend); int spi_controller_resume(struct spi_controller *ctlr) { int ret; if (!ctlr->queued) return 0; ret = spi_start_queue(ctlr); if (ret) dev_err(&ctlr->dev, "queue restart failed\n"); return ret; } EXPORT_SYMBOL_GPL(spi_controller_resume); static int __spi_controller_match(struct device *dev, const void *data) { struct spi_controller *ctlr; const u16 *bus_num = data; ctlr = container_of(dev, struct spi_controller, dev); return ctlr->bus_num == *bus_num; } /** * spi_busnum_to_master - look up master associated with bus_num * @bus_num: the master's bus number * Context: can sleep * * This call may be used with devices that are registered after * arch init time. It returns a refcounted pointer to the relevant * spi_controller (which the caller must release), or NULL if there is * no such master registered. * * Return: the SPI master structure on success, else NULL. */ struct spi_controller *spi_busnum_to_master(u16 bus_num) { struct device *dev; struct spi_controller *ctlr = NULL; dev = class_find_device(&spi_master_class, NULL, &bus_num, __spi_controller_match); if (dev) ctlr = container_of(dev, struct spi_controller, dev); /* reference got in class_find_device */ return ctlr; } EXPORT_SYMBOL_GPL(spi_busnum_to_master); /*-------------------------------------------------------------------------*/ /* Core methods for SPI resource management */ /** * spi_res_alloc - allocate a spi resource that is life-cycle managed * during the processing of a spi_message while using * spi_transfer_one * @spi: the spi device for which we allocate memory * @release: the release code to execute for this resource * @size: size to alloc and return * @gfp: GFP allocation flags * * Return: the pointer to the allocated data * * This may get enhanced in the future to allocate from a memory pool * of the @spi_device or @spi_controller to avoid repeated allocations. */ void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, size_t size, gfp_t gfp) { struct spi_res *sres; sres = kzalloc(sizeof(*sres) + size, gfp); if (!sres) return NULL; INIT_LIST_HEAD(&sres->entry); sres->release = release; return sres->data; } EXPORT_SYMBOL_GPL(spi_res_alloc); /** * spi_res_free - free an spi resource * @res: pointer to the custom data of a resource * */ void spi_res_free(void *res) { struct spi_res *sres = container_of(res, struct spi_res, data); if (!res) return; WARN_ON(!list_empty(&sres->entry)); kfree(sres); } EXPORT_SYMBOL_GPL(spi_res_free); /** * spi_res_add - add a spi_res to the spi_message * @message: the spi message * @res: the spi_resource */ void spi_res_add(struct spi_message *message, void *res) { struct spi_res *sres = container_of(res, struct spi_res, data); WARN_ON(!list_empty(&sres->entry)); list_add_tail(&sres->entry, &message->resources); } EXPORT_SYMBOL_GPL(spi_res_add); /** * spi_res_release - release all spi resources for this message * @ctlr: the @spi_controller * @message: the @spi_message */ void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) { struct spi_res *res, *tmp; list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { if (res->release) res->release(ctlr, message, res->data); list_del(&res->entry); kfree(res); } } EXPORT_SYMBOL_GPL(spi_res_release); /*-------------------------------------------------------------------------*/ /* Core methods for spi_message alterations */ static void __spi_replace_transfers_release(struct spi_controller *ctlr, struct spi_message *msg, void *res) { struct spi_replaced_transfers *rxfer = res; size_t i; /* call extra callback if requested */ if (rxfer->release) rxfer->release(ctlr, msg, res); /* insert replaced transfers back into the message */ list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); /* remove the formerly inserted entries */ for (i = 0; i < rxfer->inserted; i++) list_del(&rxfer->inserted_transfers[i].transfer_list); } /** * spi_replace_transfers - replace transfers with several transfers * and register change with spi_message.resources * @msg: the spi_message we work upon * @xfer_first: the first spi_transfer we want to replace * @remove: number of transfers to remove * @insert: the number of transfers we want to insert instead * @release: extra release code necessary in some circumstances * @extradatasize: extra data to allocate (with alignment guarantees * of struct @spi_transfer) * @gfp: gfp flags * * Returns: pointer to @spi_replaced_transfers, * PTR_ERR(...) in case of errors. */ struct spi_replaced_transfers *spi_replace_transfers( struct spi_message *msg, struct spi_transfer *xfer_first, size_t remove, size_t insert, spi_replaced_release_t release, size_t extradatasize, gfp_t gfp) { struct spi_replaced_transfers *rxfer; struct spi_transfer *xfer; size_t i; /* allocate the structure using spi_res */ rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, struct_size(rxfer, inserted_transfers, insert) + extradatasize, gfp); if (!rxfer) return ERR_PTR(-ENOMEM); /* the release code to invoke before running the generic release */ rxfer->release = release; /* assign extradata */ if (extradatasize) rxfer->extradata = &rxfer->inserted_transfers[insert]; /* init the replaced_transfers list */ INIT_LIST_HEAD(&rxfer->replaced_transfers); /* assign the list_entry after which we should reinsert * the @replaced_transfers - it may be spi_message.messages! */ rxfer->replaced_after = xfer_first->transfer_list.prev; /* remove the requested number of transfers */ for (i = 0; i < remove; i++) { /* if the entry after replaced_after it is msg->transfers * then we have been requested to remove more transfers * than are in the list */ if (rxfer->replaced_after->next == &msg->transfers) { dev_err(&msg->spi->dev, "requested to remove more spi_transfers than are available\n"); /* insert replaced transfers back into the message */ list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); /* free the spi_replace_transfer structure */ spi_res_free(rxfer); /* and return with an error */ return ERR_PTR(-EINVAL); } /* remove the entry after replaced_after from list of * transfers and add it to list of replaced_transfers */ list_move_tail(rxfer->replaced_after->next, &rxfer->replaced_transfers); } /* create copy of the given xfer with identical settings * based on the first transfer to get removed */ for (i = 0; i < insert; i++) { /* we need to run in reverse order */ xfer = &rxfer->inserted_transfers[insert - 1 - i]; /* copy all spi_transfer data */ memcpy(xfer, xfer_first, sizeof(*xfer)); /* add to list */ list_add(&xfer->transfer_list, rxfer->replaced_after); /* clear cs_change and delay for all but the last */ if (i) { xfer->cs_change = false; xfer->delay_usecs = 0; xfer->delay.value = 0; } } /* set up inserted */ rxfer->inserted = insert; /* and register it with spi_res/spi_message */ spi_res_add(msg, rxfer); return rxfer; } EXPORT_SYMBOL_GPL(spi_replace_transfers); static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, struct spi_message *msg, struct spi_transfer **xferp, size_t maxsize, gfp_t gfp) { struct spi_transfer *xfer = *xferp, *xfers; struct spi_replaced_transfers *srt; size_t offset; size_t count, i; /* calculate how many we have to replace */ count = DIV_ROUND_UP(xfer->len, maxsize); /* create replacement */ srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); if (IS_ERR(srt)) return PTR_ERR(srt); xfers = srt->inserted_transfers; /* now handle each of those newly inserted spi_transfers * note that the replacements spi_transfers all are preset * to the same values as *xferp, so tx_buf, rx_buf and len * are all identical (as well as most others) * so we just have to fix up len and the pointers. * * this also includes support for the depreciated * spi_message.is_dma_mapped interface */ /* the first transfer just needs the length modified, so we * run it outside the loop */ xfers[0].len = min_t(size_t, maxsize, xfer[0].len); /* all the others need rx_buf/tx_buf also set */ for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { /* update rx_buf, tx_buf and dma */ if (xfers[i].rx_buf) xfers[i].rx_buf += offset; if (xfers[i].rx_dma) xfers[i].rx_dma += offset; if (xfers[i].tx_buf) xfers[i].tx_buf += offset; if (xfers[i].tx_dma) xfers[i].tx_dma += offset; /* update length */ xfers[i].len = min(maxsize, xfers[i].len - offset); } /* we set up xferp to the last entry we have inserted, * so that we skip those already split transfers */ *xferp = &xfers[count - 1]; /* increment statistics counters */ SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, transfers_split_maxsize); SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, transfers_split_maxsize); return 0; } /** * spi_split_tranfers_maxsize - split spi transfers into multiple transfers * when an individual transfer exceeds a * certain size * @ctlr: the @spi_controller for this transfer * @msg: the @spi_message to transform * @maxsize: the maximum when to apply this * @gfp: GFP allocation flags * * Return: status of transformation */ int spi_split_transfers_maxsize(struct spi_controller *ctlr, struct spi_message *msg, size_t maxsize, gfp_t gfp) { struct spi_transfer *xfer; int ret; /* iterate over the transfer_list, * but note that xfer is advanced to the last transfer inserted * to avoid checking sizes again unnecessarily (also xfer does * potentiall belong to a different list by the time the * replacement has happened */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (xfer->len > maxsize) { ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, maxsize, gfp); if (ret) return ret; } } return 0; } EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); /*-------------------------------------------------------------------------*/ /* Core methods for SPI controller protocol drivers. Some of the * other core methods are currently defined as inline functions. */ static int __spi_validate_bits_per_word(struct spi_controller *ctlr, u8 bits_per_word) { if (ctlr->bits_per_word_mask) { /* Only 32 bits fit in the mask */ if (bits_per_word > 32) return -EINVAL; if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) return -EINVAL; } return 0; } /** * spi_setup - setup SPI mode and clock rate * @spi: the device whose settings are being modified * Context: can sleep, and no requests are queued to the device * * SPI protocol drivers may need to update the transfer mode if the * device doesn't work with its default. They may likewise need * to update clock rates or word sizes from initial values. This function * changes those settings, and must be called from a context that can sleep. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take * effect the next time the device is selected and data is transferred to * or from it. When this function returns, the spi device is deselected. * * Note that this call will fail if the protocol driver specifies an option * that the underlying controller or its driver does not support. For * example, not all hardware supports wire transfers using nine bit words, * LSB-first wire encoding, or active-high chipselects. * * Return: zero on success, else a negative error code. */ int spi_setup(struct spi_device *spi) { unsigned bad_bits, ugly_bits; int status; /* check mode to prevent that DUAL and QUAD set at the same time */ if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { dev_err(&spi->dev, "setup: can not select dual and quad at the same time\n"); return -EINVAL; } /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ if ((spi->mode & SPI_3WIRE) && (spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) return -EINVAL; /* help drivers fail *cleanly* when they need options * that aren't supported with their current controller * SPI_CS_WORD has a fallback software implementation, * so it is ignored here. */ bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); /* nothing prevents from working with active-high CS in case if it * is driven by GPIO. */ if (gpio_is_valid(spi->cs_gpio)) bad_bits &= ~SPI_CS_HIGH; ugly_bits = bad_bits & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); if (ugly_bits) { dev_warn(&spi->dev, "setup: ignoring unsupported mode bits %x\n", ugly_bits); spi->mode &= ~ugly_bits; bad_bits &= ~ugly_bits; } if (bad_bits) { dev_err(&spi->dev, "setup: unsupported mode bits %x\n", bad_bits); return -EINVAL; } if (!spi->bits_per_word) spi->bits_per_word = 8; status = __spi_validate_bits_per_word(spi->controller, spi->bits_per_word); if (status) return status; if (!spi->max_speed_hz) spi->max_speed_hz = spi->controller->max_speed_hz; mutex_lock(&spi->controller->io_mutex); if (spi->controller->setup) status = spi->controller->setup(spi); if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { status = pm_runtime_get_sync(spi->controller->dev.parent); if (status < 0) { mutex_unlock(&spi->controller->io_mutex); pm_runtime_put_noidle(spi->controller->dev.parent); dev_err(&spi->controller->dev, "Failed to power device: %d\n", status); return status; } /* * We do not want to return positive value from pm_runtime_get, * there are many instances of devices calling spi_setup() and * checking for a non-zero return value instead of a negative * return value. */ status = 0; spi_set_cs(spi, false); pm_runtime_mark_last_busy(spi->controller->dev.parent); pm_runtime_put_autosuspend(spi->controller->dev.parent); } else { spi_set_cs(spi, false); } mutex_unlock(&spi->controller->io_mutex); if (spi->rt && !spi->controller->rt) { spi->controller->rt = true; spi_set_thread_rt(spi->controller); } dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", (spi->mode & SPI_3WIRE) ? "3wire, " : "", (spi->mode & SPI_LOOP) ? "loopback, " : "", spi->bits_per_word, spi->max_speed_hz, status); return status; } EXPORT_SYMBOL_GPL(spi_setup); /** * spi_set_cs_timing - configure CS setup, hold, and inactive delays * @spi: the device that requires specific CS timing configuration * @setup: CS setup time specified via @spi_delay * @hold: CS hold time specified via @spi_delay * @inactive: CS inactive delay between transfers specified via @spi_delay * * Return: zero on success, else a negative error code. */ int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, struct spi_delay *hold, struct spi_delay *inactive) { size_t len; if (spi->controller->set_cs_timing) return spi->controller->set_cs_timing(spi, setup, hold, inactive); if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || (hold && hold->unit == SPI_DELAY_UNIT_SCK) || (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { dev_err(&spi->dev, "Clock-cycle delays for CS not supported in SW mode\n"); return -ENOTSUPP; } len = sizeof(struct spi_delay); /* copy delays to controller */ if (setup) memcpy(&spi->controller->cs_setup, setup, len); else memset(&spi->controller->cs_setup, 0, len); if (hold) memcpy(&spi->controller->cs_hold, hold, len); else memset(&spi->controller->cs_hold, 0, len); if (inactive) memcpy(&spi->controller->cs_inactive, inactive, len); else memset(&spi->controller->cs_inactive, 0, len); return 0; } EXPORT_SYMBOL_GPL(spi_set_cs_timing); static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, struct spi_device *spi) { int delay1, delay2; delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); if (delay1 < 0) return delay1; delay2 = spi_delay_to_ns(&spi->word_delay, xfer); if (delay2 < 0) return delay2; if (delay1 < delay2) memcpy(&xfer->word_delay, &spi->word_delay, sizeof(xfer->word_delay)); return 0; } static int __spi_validate(struct spi_device *spi, struct spi_message *message) { struct spi_controller *ctlr = spi->controller; struct spi_transfer *xfer; int w_size; if (list_empty(&message->transfers)) return -EINVAL; /* If an SPI controller does not support toggling the CS line on each * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO * for the CS line, we can emulate the CS-per-word hardware function by * splitting transfers into one-word transfers and ensuring that * cs_change is set for each transfer. */ if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) { size_t maxsize; int ret; maxsize = (spi->bits_per_word + 7) / 8; /* spi_split_transfers_maxsize() requires message->spi */ message->spi = spi; ret = spi_split_transfers_maxsize(ctlr, message, maxsize, GFP_KERNEL); if (ret) return ret; list_for_each_entry(xfer, &message->transfers, transfer_list) { /* don't change cs_change on the last entry in the list */ if (list_is_last(&xfer->transfer_list, &message->transfers)) break; xfer->cs_change = 1; } } /* Half-duplex links include original MicroWire, and ones with * only one data pin like SPI_3WIRE (switches direction) or where * either MOSI or MISO is missing. They can also be caused by * software limitations. */ if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || (spi->mode & SPI_3WIRE)) { unsigned flags = ctlr->flags; list_for_each_entry(xfer, &message->transfers, transfer_list) { if (xfer->rx_buf && xfer->tx_buf) return -EINVAL; if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) return -EINVAL; if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) return -EINVAL; } } /** * Set transfer bits_per_word and max speed as spi device default if * it is not set for this transfer. * Set transfer tx_nbits and rx_nbits as single transfer default * (SPI_NBITS_SINGLE) if it is not set for this transfer. * Ensure transfer word_delay is at least as long as that required by * device itself. */ message->frame_length = 0; list_for_each_entry(xfer, &message->transfers, transfer_list) { xfer->effective_speed_hz = 0; message->frame_length += xfer->len; if (!xfer->bits_per_word) xfer->bits_per_word = spi->bits_per_word; if (!xfer->speed_hz) xfer->speed_hz = spi->max_speed_hz; if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) xfer->speed_hz = ctlr->max_speed_hz; if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) return -EINVAL; /* * SPI transfer length should be multiple of SPI word size * where SPI word size should be power-of-two multiple */ if (xfer->bits_per_word <= 8) w_size = 1; else if (xfer->bits_per_word <= 16) w_size = 2; else w_size = 4; /* No partial transfers accepted */ if (xfer->len % w_size) return -EINVAL; if (xfer->speed_hz && ctlr->min_speed_hz && xfer->speed_hz < ctlr->min_speed_hz) return -EINVAL; if (xfer->tx_buf && !xfer->tx_nbits) xfer->tx_nbits = SPI_NBITS_SINGLE; if (xfer->rx_buf && !xfer->rx_nbits) xfer->rx_nbits = SPI_NBITS_SINGLE; /* check transfer tx/rx_nbits: * 1. check the value matches one of single, dual and quad * 2. check tx/rx_nbits match the mode in spi_device */ if (xfer->tx_buf) { if (xfer->tx_nbits != SPI_NBITS_SINGLE && xfer->tx_nbits != SPI_NBITS_DUAL && xfer->tx_nbits != SPI_NBITS_QUAD) return -EINVAL; if ((xfer->tx_nbits == SPI_NBITS_DUAL) && !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) return -EINVAL; if ((xfer->tx_nbits == SPI_NBITS_QUAD) && !(spi->mode & SPI_TX_QUAD)) return -EINVAL; } /* check transfer rx_nbits */ if (xfer->rx_buf) { if (xfer->rx_nbits != SPI_NBITS_SINGLE && xfer->rx_nbits != SPI_NBITS_DUAL && xfer->rx_nbits != SPI_NBITS_QUAD) return -EINVAL; if ((xfer->rx_nbits == SPI_NBITS_DUAL) && !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) return -EINVAL; if ((xfer->rx_nbits == SPI_NBITS_QUAD) && !(spi->mode & SPI_RX_QUAD)) return -EINVAL; } if (_spi_xfer_word_delay_update(xfer, spi)) return -EINVAL; } message->status = -EINPROGRESS; return 0; } static int __spi_async(struct spi_device *spi, struct spi_message *message) { struct spi_controller *ctlr = spi->controller; struct spi_transfer *xfer; /* * Some controllers do not support doing regular SPI transfers. Return * ENOTSUPP when this is the case. */ if (!ctlr->transfer) return -ENOTSUPP; message->spi = spi; SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); trace_spi_message_submit(message); if (!ctlr->ptp_sts_supported) { list_for_each_entry(xfer, &message->transfers, transfer_list) { xfer->ptp_sts_word_pre = 0; ptp_read_system_prets(xfer->ptp_sts); } } return ctlr->transfer(spi, message); } /** * spi_async - asynchronous SPI transfer * @spi: device with which data will be exchanged * @message: describes the data transfers, including completion callback * Context: any (irqs may be blocked, etc) * * This call may be used in_irq and other contexts which can't sleep, * as well as from task contexts which can sleep. * * The completion callback is invoked in a context which can't sleep. * Before that invocation, the value of message->status is undefined. * When the callback is issued, message->status holds either zero (to * indicate complete success) or a negative error code. After that * callback returns, the driver which issued the transfer request may * deallocate the associated memory; it's no longer in use by any SPI * core or controller driver code. * * Note that although all messages to a spi_device are handled in * FIFO order, messages may go to different devices in other orders. * Some device might be higher priority, or have various "hard" access * time requirements, for example. * * On detection of any fault during the transfer, processing of * the entire message is aborted, and the device is deselected. * Until returning from the associated message completion callback, * no other spi_message queued to that device will be processed. * (This rule applies equally to all the synchronous transfer calls, * which are wrappers around this core asynchronous primitive.) * * Return: zero on success, else a negative error code. */ int spi_async(struct spi_device *spi, struct spi_message *message) { struct spi_controller *ctlr = spi->controller; int ret; unsigned long flags; ret = __spi_validate(spi, message); if (ret != 0) return ret; spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); if (ctlr->bus_lock_flag) ret = -EBUSY; else ret = __spi_async(spi, message); spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); return ret; } EXPORT_SYMBOL_GPL(spi_async); /** * spi_async_locked - version of spi_async with exclusive bus usage * @spi: device with which data will be exchanged * @message: describes the data transfers, including completion callback * Context: any (irqs may be blocked, etc) * * This call may be used in_irq and other contexts which can't sleep, * as well as from task contexts which can sleep. * * The completion callback is invoked in a context which can't sleep. * Before that invocation, the value of message->status is undefined. * When the callback is issued, message->status holds either zero (to * indicate complete success) or a negative error code. After that * callback returns, the driver which issued the transfer request may * deallocate the associated memory; it's no longer in use by any SPI * core or controller driver code. * * Note that although all messages to a spi_device are handled in * FIFO order, messages may go to different devices in other orders. * Some device might be higher priority, or have various "hard" access * time requirements, for example. * * On detection of any fault during the transfer, processing of * the entire message is aborted, and the device is deselected. * Until returning from the associated message completion callback, * no other spi_message queued to that device will be processed. * (This rule applies equally to all the synchronous transfer calls, * which are wrappers around this core asynchronous primitive.) * * Return: zero on success, else a negative error code. */ int spi_async_locked(struct spi_device *spi, struct spi_message *message) { struct spi_controller *ctlr = spi->controller; int ret; unsigned long flags; ret = __spi_validate(spi, message); if (ret != 0) return ret; spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); ret = __spi_async(spi, message); spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); return ret; } EXPORT_SYMBOL_GPL(spi_async_locked); /*-------------------------------------------------------------------------*/ /* Utility methods for SPI protocol drivers, layered on * top of the core. Some other utility methods are defined as * inline functions. */ static void spi_complete(void *arg) { complete(arg); } static int __spi_sync(struct spi_device *spi, struct spi_message *message) { DECLARE_COMPLETION_ONSTACK(done); int status; struct spi_controller *ctlr = spi->controller; unsigned long flags; status = __spi_validate(spi, message); if (status != 0) return status; message->complete = spi_complete; message->context = &done; message->spi = spi; SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); /* If we're not using the legacy transfer method then we will * try to transfer in the calling context so special case. * This code would be less tricky if we could remove the * support for driver implemented message queues. */ if (ctlr->transfer == spi_queued_transfer) { spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); trace_spi_message_submit(message); status = __spi_queued_transfer(spi, message, false); spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); } else { status = spi_async_locked(spi, message); } if (status == 0) { /* Push out the messages in the calling context if we * can. */ if (ctlr->transfer == spi_queued_transfer) { SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync_immediate); SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync_immediate); __spi_pump_messages(ctlr, false); } wait_for_completion(&done); status = message->status; } message->context = NULL; return status; } /** * spi_sync - blocking/synchronous SPI data transfers * @spi: device with which data will be exchanged * @message: describes the data transfers * Context: can sleep * * This call may only be used from a context that may sleep. The sleep * is non-interruptible, and has no timeout. Low-overhead controller * drivers may DMA directly into and out of the message buffers. * * Note that the SPI device's chip select is active during the message, * and then is normally disabled between messages. Drivers for some * frequently-used devices may want to minimize costs of selecting a chip, * by leaving it selected in anticipation that the next message will go * to the same chip. (That may increase power usage.) * * Also, the caller is guaranteeing that the memory associated with the * message will not be freed before this call returns. * * Return: zero on success, else a negative error code. */ int spi_sync(struct spi_device *spi, struct spi_message *message) { int ret; mutex_lock(&spi->controller->bus_lock_mutex); ret = __spi_sync(spi, message); mutex_unlock(&spi->controller->bus_lock_mutex); return ret; } EXPORT_SYMBOL_GPL(spi_sync); /** * spi_sync_locked - version of spi_sync with exclusive bus usage * @spi: device with which data will be exchanged * @message: describes the data transfers * Context: can sleep * * This call may only be used from a context that may sleep. The sleep * is non-interruptible, and has no timeout. Low-overhead controller * drivers may DMA directly into and out of the message buffers. * * This call should be used by drivers that require exclusive access to the * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must * be released by a spi_bus_unlock call when the exclusive access is over. * * Return: zero on success, else a negative error code. */ int spi_sync_locked(struct spi_device *spi, struct spi_message *message) { return __spi_sync(spi, message); } EXPORT_SYMBOL_GPL(spi_sync_locked); /** * spi_bus_lock - obtain a lock for exclusive SPI bus usage * @ctlr: SPI bus master that should be locked for exclusive bus access * Context: can sleep * * This call may only be used from a context that may sleep. The sleep * is non-interruptible, and has no timeout. * * This call should be used by drivers that require exclusive access to the * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the * exclusive access is over. Data transfer must be done by spi_sync_locked * and spi_async_locked calls when the SPI bus lock is held. * * Return: always zero. */ int spi_bus_lock(struct spi_controller *ctlr) { unsigned long flags; mutex_lock(&ctlr->bus_lock_mutex); spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); ctlr->bus_lock_flag = 1; spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); /* mutex remains locked until spi_bus_unlock is called */ return 0; } EXPORT_SYMBOL_GPL(spi_bus_lock); /** * spi_bus_unlock - release the lock for exclusive SPI bus usage * @ctlr: SPI bus master that was locked for exclusive bus access * Context: can sleep * * This call may only be used from a context that may sleep. The sleep * is non-interruptible, and has no timeout. * * This call releases an SPI bus lock previously obtained by an spi_bus_lock * call. * * Return: always zero. */ int spi_bus_unlock(struct spi_controller *ctlr) { ctlr->bus_lock_flag = 0; mutex_unlock(&ctlr->bus_lock_mutex); return 0; } EXPORT_SYMBOL_GPL(spi_bus_unlock); /* portable code must never pass more than 32 bytes */ #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) static u8 *buf; /** * spi_write_then_read - SPI synchronous write followed by read * @spi: device with which data will be exchanged * @txbuf: data to be written (need not be dma-safe) * @n_tx: size of txbuf, in bytes * @rxbuf: buffer into which data will be read (need not be dma-safe) * @n_rx: size of rxbuf, in bytes * Context: can sleep * * This performs a half duplex MicroWire style transaction with the * device, sending txbuf and then reading rxbuf. The return value * is zero for success, else a negative errno status code. * This call may only be used from a context that may sleep. * * Parameters to this routine are always copied using a small buffer. * Performance-sensitive or bulk transfer code should instead use * spi_{async,sync}() calls with dma-safe buffers. * * Return: zero on success, else a negative error code. */ int spi_write_then_read(struct spi_device *spi, const void *txbuf, unsigned n_tx, void *rxbuf, unsigned n_rx) { static DEFINE_MUTEX(lock); int status; struct spi_message message; struct spi_transfer x[2]; u8 *local_buf; /* Use preallocated DMA-safe buffer if we can. We can't avoid * copying here, (as a pure convenience thing), but we can * keep heap costs out of the hot path unless someone else is * using the pre-allocated buffer or the transfer is too large. */ if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), GFP_KERNEL | GFP_DMA); if (!local_buf) return -ENOMEM; } else { local_buf = buf; } spi_message_init(&message); memset(x, 0, sizeof(x)); if (n_tx) { x[0].len = n_tx; spi_message_add_tail(&x[0], &message); } if (n_rx) { x[1].len = n_rx; spi_message_add_tail(&x[1], &message); } memcpy(local_buf, txbuf, n_tx); x[0].tx_buf = local_buf; x[1].rx_buf = local_buf + n_tx; /* do the i/o */ status = spi_sync(spi, &message); if (status == 0) memcpy(rxbuf, x[1].rx_buf, n_rx); if (x[0].tx_buf == buf) mutex_unlock(&lock); else kfree(local_buf); return status; } EXPORT_SYMBOL_GPL(spi_write_then_read); /*-------------------------------------------------------------------------*/ #if IS_ENABLED(CONFIG_OF) /* must call put_device() when done with returned spi_device device */ struct spi_device *of_find_spi_device_by_node(struct device_node *node) { struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); return dev ? to_spi_device(dev) : NULL; } EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); #endif /* IS_ENABLED(CONFIG_OF) */ #if IS_ENABLED(CONFIG_OF_DYNAMIC) /* the spi controllers are not using spi_bus, so we find it with another way */ static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) { struct device *dev; dev = class_find_device_by_of_node(&spi_master_class, node); if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) dev = class_find_device_by_of_node(&spi_slave_class, node); if (!dev) return NULL; /* reference got in class_find_device */ return container_of(dev, struct spi_controller, dev); } static int of_spi_notify(struct notifier_block *nb, unsigned long action, void *arg) { struct of_reconfig_data *rd = arg; struct spi_controller *ctlr; struct spi_device *spi; switch (of_reconfig_get_state_change(action, arg)) { case OF_RECONFIG_CHANGE_ADD: ctlr = of_find_spi_controller_by_node(rd->dn->parent); if (ctlr == NULL) return NOTIFY_OK; /* not for us */ if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { put_device(&ctlr->dev); return NOTIFY_OK; } spi = of_register_spi_device(ctlr, rd->dn); put_device(&ctlr->dev); if (IS_ERR(spi)) { pr_err("%s: failed to create for '%pOF'\n", __func__, rd->dn); of_node_clear_flag(rd->dn, OF_POPULATED); return notifier_from_errno(PTR_ERR(spi)); } break; case OF_RECONFIG_CHANGE_REMOVE: /* already depopulated? */ if (!of_node_check_flag(rd->dn, OF_POPULATED)) return NOTIFY_OK; /* find our device by node */ spi = of_find_spi_device_by_node(rd->dn); if (spi == NULL) return NOTIFY_OK; /* no? not meant for us */ /* unregister takes one ref away */ spi_unregister_device(spi); /* and put the reference of the find */ put_device(&spi->dev); break; } return NOTIFY_OK; } static struct notifier_block spi_of_notifier = { .notifier_call = of_spi_notify, }; #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ extern struct notifier_block spi_of_notifier; #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ #if IS_ENABLED(CONFIG_ACPI) static int spi_acpi_controller_match(struct device *dev, const void *data) { return ACPI_COMPANION(dev->parent) == data; } static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) { struct device *dev; dev = class_find_device(&spi_master_class, NULL, adev, spi_acpi_controller_match); if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) dev = class_find_device(&spi_slave_class, NULL, adev, spi_acpi_controller_match); if (!dev) return NULL; return container_of(dev, struct spi_controller, dev); } static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) { struct device *dev; dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); return to_spi_device(dev); } static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, void *arg) { struct acpi_device *adev = arg; struct spi_controller *ctlr; struct spi_device *spi; switch (value) { case ACPI_RECONFIG_DEVICE_ADD: ctlr = acpi_spi_find_controller_by_adev(adev->parent); if (!ctlr) break; acpi_register_spi_device(ctlr, adev); put_device(&ctlr->dev); break; case ACPI_RECONFIG_DEVICE_REMOVE: if (!acpi_device_enumerated(adev)) break; spi = acpi_spi_find_device_by_adev(adev); if (!spi) break; spi_unregister_device(spi); put_device(&spi->dev); break; } return NOTIFY_OK; } static struct notifier_block spi_acpi_notifier = { .notifier_call = acpi_spi_notify, }; #else extern struct notifier_block spi_acpi_notifier; #endif static int __init spi_init(void) { int status; buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); if (!buf) { status = -ENOMEM; goto err0; } status = bus_register(&spi_bus_type); if (status < 0) goto err1; status = class_register(&spi_master_class); if (status < 0) goto err2; if (IS_ENABLED(CONFIG_SPI_SLAVE)) { status = class_register(&spi_slave_class); if (status < 0) goto err3; } if (IS_ENABLED(CONFIG_OF_DYNAMIC)) WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); if (IS_ENABLED(CONFIG_ACPI)) WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); return 0; err3: class_unregister(&spi_master_class); err2: bus_unregister(&spi_bus_type); err1: kfree(buf); buf = NULL; err0: return status; } /* board_info is normally registered in arch_initcall(), * but even essential drivers wait till later * * REVISIT only boardinfo really needs static linking. the rest (device and * driver registration) _could_ be dynamically linked (modular) ... costs * include needing to have boardinfo data structures be much more public. */ postcore_initcall(spi_init);