/* * SPDX-License-Identifier: MIT * * Copyright © 2016-2018 Intel Corporation */ #include "gt/intel_gt_types.h" #include "i915_drv.h" #include "i915_active.h" #include "i915_syncmap.h" #include "gt/intel_timeline.h" #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit))) #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit)) struct intel_timeline_hwsp { struct intel_gt *gt; struct intel_gt_timelines *gt_timelines; struct list_head free_link; struct i915_vma *vma; u64 free_bitmap; }; struct intel_timeline_cacheline { struct i915_active active; struct intel_timeline_hwsp *hwsp; void *vaddr; #define CACHELINE_BITS 6 #define CACHELINE_FREE CACHELINE_BITS }; static struct i915_vma *__hwsp_alloc(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) return ERR_CAST(obj); i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, >->ggtt->vm, NULL); if (IS_ERR(vma)) i915_gem_object_put(obj); return vma; } static struct i915_vma * hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline) { struct intel_gt_timelines *gt = &timeline->gt->timelines; struct intel_timeline_hwsp *hwsp; BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE); spin_lock_irq(>->hwsp_lock); /* hwsp_free_list only contains HWSP that have available cachelines */ hwsp = list_first_entry_or_null(>->hwsp_free_list, typeof(*hwsp), free_link); if (!hwsp) { struct i915_vma *vma; spin_unlock_irq(>->hwsp_lock); hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL); if (!hwsp) return ERR_PTR(-ENOMEM); vma = __hwsp_alloc(timeline->gt); if (IS_ERR(vma)) { kfree(hwsp); return vma; } vma->private = hwsp; hwsp->gt = timeline->gt; hwsp->vma = vma; hwsp->free_bitmap = ~0ull; hwsp->gt_timelines = gt; spin_lock_irq(>->hwsp_lock); list_add(&hwsp->free_link, >->hwsp_free_list); } GEM_BUG_ON(!hwsp->free_bitmap); *cacheline = __ffs64(hwsp->free_bitmap); hwsp->free_bitmap &= ~BIT_ULL(*cacheline); if (!hwsp->free_bitmap) list_del(&hwsp->free_link); spin_unlock_irq(>->hwsp_lock); GEM_BUG_ON(hwsp->vma->private != hwsp); return hwsp->vma; } static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline) { struct intel_gt_timelines *gt = hwsp->gt_timelines; unsigned long flags; spin_lock_irqsave(>->hwsp_lock, flags); /* As a cacheline becomes available, publish the HWSP on the freelist */ if (!hwsp->free_bitmap) list_add_tail(&hwsp->free_link, >->hwsp_free_list); GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap)); hwsp->free_bitmap |= BIT_ULL(cacheline); /* And if no one is left using it, give the page back to the system */ if (hwsp->free_bitmap == ~0ull) { i915_vma_put(hwsp->vma); list_del(&hwsp->free_link); kfree(hwsp); } spin_unlock_irqrestore(>->hwsp_lock, flags); } static void __idle_cacheline_free(struct intel_timeline_cacheline *cl) { GEM_BUG_ON(!i915_active_is_idle(&cl->active)); i915_gem_object_unpin_map(cl->hwsp->vma->obj); i915_vma_put(cl->hwsp->vma); __idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS)); i915_active_fini(&cl->active); kfree(cl); } static void __cacheline_retire(struct i915_active *active) { struct intel_timeline_cacheline *cl = container_of(active, typeof(*cl), active); i915_vma_unpin(cl->hwsp->vma); if (ptr_test_bit(cl->vaddr, CACHELINE_FREE)) __idle_cacheline_free(cl); } static struct intel_timeline_cacheline * cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline) { struct intel_timeline_cacheline *cl; void *vaddr; GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS)); cl = kmalloc(sizeof(*cl), GFP_KERNEL); if (!cl) return ERR_PTR(-ENOMEM); vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { kfree(cl); return ERR_CAST(vaddr); } i915_vma_get(hwsp->vma); cl->hwsp = hwsp; cl->vaddr = page_pack_bits(vaddr, cacheline); i915_active_init(hwsp->gt->i915, &cl->active, __cacheline_retire); return cl; } static void cacheline_acquire(struct intel_timeline_cacheline *cl) { if (cl && i915_active_acquire(&cl->active)) __i915_vma_pin(cl->hwsp->vma); } static void cacheline_release(struct intel_timeline_cacheline *cl) { if (cl) i915_active_release(&cl->active); } static void cacheline_free(struct intel_timeline_cacheline *cl) { GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE)); cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE); if (i915_active_is_idle(&cl->active)) __idle_cacheline_free(cl); } int intel_timeline_init(struct intel_timeline *timeline, struct intel_gt *gt, struct i915_vma *hwsp) { void *vaddr; /* * Ideally we want a set of engines on a single leaf as we expect * to mostly be tracking synchronisation between engines. It is not * a huge issue if this is not the case, but we may want to mitigate * any page crossing penalties if they become an issue. * * Called during early_init before we know how many engines there are. */ BUILD_BUG_ON(KSYNCMAP < I915_NUM_ENGINES); timeline->gt = gt; timeline->pin_count = 0; timeline->has_initial_breadcrumb = !hwsp; timeline->hwsp_cacheline = NULL; if (!hwsp) { struct intel_timeline_cacheline *cl; unsigned int cacheline; hwsp = hwsp_alloc(timeline, &cacheline); if (IS_ERR(hwsp)) return PTR_ERR(hwsp); cl = cacheline_alloc(hwsp->private, cacheline); if (IS_ERR(cl)) { __idle_hwsp_free(hwsp->private, cacheline); return PTR_ERR(cl); } timeline->hwsp_cacheline = cl; timeline->hwsp_offset = cacheline * CACHELINE_BYTES; vaddr = page_mask_bits(cl->vaddr); } else { timeline->hwsp_offset = I915_GEM_HWS_SEQNO_ADDR; vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); } timeline->hwsp_seqno = memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES); timeline->hwsp_ggtt = i915_vma_get(hwsp); GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size); timeline->fence_context = dma_fence_context_alloc(1); mutex_init(&timeline->mutex); INIT_ACTIVE_REQUEST(&timeline->last_request); INIT_LIST_HEAD(&timeline->requests); i915_syncmap_init(&timeline->sync); return 0; } static void timelines_init(struct intel_gt *gt) { struct intel_gt_timelines *timelines = >->timelines; mutex_init(&timelines->mutex); INIT_LIST_HEAD(&timelines->active_list); spin_lock_init(&timelines->hwsp_lock); INIT_LIST_HEAD(&timelines->hwsp_free_list); } void intel_timelines_init(struct drm_i915_private *i915) { timelines_init(&i915->gt); } static void timeline_add_to_active(struct intel_timeline *tl) { struct intel_gt_timelines *gt = &tl->gt->timelines; mutex_lock(>->mutex); list_add(&tl->link, >->active_list); mutex_unlock(>->mutex); } static void timeline_remove_from_active(struct intel_timeline *tl) { struct intel_gt_timelines *gt = &tl->gt->timelines; mutex_lock(>->mutex); list_del(&tl->link); mutex_unlock(>->mutex); } static void timelines_park(struct intel_gt *gt) { struct intel_gt_timelines *timelines = >->timelines; struct intel_timeline *timeline; mutex_lock(&timelines->mutex); list_for_each_entry(timeline, &timelines->active_list, link) { /* * All known fences are completed so we can scrap * the current sync point tracking and start afresh, * any attempt to wait upon a previous sync point * will be skipped as the fence was signaled. */ i915_syncmap_free(&timeline->sync); } mutex_unlock(&timelines->mutex); } /** * intel_timelines_park - called when the driver idles * @i915: the drm_i915_private device * * When the driver is completely idle, we know that all of our sync points * have been signaled and our tracking is then entirely redundant. Any request * to wait upon an older sync point will be completed instantly as we know * the fence is signaled and therefore we will not even look them up in the * sync point map. */ void intel_timelines_park(struct drm_i915_private *i915) { timelines_park(&i915->gt); } void intel_timeline_fini(struct intel_timeline *timeline) { GEM_BUG_ON(timeline->pin_count); GEM_BUG_ON(!list_empty(&timeline->requests)); i915_syncmap_free(&timeline->sync); if (timeline->hwsp_cacheline) cacheline_free(timeline->hwsp_cacheline); else i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj); i915_vma_put(timeline->hwsp_ggtt); } struct intel_timeline * intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp) { struct intel_timeline *timeline; int err; timeline = kzalloc(sizeof(*timeline), GFP_KERNEL); if (!timeline) return ERR_PTR(-ENOMEM); err = intel_timeline_init(timeline, gt, global_hwsp); if (err) { kfree(timeline); return ERR_PTR(err); } kref_init(&timeline->kref); return timeline; } int intel_timeline_pin(struct intel_timeline *tl) { int err; if (tl->pin_count++) return 0; GEM_BUG_ON(!tl->pin_count); err = i915_vma_pin(tl->hwsp_ggtt, 0, 0, PIN_GLOBAL | PIN_HIGH); if (err) goto unpin; tl->hwsp_offset = i915_ggtt_offset(tl->hwsp_ggtt) + offset_in_page(tl->hwsp_offset); cacheline_acquire(tl->hwsp_cacheline); timeline_add_to_active(tl); return 0; unpin: tl->pin_count = 0; return err; } static u32 timeline_advance(struct intel_timeline *tl) { GEM_BUG_ON(!tl->pin_count); GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb); return tl->seqno += 1 + tl->has_initial_breadcrumb; } static void timeline_rollback(struct intel_timeline *tl) { tl->seqno -= 1 + tl->has_initial_breadcrumb; } static noinline int __intel_timeline_get_seqno(struct intel_timeline *tl, struct i915_request *rq, u32 *seqno) { struct intel_timeline_cacheline *cl; unsigned int cacheline; struct i915_vma *vma; void *vaddr; int err; /* * If there is an outstanding GPU reference to this cacheline, * such as it being sampled by a HW semaphore on another timeline, * we cannot wraparound our seqno value (the HW semaphore does * a strict greater-than-or-equals compare, not i915_seqno_passed). * So if the cacheline is still busy, we must detach ourselves * from it and leave it inflight alongside its users. * * However, if nobody is watching and we can guarantee that nobody * will, we could simply reuse the same cacheline. * * if (i915_active_request_is_signaled(&tl->last_request) && * i915_active_is_signaled(&tl->hwsp_cacheline->active)) * return 0; * * That seems unlikely for a busy timeline that needed to wrap in * the first place, so just replace the cacheline. */ vma = hwsp_alloc(tl, &cacheline); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_rollback; } err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); if (err) { __idle_hwsp_free(vma->private, cacheline); goto err_rollback; } cl = cacheline_alloc(vma->private, cacheline); if (IS_ERR(cl)) { err = PTR_ERR(cl); __idle_hwsp_free(vma->private, cacheline); goto err_unpin; } GEM_BUG_ON(cl->hwsp->vma != vma); /* * Attach the old cacheline to the current request, so that we only * free it after the current request is retired, which ensures that * all writes into the cacheline from previous requests are complete. */ err = i915_active_ref(&tl->hwsp_cacheline->active, tl->fence_context, rq); if (err) goto err_cacheline; cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */ cacheline_free(tl->hwsp_cacheline); i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */ i915_vma_put(tl->hwsp_ggtt); tl->hwsp_ggtt = i915_vma_get(vma); vaddr = page_mask_bits(cl->vaddr); tl->hwsp_offset = cacheline * CACHELINE_BYTES; tl->hwsp_seqno = memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES); tl->hwsp_offset += i915_ggtt_offset(vma); cacheline_acquire(cl); tl->hwsp_cacheline = cl; *seqno = timeline_advance(tl); GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno)); return 0; err_cacheline: cacheline_free(cl); err_unpin: i915_vma_unpin(vma); err_rollback: timeline_rollback(tl); return err; } int intel_timeline_get_seqno(struct intel_timeline *tl, struct i915_request *rq, u32 *seqno) { *seqno = timeline_advance(tl); /* Replace the HWSP on wraparound for HW semaphores */ if (unlikely(!*seqno && tl->hwsp_cacheline)) return __intel_timeline_get_seqno(tl, rq, seqno); return 0; } static int cacheline_ref(struct intel_timeline_cacheline *cl, struct i915_request *rq) { return i915_active_ref(&cl->active, rq->fence.context, rq); } int intel_timeline_read_hwsp(struct i915_request *from, struct i915_request *to, u32 *hwsp) { struct intel_timeline_cacheline *cl = from->hwsp_cacheline; struct intel_timeline *tl = from->timeline; int err; GEM_BUG_ON(to->timeline == tl); mutex_lock_nested(&tl->mutex, SINGLE_DEPTH_NESTING); err = i915_request_completed(from); if (!err) err = cacheline_ref(cl, to); if (!err) { if (likely(cl == tl->hwsp_cacheline)) { *hwsp = tl->hwsp_offset; } else { /* across a seqno wrap, recover the original offset */ *hwsp = i915_ggtt_offset(cl->hwsp->vma) + ptr_unmask_bits(cl->vaddr, CACHELINE_BITS) * CACHELINE_BYTES; } } mutex_unlock(&tl->mutex); return err; } void intel_timeline_unpin(struct intel_timeline *tl) { GEM_BUG_ON(!tl->pin_count); if (--tl->pin_count) return; timeline_remove_from_active(tl); cacheline_release(tl->hwsp_cacheline); /* * Since this timeline is idle, all bariers upon which we were waiting * must also be complete and so we can discard the last used barriers * without loss of information. */ i915_syncmap_free(&tl->sync); __i915_vma_unpin(tl->hwsp_ggtt); } void __intel_timeline_free(struct kref *kref) { struct intel_timeline *timeline = container_of(kref, typeof(*timeline), kref); intel_timeline_fini(timeline); kfree(timeline); } static void timelines_fini(struct intel_gt *gt) { struct intel_gt_timelines *timelines = >->timelines; GEM_BUG_ON(!list_empty(&timelines->active_list)); GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list)); mutex_destroy(&timelines->mutex); } void intel_timelines_fini(struct drm_i915_private *i915) { timelines_fini(&i915->gt); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "gt/selftests/mock_timeline.c" #include "gt/selftest_timeline.c" #endif